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ON CONJUGATION COBORDISM

DuaNE O’NEILL

An almost-complex manifold supports an involution if there
is a differentiable self-map on the manifold of period two.
The differential of the map acts on the coset space of the
almost-complex structures on M by inner automorphism.
This action is also of period two. If the almost-complex
structure is sent to its conjugate, the manifold with structure,
together with the given involution is called a conjugation.
Any linear involution of Euclidean space may be used to
stabilize this situation, giving a cobordism theory of exotic
conjugations. The question considered here is;: What is the
image in complex cobordism of the functor which forgets
equivariance. The result shown in the next section is: If a
stably almost-complex manifold supports an exotic conjugation,
every characteristic number is even.

The first cobordism results on conjugations are due to Conner
and Floyd [3] (§24). In [4], Landweber established the equivariant
analogues of the Thom theorems. Certain examples have been con-
sidered by Landweber, [5] (§ 3), and together with the result here
the image of the forgetful functor can be seen to be maximal, in
some cases.

2. Proof of the theorem. It is well-known from the work of
Thom and Milnor that the unoriented bordism ring .#5, with
spectrum MO, is a polynomial ring over Z, on manifold classes #,,
t + 1 any positive integer not a power of two (¢ nondyadic). Also
%, the complex bordism ring with spectrum MU, is a polynomial
ring over Z on manifold classes u,, ¢t =0,1, ---. Representatives
for the dyadic generators u, ¢+ 1= 2/, may be chosen so that
every normal characteristic number is even. The principal ideal in
%y generated by dyadic generators is the graded Milnor ideal
associated to 2, I. I, = 1IN %y

If a partition of % contains a dyadic integer the partition will
be called dyadic. Let d(k) denote the dyadic partitions of &, n(k)
the nondyadic partitions of k. If @ = a,a, - @, is a partition of &
then the group generator wu, ---u, €%, Wwill be denoted wu..
Similarly for n,e.7;.

If MU(n) is given the involution defined in [4] then it is a
G-complex, G = Z,, in the sense of Bredon. Note that &(MU(n)) =
@,(MU(n)) = 0. The construction given in the next section produces,
for each partition of %, «, and sufficiently large n, an equivariant

573



574 DUANE O’NEILL

inclusion and a G-complex e*: MU(n) — Y* such that
. - o ((Z;—0) if aen(k)
© 1) Bua(¥) = {77 a e d(k)
(¢ i) @pyan(Y?) = (0 —{Z, (—1)""*})
(ciil) w(Y*)=0 if t+=n+k, 2n+ 2k

(c iv) e“(%)z: aw,,(MU(n))(%) = D Gy Y«)(Ge-) ~ Z maps

4, to an odd multiple of the generator « € n(k).

Let the  + s sphere with the orthogonal involution fixing an
equatorial s-sphere be denoted S7°. The G-complex formed by
attaching the cone over S®° in S™* will be denoted S™*/S®*. Let
the equivariant homotopy groups

’ [: Sn+u,n+b

o MU(%)jH and i[snﬂ’“b Y"‘]

So.n+b ’

be denoted V%, and \Y,, respectively. It is understood that a + b
is much less than # whenever this is used.

It is easy to see, from the cochain complex, [1] I §6, of S7°/S®*
that if @ is any generic coefficient system with a G-action g on

~(G
w(—) then
e
0 f0<k<s orr+s<k
Ker (1 + (—1)"9)
7,8 I 1 — 1)t
S ;@)g m (1 + (—1)*""9)

So’s ~<g>
w
e

Im (1 + (—1)t9)

if s<k<r

Hg(

ifk=r+s.

Note that the groups \Y,, are the same for all partitions «
of k. I.e., by Bredon’s classification theorem [1] II (2.11)

VA
1+ (-1™)Z
0 g even
MY pgrtiag = 7, ¢ odd t=1

MY, =0 L+m<2k.

)"Yk+q,k—q =

From this computation the main result may now be deduced.
Let ++ denote the forgetful functor.

THEOREM. u, € Image {v: AU, ,..—, — %o} only if a€d(k).

Proof. Suppose u, is in the image of +. Consider the com-
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mutative diagram with exact row (see [3], p. 286 for definitions of
a, B, and ):

¥
N vrq kg — Dok

(2.1) ) @J le“('f)#

i DY SRS e V) ST _np__) Tonra(Y%) "_"a MY itgrtb—g—1

I 7\'Yk+q,k—q—1 °

If ¢ were odd, the lower + is zero. By (civ) the upper + is zero
and u, = 0, a contradiction. Now suppose ¢ is even. The exact

row then is 0> Z—Z— Z,— 0 so that e° %) maps %, to an even
¥
multiple of the generator and by (c iv), a <€ d(k).

COROLLARY. Imageq < I.
Proof. By ([4], (4.1)), 2u, € Image + for every a.

Then if weImageq, subtract off even multiples of group
generators until we have w = 2w" + %, + %4 + -+« + u,. Now con-
struct diagram (2.1) for « successively equal to «,, ---, @, This
shows that a,ed(k), ---, @, ed(k), and the corollary is proved.

