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QUATERNION ORDERS ASSOCIATED WITH
TERNARY LATTICES

GORrRDON L. NIrP

It is advantageous for the study of the spinor genus of
quaternion orders to realize each order as corresponding to
a ternary lattice. In the two known correspondences, those
of Eichler and Pall, the question of whether the mapping is
onto or not is not considered. Peters has investigated the
question for Eichler’s correspondence, and his results show
that it is not onto. Pall’s correspondence, though onto, is
only defined over the rational integers. In this article, a
generalization to Dedekind domains of Pall’s correspondence
is defined. Those orders which are images of ternary lattices
under the correspondence are completely determined, and the
relationship of this mapping to Eichler’s is examined.

1. Introduction. The terminology will be that of O’Meara [4].
Throughout we will be dealing with a regular ternary quadratic space
V over the quotient field F' (characteristic of F' not equal to 2) of
a Dedekind domain D and with the even Clifford algebra C+ = C+(V)
of V. For convenience we will assume that ¥ is a global field.

The content of the individual sections is as follows:

In §2 we give some necessary preliminary results on the rela-
tionship between a regular ternary quadratic space, its even Clifford
algebra, and their rotations.

We define a mapping ¢ from an integral ternary lattice L on V
to an order ¥, on the quaternion algebra C*(V) in §3. &, is the
D-module in C* generated over D by 1 and all products 2y such that
2 and y are in L. We also determine in this section that the mapping
is one-to-one and that two integral ternary lattices L and K are in
the same class (spinor genus, genus) if and only if the orders ¢, and
Jx are in the same class (spinor genus, genus).

The problem of whether our mapping is onto or not is formulated
in the following two contexts:

(i) If ¢ is an order on the even Clifford algebra of a fixed
regular ternary quadratic space V, does there exist an integral lattice
L on V such that ¢, = &?

(ii) If ¢ is an order on a quaternion algebra, does there exist
a regular ternary space V and an integral lattice L on V such that
I~ §?

In §4 we give 2 counterexample to answer the first question,
but we do show that if an order &, is the image of a lattice L, then
all orders in the genus of ¢, are images as well.
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In §5 we show that a necessary and sufficient condition that the
second question be answered in the affirmative is that the square
root of the volume of ¢ be a square in the ideal class group of D.
This condition is satisfied in many important cases (e.g., it is always
satisfied over the rational integers, or, more generally, when ¢ is
free) and yields one of the principal advantages of our mapping over
Eichler’s. (It can be seen from [6], §4, that Eichler’s correspondence
is not onto in these cases.) Additionally, we investigate the rela-
tionship between those orders which are images under Eichler’s
correspondence and those which are images under our mapping.

Some of the material in this article is from a Ph. D. dissertation
written at the University of Southern California under Professor
Dennis Estes. The author wishes to gratefully acknowledge Professor
Estes’ advice and encouragement.

2. Clifford algebras. Let D be a Dedekind domain whose quo-
tient field F is a global field (char F = 2). Let V be a regular
ternary quadratic space over F' with associated quadratic form N and
symmetric bilinear form B, and let C* be the even Clifford algebra
of V. We assume that the vectors x,, «,, #; form a basis for V with
B, @;) = a;;e F. The relations

2* = N(x)-1, oy + yo = 2B(z, y)-1 for all ,yc V
imply that the products
1, a, = %, @y = 50, o = T,

form a basis for C+* over F, which we shall call the basis for C*
corresponding to x,, «, #,. These basis elements are multiplied as
follows:

o = —a;0-1 + 200,

20,501 — a0 0 even
(¢ 2%%4 4% + 2aika,~ + 2a,-ka,5' - 4aika_.,-k°1; ag Odd

(1 2 3)
o= . .
v 7 k

It is well-known that C* is a quaternion algebra. Conjugates of
the basis elements take the form

a,; = {

for each permutation

a, = —a, + 2a;,°1 .

Furthermore, if N and B are the quadratic and symmetric bilinear
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forms on C+,
N,) = a,@; = ;04,1

Bla, 1) = Fa + &) = ;-1
B(a,, a;) = %(“z’&i + ;@) = (20,05, — Gpay;)-1 .

It is natural to ask about the relationship between bases for C*+
corresponding to different bases of V. Let 1, a;, a,, ; and 1, B, B,
B; be the bases for C* corresponding to the bases x,, ., 2, and y,, ¥,
¥, for V respectively. Suppose B(x,, #;) = a,; and B(y,, y;) = b:;, and
let T be the change of basis matrix satisfying

(yu Y y3), = T(xly Ly x3)’ .

