ON CONJUGATION COBORDISM

DUANE O'NEILL

An almost-complex manifold supports an involution if there is a differentiable self-map on the manifold of period two. The differential of the map acts on the coset space of the almost-complex structures on M by inner automorphism. This action is also of period two. If the almost-complex structure is sent to its conjugate, the manifold with structure, together with the given involution is called a conjugation. Any linear involution of Euclidean space may be used to stabilize this situation, giving a cobordism theory of exotic conjugations. The question considered here is: What is the image in complex cobordism of the functor which forgets equivariance. The result shown in the next section is: If a stably almost-complex manifold supports an exotic conjugation, every characteristic number is even.

The first cobordism results on conjugations are due to Conner and Floyd [3] (§ 24). In [4], Landweber established the equivariant analogues of the Thom theorems. Certain examples have been considered by Landweber, [5] (§ 3), and together with the result here the image of the forgetful functor can be seen to be maximal, in some cases.

2. Proof of the theorem. It is well-known from the work of Thom and Milnor that the unoriented bordism ring \mathcal{N}_* , with spectrum MO, is a polynomial ring over Z_2 on manifold classes n_t , t+1 any positive integer not a power of two (t nondyadic). Also \mathcal{U}_* , the complex bordism ring with spectrum MU, is a polynomial ring over Z on manifold classes u_t , $t=0,1,\cdots$. Representatives for the dyadic generators u_t , $t+1=2^j$, may be chosen so that every normal characteristic number is even. The principal ideal in \mathcal{U}_* generated by dyadic generators is the graded Milnor ideal associated to 2, I. $I_{2k} = I \cap \mathcal{U}_{2k}$.

If a partition of k contains a dyadic integer the partition will be called dyadic. Let d(k) denote the dyadic partitions of k, n(k) the nondyadic partitions of k. If $\alpha = a_1 a_2 \cdots a_r$ is a partition of k then the group generator $u_{a_1} \cdots u_{a_r} \in \mathcal{U}_{2k}$ will be denoted u_{α} . Similarly for $n_{\alpha} \in \mathcal{N}_k$.

If MU(n) is given the involution defined in [4] then it is a G-complex, $G = \mathbb{Z}_2$, in the sense of Bredon. Note that $\widetilde{\omega}_0(MU(n)) = \widetilde{\omega}_1(MU(n)) = 0$. The construction given in the next section produces, for each partition of k, α , and sufficiently large n, an equivariant

inclusion and a G-complex e^{α} : $MU(n) \rightarrow Y^{\alpha}$ such that

$$(\text{c i }) \quad \widetilde{\omega}_{n+k}(Y^{\alpha}) = \begin{cases} (Z_2 \to 0) & \text{if } \alpha \in n(k) \\ 0 & \text{if } \alpha \in d(k) \end{cases}$$

(c ii)
$$\tilde{\omega}_{2n+2k}(Y^a) = (0 \rightarrow \{Z, (-1)^{n+k}\})$$

(c iii)
$$\omega_t(Y^{\alpha}) = 0$$
 if $t \neq n+k$, $2n+2k$

$$(\text{c iv}) \quad e^{\alpha} \Big(\frac{\textbf{G}}{e}\Big)_{\sharp} \colon \widetilde{\omega}_{2n+2k}(MU(n)) \Big(\frac{\textbf{G}}{e}\Big) \cong \mathscr{U}_{2k} \to \widetilde{\omega}_{2n+2k}(Y^{\alpha}) \Big(\frac{\textbf{G}}{e}\Big) \cong \textbf{Z} \quad \text{maps}$$
 $u_{\alpha} \text{ to an odd multiple of the generator } \alpha \in n(k).$

Let the r+s sphere with the orthogonal involution fixing an equatorial s-sphere be denoted $S^{r,s}$. The G-complex formed by attaching the cone over $S^{0,s}$ in $S^{r,s}$ will be denoted $S^{r,s}/S^{0,s}$. Let the equivariant homotopy groups

$$\left| \left[\frac{S^{n+a,n+b}}{S^{0,n+b}}, \ MU(n) \right] \right| \quad ext{and} \quad \left| \left[\frac{S^{n+a,n+b}}{S^{0,n+b}}, \ Y^{lpha} \right] \right|$$

be denoted $\lambda \mathcal{U}_{a,b}$ and $\lambda Y_{a,b}$ respectively. It is understood that a+b is much less than n whenever this is used.