As a corollary of the construction in [5] §3 there are free
exotic conjugations on representatives wu,, ¢ = 27 — 1, showing that
Image {V: A% 41— — Zu} contains u, provided ¢ divisible by 2¢¢+,
Since the image of a forgetful functor is an ideal in 7/, this shows:

COROLLARY. Image{v: AUy i, — Zut =Ly ift =20-15k <
21 — 1 and q divisible by 2*“*»,  g(m) is the familiar number equal
to the number of integers s,0 < s < m with s =0,1,2, 4 (mod 8).

3. The construction. Recall Bredon’s procedure for killing the
homotopy groups of a G-space X, with @(X, x,) = &(X, 2,) = 0. Let
T be some G-set and F(T) the free abelian G-module on T such
that Hom (F(T), ®.(X)) contains an epimorphism A,. By use of
[2], Chapter II, (2.11), take a representative a,: S"(T+) — X and define
X... by the equivariant Puppe sequence,

SYTH -2 XL X, — ST —> -+
Bredon shows, [2], (6.6), that

g5 @(X) — @(X,,,) is an isomorphism for
0<t=<r-—1and &(X,,,)=0.
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In this construction of Y® there are at most two » where A, is
not taken to be an epimorphism. To begin, let « be a partition of

k=0 and take n > 2k — 1 so that m,,,(MO(n)) = d)m(MU(n))(g) =

A and Ty, (MU(n)) = c?)zmk(MU(n))(%;) = 2. If a is dyadic let
n. € A5 denote the zero element. Regard =, and %, as elements of
@, (MU(n)).

Let Y, = MU(n) and let all A, be epimorphisms 0 < r < n + k.
Denote the composition of the inclusions by E,: MU(n)=Y,C--- C Y..
If « is dyadic, let A, be epimorphisms 0 < r < 2n + 2k; if not let
A, .. be defined as follows. Let T,,, be the G-set of all elements in

@, Y,,+,,*1)(—g) except B,.p(ns) and all elements in @,,.(Yors_r) X (%)

Take A,.. to be the natural homomorphism defined by extending

the G-set inclusion T, & @, (Yois-). Now let 4, n +Ek<r<
2n + 2k, be epimorphisms. Let the free cyclic summand containing

B, ionif(1,) in c?)m+2k(Y2%+2k_1)<%> be denoted F. Define T,,... to be
the G-set of elements in the union of the sets @,z Ifmnk_l)(g) and

J)Zn+2k(Y2n+2k—l)<%> — F, and define A,,.., to be the natural induced

homomorphism. To define Y,, 2n + 2k < r, let A, be epimorphisms.
This defines Y* as a limit of G-complexes MU(n)= Y, C Y, C---.
Let e*: MU(n) — Y= be the inclusion.

It is clear that (c i) and (iii) are satisfied by this construction.
To check the others some notation will be required. Let g: S***
MU(n) be some representative for u,, transverse regular on BU(n)C
MU(n) and let M, = g(BU(n)). Let v,e H*(MU(n); Z) denote the
universal Thom class and s, € H*(BU(n); Z) the symmetric function as-
sociated to « in the universal Chern classes ¢, ¢, ---. Let f: MU(n) —
K(Z, 2n + 2k) represent s, U v, € H***(MU(n); Z). It is well-known
that the degree defined by fog is the normal characteristic number
of M., s(s).

The G-action of conjugation sends ¢, to —¢,, so by the splitting
principle ¢, is sent to (—1)7, v, to (—1)"v, and s, U v, to (—1)***s, U
v,. However, this determines the G-action on homology which,
through the Hurewicz isomorphism, gives the G-action on 7,,. .,(MU(n)).
To check the remainder of (c ii) we attempt to extend the map f to
a map h: Y*— K(Z, 2n + 2k).

The preceding construction shows that an extension of f to
" Yourorn— K(Z, 2n + 2k) exists for dimensional reasons. Thus
there is an integer, N =0, such that N-f}'(F..izi—:(e) = fo(u,) in
Tonson (B(Z, 2n + 2k)). Note thatth is justifies the preceding claim that
B, or_:(4,) lies in an infinite cyclic summand in @, s( Yoni2e-)(G/(e,

—
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F. Since » + k may be taken odd, F has only one fixed point, 0.
Thus, in the construction, Image 4,,,,, and F' have only 0 in common.
But f;’ lives on F, so an extension f':Y,, ..K(Z, 2n + 2k) exists.
The desired extension, %, exists now by dimensional considerations
and the following homotopy diagram commutes.

(e*o9)s
ﬂ2n+2k(82n +?k) E— 7Z.2n+2k( Ya)

A
g3 ?/ 1 Ps
| |
772n+2k(MU(n)) ~—;fg_) ﬂ2n+2k(K(Z; 2n + 215))

Since f, carries a generator to nonzero multiple of the generator,
s(4,)-9, we see that 7,,,,,(Y %) cannot be finite. By construction, it
is cyclic on one generator and this completes the verification of (c ii).

From this diagram, note that ef carries u, to some multiple of
the generator, y, of 7,,..,(Y?), ef(u,) = My. By commutativity, M
divides s.(u,). But if aen(k), s.(u,) is odd; thus M is odd and
(c iv) is verified.
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