(The prime denotes transpose.) It is most useful to state our result
in terms of the bases for C*

(1) 3 = (1r 319 52! 53)’ lo = (19 [01; 102, 103)
where for ¢ = 7,5 %4k, k# 1
0, =a; — a1l and p, =B, — b;-1.

The proof of the following proposition is computational and has been
carried through over the rational integers by Pall in [5], Theorem 1.

PrOPOSITION 2.1. The bases 6 and o of C* are related by

1 0 0 0O
0
= 0.
o 0 adj T
0

where adj T is the adjoint of T.

We note that it is a consequence of Proposition 2.1 that the
discriminants of ¥V and C*(V) in corresponding bases satisfy

a1, a;, ay, as) = d¥ @y, @ @) -

Much is known about the relationship between the rotations of
V and of C+(V) (see [2], §4.2). Some of the development will be
sketched here for later reference. Let ¢ be a member of the group
of rotations O*(V) of the regular ternary space V. It is well-known
that o can be expressed as the product of two symmetries ¢ = 7,7,
where #, ve V. In the Clifford algebra of V,
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o(x) = 7,7,(%) = (wv)x(uv)™

for every e V. We shall define a mapping ¢:C*— C* which is
induced in a natural way from V on C* by ¢. If the vectors z, w.,
x; form a basis for V, ¢ is the linear mapping defined on a basis for
C* by

g(xw;) = o(w,)o(x;), (1) = 1.
So for each ne C-,
¢(1) = (uv)p(uv)™ .

¢ is clearly an isometry, and it follows from Proposition 2.1 that ¢
is a rotation. So ¢e OF(C™).

Conversely, if ¢ e O*(C*) with ¢(1) = 1, then, since C* is a qua-
ternion algebra, there exists &c C* with N(£) == 0 such that ¢(7) =
&né for every neC*. We infer from [2], §5.2, that the mapping
0:V— V defined by o(x) = Sx&* satisfies the conditions of the following
proposition:

ProposITION 2.2, Let ¢ € OY(C*) with ¢(1) = 1. Then there exists
a mapping o€ OH(V) such that ¢ is the mapping induced on C* by o.

It follows from Proposition 2.2 that every element & of C* can
be expressed as & = u,u, where %, and u, are in V.

3. The correspondence. If L is a lattice on V, it is well-known
that there exists a basis w,, @, @, for V and fractional ideals A, A4,
A; of D in F such that

L = Ax, + Az, + A, .

We assume that L is an integral lattice on V (N(L)c D), and with
L we associate the D-module ¢, in C* generated over D by 1 and
all products 2y such that x and vy are in L. Then

9, = D1+ 3 A A,

— D1+ [Z A%t AAS(— 2B )-1)
AA(—aw, + 2B, 1)-1) + AA (-, + 2B, xl)-lﬂ
(1) + A A, + A Ao, + A A,
— D1+ [2 A:N@) + 25 4,4,B(, x,-)]-l
=1 1<y
+ A A, + A A, + A A,
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= D-1+ N(L)-1 + A A, + AA e, + Ada,
= D-1+ AAa, + A A, + A A,

where 1, a,, a,, a; is the basis for C* corresponding to z,, %, %;.. An
order on C* is a lattice on C* which is closed under multiplication
and which contains 1. (The class, genus, and spinor genus of an
order are defined as for any other lattice.) To show that ¢, is an
order, we need only show multiplicative closure, and to this end we
will perform the computations for one case.

(A:Aq0)(AA ;) = AJA Ao,
= AA A[2B(x,, ) N(x) 1 — N(zo)at] .
C [Agﬁ(xs)] [A1A2(2E(CL'1, xz))] -1

+[A:N(z,)] A, Asexs
and since
A:N(x), A, A2B(,, 2,)) c N(L)c D,
we have

(A A )(As A ;) D1 + A A,

So ¢, is an order on C*.

We next show that the mapping &: L — ¢, from integral ternary
lattices on V to orders in the even Clifford algebra C* of V is one-
to-one.

THEOREM 3.1. Let L and K be integral lattices on V. If ¢, =
Y%, then L = K.

Proof. The theorem localizes. So we assume D to be a principal
ideal domain and lattices to be free. Let
L = Dz, + Dx, + Dx; and K = Dy, + Dy, + Dy,,

and suppose (¥, ¥s, ¥s) = T(x,, ., ©;)) where T is the nonsingular 3 x
3 change of basis matrix. Let

S; = {wed;: Blw, 1) = 0},

and define 0 and p as in §2, (1). Clearly, 6, S, and p; €Sk for ¢ =
1,2 3, and S, = S;x. Hence

S, = Db, + Db, + Dd, = Dp, + Dp,, + Do, .