It is easy to see, from the cochain complex, [1] I § 6, of $S^{r,s}/S^{0,s}$ that if $\tilde{\omega}$ is any generic coefficient system with a G-action g on $\tilde{\omega}(\frac{G}{e})$ then

$$H^{k}_{G}\!\!\left(rac{S^{r,s}}{S^{0,s}};\, ilde{\omega}
ight) \cong egin{dcases} 0 & ext{if} & 0 < k \leq s & ext{or} & r+s < k \ rac{ ext{Ker}\,(1+(-1)^{k-s}g)}{ ext{Im}\,(1+(-1)^{k-s-1}g)} & ext{if} & s < k < r \ rac{ ilde{\omega}\!\left(rac{G}{e}
ight)}{ ext{Im}\,(1+(-1)^{r+s}g)} & ext{if} & k=r+s \;. \end{cases}$$

Note that the groups $\lambda Y_{a,b}$ are the same for all partitions α of k. I.e., by Bredon's classification theorem [1] II (2.11)

$$egin{align} \lambda Y_{\scriptscriptstyle k+q,k-q} &\cong rac{oldsymbol{Z}}{(1+(-1)^{q+1})oldsymbol{Z}} \ \lambda Y_{\scriptscriptstyle k+q+t,k-q} &\cong egin{cases} 0 & q & ext{even} \ oldsymbol{Z}_2 & q & ext{odd} \end{cases} t \geqq 1 \ \lambda Y_{\scriptscriptstyle l,m} &= 0 & l+m < 2k \;. \end{cases}$$

From this computation the main result may now be deduced. Let ψ denote the forgetful functor.

THEOREM. $u_{\alpha} \in \text{Image } \{ \psi : \lambda U_{k+q,k-q} \to \mathcal{U}_{2k} \} \text{ only if } \alpha \in d(k).$

Proof. Suppose u_{α} is in the image of ψ . Consider the com-

mutative diagram with exact row (see [3], p. 286 for definitions of α , β , and ψ):

(2.1)
$$\begin{array}{c}
\lambda \mathcal{U}_{k+q,k-q} \xrightarrow{\psi} \mathcal{U}_{2k} \\
e^{\alpha} \left(\frac{G}{G} \right)_{\sharp} & \downarrow e^{\alpha} \left(\frac{G}{e} \right)_{\sharp} \\
\vdots & \ddots & \downarrow \chi_{k+q+1,k-q} \xrightarrow{\beta} \lambda Y_{k+q,k-q} \xrightarrow{\psi} \pi_{2n+2k} (Y^{\alpha}) \xrightarrow{\alpha} \lambda Y_{k+q+1,k-q-1} \\
\xrightarrow{\beta} \lambda Y_{k+q,k-q-1} \cdots
\end{array}$$
If a ware odd, the lower k is gore. By $(a \text{ iv})$ the upper k is zero.

If q were odd, the lower ψ is zero. By (c iv) the upper ψ is zero and $u_{\alpha}=0$, a contradiction. Now suppose q is even. The exact row then is $0 \to Z \to Z \to Z_2 \to 0$ so that $e^a \left(\frac{G}{e}\right)_{\sharp}$ maps u_{α} to an even multiple of the generator and by (c iv), $\alpha \in d(k)$.

COROLLARY. Image $\psi \subseteq I$.

Proof. By ([4], (4.1)), $2u_{\alpha} \in \text{Image } \psi$ for every α .

Then if $w \in \text{Image } \psi$, subtract off even multiples of group generators until we have $w = 2w' + u_{\alpha_1} + u_{\alpha_2} + \cdots + u_{\alpha_l}$. Now construct diagram (2.1) for α successively equal to $\alpha_1, \dots, \alpha_l$. This shows that $\alpha_1 \in d(k), \dots, \alpha_l \in d(k)$, and the corollary is proved.

As a corollary of the construction in [5] § 3 there are free exotic conjugations on representatives u_t , $t=2^j-1$, showing that Image $\{\psi: \lambda \mathcal{U}_{t+q,t-q} \to \mathcal{U}_{2t}\}$ contains u_t provided q divisible by $2^{\phi(t+2)}$. Since the image of a forgetful functor is an ideal in \mathcal{U}_* this shows:

COROLLARY. Image $\{\psi: \lambda U_{k+q,k-q} \to \mathcal{U}_{2k}\} = I_{2k} \text{ if } t = 2^j - 1 \leq k < 2^{j+1} - 1 \text{ and } q \text{ divisible by } 2^{\phi(t+2)}. \quad \phi(m) \text{ is the familiar number equal to the number of integers } s, 0 < s < m \text{ with } s \equiv 0, 1, 2, 4 \pmod{8}.$

3. The construction. Recall Bredon's procedure for killing the homotopy groups of a G-space X, with $\tilde{\omega}_0(X, x_0) = \tilde{\omega}_1(X, x_0) = 0$. Let T be some G-set and F(T) the free abelian G-module on T such that Hom $(F(T), \tilde{\omega}_r(X))$ contains an epimorphism A_r . By use of [2], Chapter II, (2.11), take a representative $a_r: S^r(T^+) \to X$ and define X_{r+1} by the equivariant Puppe sequence,

$$S^r(T^+) \xrightarrow{a_r} X \xrightarrow{j} X_{r+1} \longrightarrow S^{r+1}(T^+) \longrightarrow \cdots$$

Bredon shows, [2], (6.6), that

 $j_i: \widetilde{\omega}_i(X) \longrightarrow \widetilde{\omega}_i(X_{r+1})$ is an isomorphism for $0 \le t \le r-1$ and $\widetilde{\omega}_r(X_{r+1}) = 0$.

In this construction of Y^{α} there are at most two r where A_r is not taken to be an epimorphism. To begin, let α be a partition of $k \geq 0$ and take n > 2k-1 so that $\pi_{n+k}(MO(n)) = \tilde{\omega}_{n+k}(MU(n)) \left(\frac{G}{G}\right) \cong \mathscr{N}_k$ and $\pi_{2n+2k}(MU(n)) = \tilde{\omega}_{2n+2k}(MU(n)) \left(\frac{G}{e}\right) \cong \mathscr{N}_{2k}$. If α is dyadic let $n_{\alpha} \in \mathscr{N}_k$ denote the zero element. Regard n_{α} and n_{α} as elements of $\tilde{\omega}_*(MU(n))$.

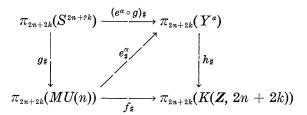
Let $Y_0=MU(n)$ and let all A_r be epimorphisms 0< r< n+k. Denote the composition of the inclusions by $E_r\colon MU(n)=Y_0\subset\cdots\subset Y_r$. If α is dyadic, let A_r be epimorphisms 0< r< 2n+2k; if not let A_{n+k} be defined as follows. Let T_{n+k} be the G-set of all elements in $\widetilde{\omega}_{n+k}(Y_{n+k-1})\Big(\frac{G}{G}\Big)$ except $E_{n+k!}(n_\alpha)$ and all elements in $\widetilde{\omega}_{n+k}(Y_{n+k-1})\times\Big(\frac{G}{e}\Big)$. Take A_{n+k} to be the natural homomorphism defined by extending the G-set inclusion $T_{n+k}\subseteq \widetilde{\omega}_{n+k}(Y_{n+k-1})$. Now let $A_r, n+k< r< 2n+2k$, be epimorphisms. Let the free cyclic summand containing $E_{2n+2k-1!}(u_\alpha)$ in $\widetilde{\omega}_{2n+2k}(Y_{2n+2k-1})\Big(\frac{G}{e}\Big)$ be denoted F. Define T_{2n+2k} to be the G-set of elements in the union of the sets $\widetilde{\omega}_{2n+2k}(Y_{2n+2k-1})\Big(\frac{G}{G}\Big)$ and $\widetilde{\omega}_{2n+2k}(Y_{2n+2k-1})\Big(\frac{G}{e}\Big)-F$, and define A_{2n+2k} to be the natural induced homomorphism. To define $Y_r, 2n+2k< r$, let A_r be epimorphisms. This defines Y^α as a limit of G-complexes $MU(n)=Y_0\subset Y_1\subset\cdots$. Let $e^\alpha\colon MU(n)\to Y^\alpha$ be the inclusion.