From Proposition 2.1, (0, 0s, 05) = (0, 6, 05)-adj T. Thus, adj T is
unimodular, T is unimodular, and L = K.
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In the sections that follow, we shall compare our mapping to
Eichler’s correspondence. The quadratic forms on the even Clifford
algebras of a ternary space V as defined by O’Meara and Eichler
differ by a factor of two. Using O’Meara’s development, it is con-
sistent to treat the order

(2) N(L)_l[(ﬁ)(L) + A A, + A A, + A1Azm1x2]
as the image of the lattice
L =Aw, + Aw, + A,

under Eichler’s correspondence (see [2], p. 96).

Clearly, if A s= (0) is a fractional ideal of D in F), then the images
of the ternary lattices L and AL under Eichler’s mapping coincide.
Thus an order can be the image of lattices in different genera. The
next results show that this does not occur with our mapping.

THEOREM 3.2. Two integral termary lattices are im the same
class if and only if the quaternion orders &, and dx are in the same
class.

Proof. Let ¢eO7(C*). We may assume ¢(1) = 1, since if ¢(1) =
C+1,{is a unit, and we consider {'¢. As in §2, let o0 O¥(V)
induce ¢ on C~. Then

L = o(K)
if and only if
9, = Z9«7(1{) = 91"("91{) .

So Lecls K if and only if ¢, ¢ cls d.
Theorem 3.2 holds in the local case. Hence we can record the
following corollary:

COROLLARY 3.3. Two integral ternary lattices L and K are in
the same genus if and only if the orders &, and J5 are in the same
genus.

The next lemma is needed in order to prove the analogous theorem
for spinor genera.

LemmA 3.4, If Y e O'(V), then the mapping @ induced by X on
C* s in O(C*). If @eO'(C), ®(1) =1, then there exists 3 e O'(V)
such that @ is the mapping induced on C* by X.
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Proof. Let Ye O'(V). If xe V, then in the Clifford algebra for V'
(@) = 7,7 (x) = §'26

where 7, and 7, are symmetries on V, & = uve C*, and N(§) = 0.
If @ is the automorphism induced on C* by o, then @(gB) = §'B& for
every Be C*. By hypothesis, N(§) is 2 square in F. Hence the spinor
norm of @ is 1;i.e., @ O'(CY).

Conversely, let @c O'(C*) with #(1) = 1. Then, for some e C*
and for every e C*, &(B) = £&7'B¢ where N(§) is a nonzero square in
F. The mapping defined by X(z) = &'2f for e V is in O"(V) and
induces @ on C*. There exist u, and %, in V such that &= u,u,,
3 =1,7,, and since N(§) is a square, the spinor norm of ¥ is 1.

THEOREM 3.5. Two integral ternary lattices L and K are in
the same spinor genus if and only if ¥, and Iy are in the same
SPINOT genus.

Proof. If o0eO*(V) induces g€ O*(C*), and if the localization
0,€ 0*(V,) of ¢ at p induces ¢, € O*(C}), then clearly ¢, is the localiza-
tion at » of ¢. Additionally, if ¢, O*(V,) induces the localization
€ O*(C}) of ¢ at p, then o, is the localization of ¢ at »p. If 3, ¢
0'(V,) induces @, O'(C}) and if L and K are integral lattices on V,
then

L, =0,2,K,
at every p if and only if
191,1, = ‘gaperp = ¢pd)p'(91<p

at every p. Hence Lespn K if and only if ¢, € spn .

4, Ternary lattices. We next consider the question of whether
our mapping is onto or not. That it is not when the question is
posed in the context of a fixed space V and its even Clifford algebra
C* can be seen from the following counterexample. Let V be a three
dimensional vector space over the field of rational numbers with basis
X = (®,, @, x;). Define a symmetric bilinear form on V by B(x;, x;) =
0 if 457 and Bz, x)=2 for 1 =1,2, 8. Let ¢ be the Z-module
generated in C* by the set

Xl
B = (1, 223, Loy, xlxz> .