It is clear that (c i) and (iii) are satisfied by this construction. To check the others some notation will be required. Let $g\colon S^{2n+2k}\to MU(n)$ be some representative for u_{α} , transverse regular on $BU(n)\subset MU(n)$ and let $M_{\alpha}=g^{-1}(BU(n))$. Let $v_n\in \widetilde{H}^{2n}(MU(n);\mathbf{Z})$ denote the universal Thom class and $s_{\alpha}\in H^{2k}(BU(n);\mathbf{Z})$ the symmetric function associated to α in the universal Chern classes c_1,c_2,\cdots . Let $f\colon MU(n)\to K(\mathbf{Z},2n+2k)$ represent $s_{\alpha}\cup v_n\in \widetilde{H}^{2n+2k}(MU(n);\mathbf{Z})$. It is well-known that the degree defined by $f\circ g$ is the normal characteristic number of M_{α} , $s_{\alpha}(u_{\alpha})$.

The G-action of conjugation sends c_1 to $-c_1$, so by the splitting principle c_n is sent to $(-1)_{c_n}^n$, v_n to $(-1)^n v_n$ and $s_\alpha \cup v_n$ to $(-1)^{n+k} s_\alpha \cup v_n$. However, this determines the G-action on homology which, through the Hurewicz isomorphism, gives the G-action on $\pi_{2n+2k}(MU(n))$. To check the remainder of (c ii) we attempt to extend the map f to a map $h: Y^\alpha \to K(\mathbb{Z}, 2n+2k)$.

The preceding construction shows that an extension of f to f'': $Y_{2n+2k-1} \rightarrow K(\mathbf{Z}, 2n+2k)$ exists for dimensional reasons. Thus there is an integer, $N \neq 0$, such that $N \cdot f_{\sharp}''(E_{2n+2k-1\sharp}(u_{\alpha})) = f_{\sharp}(u_{\alpha})$ in $\pi_{2n+2k}(K(\mathbf{Z}, 2n+2k))$. Note that h is justifies the preceding claim that $E_{2n+2k-1\sharp}(u_{\alpha})$ lies in an infinite cyclic summand in $\widetilde{\omega}_{2n+2k}(Y_{2n+2k-1})(G/(e, \mathbf{Z}))$

F. Since n+k may be taken odd, F has only one fixed point, 0. Thus, in the construction, Image A_{2n+2k} and F have only 0 in common. But f_*'' lives on F, so an extension f': $Y_{2n+2k}K(Z, 2n+2k)$ exists. The desired extension, h, exists now by dimensional considerations and the following homotopy diagram commutes.



Since f_{\sharp} carries a generator to nonzero multiple of the generator, $s_{\alpha}(u_{\alpha}) \cdot g$, we see that $\pi_{2n+2k}(Y^{\alpha})$ cannot be finite. By construction, it is cyclic on one generator and this completes the verification of (c ii).

From this diagram, note that e_{\sharp}^{α} carries u_{α} to some multiple of the generator, y, of $\pi_{2n+2k}(Y^{\alpha})$, $e_{\sharp}^{\alpha}(u_{\alpha})=My$. By commutativity, M divides $s_{\alpha}(u_{\alpha})$. But if $\alpha \in n(k)$, $s_{\alpha}(u_{\alpha})$ is odd; thus M is odd and (c iv) is verified.

REFERENCES

- 1. G. E. Bredon, Equivariant Cohomology Theories, Lecture Notes in Math., (34), Springer-Verlag, 1967.
- 2. ——, Equivariant Homotopy, Proceedings of the Conference on Transformation Groups, Springer-Verlag, 1968.
- 3. P. E. Conner and E. E. Floyd, Differentiable Periodic Maps, Ergb. der Math., N. S. (33), Springer-Verlag, 1964.
- 4. P. S. Landweber, Conjugations on complex manifolds and equivariant homotopy of MU, Bull. Amer. Math. Soc., 74 (1968), 271-274.
- 5. ——, Fixed point free conjugations on complex manifolds, Annals of Math., 86 (1967), 491-502.

Received September 19, 1973.

SUNY AT BUFFALO