¢ is an order, as may be easily seen by multiplying the basis elements
together.
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The discriminant of V in the basis X, d,(X), is 8, and the dis-
criminant of ¢ in the basis B, d;(8), is 16. Assuming that ¢ = &,
the image of a lattice I on V, we let Y be a basis for L over the
integers and v the corresponding basis for & = ¢,. We note that

dy(B) = ds(7) = d(Y)
and that
di(Y) = a’dy(X)

where a is the determinant of the (rational) change of basis matrix
from X to Y. Thus

16 = d(Y) = a'd,(X)* = 64a’ .

So a* = 1/4. This is impossible over the rationals; hence ¢ is not the
image of a lattice on V.
However, a useful theorem does hold in this context.

THEOREM 4.1. Let ¢ be an order in the genus of Oy, where L
is an integral lattice on V. Then there exists a lattice K in the
gerus of L such that & = Jg.

Proof. We are assuming that at every p there exists ¢, € O7(C})
such that J, = $,(91,). Without loss of generality, we may assume
that ¢,(1) = 1. By Proposition 2.2, there exists o,€ O"(V,) such that
$, is the mapping induced on C} by o,. Thus,

?9'1, = ¢p(ﬁLp) = 'lyapwp) = &K(p)

where K, = 0,(L,). Since there exists a basis «, a,, a;, a, for C*
such that

d=Aa, + Aa, + Aa, + A,
and
J, = Ba, + B,a, + By, + B, ,

it follows that &, = Jy, at all but possibly the finite number of spots
which divide any of the fractional ideals A, or B; for ¢ =1, 2, 3, 4.
So by Theorem 3.1, K,, = L, for all but a finite number of spots
p. Therefore, there exists a lattice K’ on V such that K, = K, for
all p (see [4], 81:14). Then

dp = 291{(,,) = (&K')p

for every p, and ¢ = &,. Clearly K’ is in the genus of L.
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5. Quaternion orders. The problem of the preceding section
may be reformulated in the following way. For a fixed order ¢ over
D on a quaternion algebra  over F, does there exist a regular
ternary quadratic space V over F and an integral lattice L on V such
that ¢, ~ &?

Let us choose an orthogonal basis

(1) Y=, 7y Yo 7s)

for % with v =d;-1, 7 = d,-1(d, d,e F), V7. = 75, and 7,7, = — %7
Suppose, for a fixed p, @ = (1, @, a,, a;) is a basis for ¢, over D,
and & = (a,, 4,, @, &) is the corresponding dual basis for #, the dual
of 4,. Let (¢;),%,7=0,1,2, 8, be the change of basis matrix from
v to &. Then if B is the natural bilinear form on U, B(&, 1) =1
and B(@;, 1) = B(v,1) =0 for 1 =1,2,8, and

B(@,1) 0 0 0 1 00 0

~ th tll t12 t13 th

(2) a=(ty) =" =7
’ tw  tu tw b tao T
t30 t31 t32 taa tso
where T = (¢,;) for 4,5 =1, 2, 3.
Define

(3) 01, vy, 7y ¥s) = N(7)N(7.) and

0 = 0(&, A, @&, &;) = det T-0(1, v, 7s, Vs) -
0(1, 75, 75, 7s)* is the discriminant of 9 in the basis v, and the volume
of &%, v(%), is 6°D,.

THEOREM 5.1. Let & be an order on a quaternion algebra U.
A necessary and sufficient condition that there exists an integral
ternary lattice L with 9, ~ & is that V' v() be a square in the ideal
class group of D.

Proof. Write L = Ax, + A, + A, where A, A,, A, are frac-
tional ideals and =z, x,, x; form a basis for the space V spanned by
L. From §3, (1),

d, = D-1 + A,Axx, + A Az, + A Az, .
Then
() = ALALAL- det (B(w,, x;))° = d2A*

where d, = det (B(x,, «;)) and A = A,4,4,. Thus V(@) = d,A® is a
square in the ideal class group of D.
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To prove sufficiency, suppose v() = dA* where d,c F' and A4 is
a fractional ideal, and let 1, v, 7., 7; be an orthogonal basis for 9 as
in (1) above. Let

K = {wed* Blw,1) = 0}, L = (A-K)?

where the superscript denotes scaling. L is a ternary lattice on
FL = V% where V= Fv, + F7, + Fv,. It will be shown that the
order ¢, in C*(V%) corresponding to L is isomorphic to <. This
assertion will follow if we prove that (i) L is integral, (ii) C*(V%)
is isomorphic to 9, and (iii) ¢, is locally isomorphic to & at every
p under the restriction to ¢, of the localization of the isomorphism
in (i),
To prove (i), we observe that

N(L) = d, A2 N(K) = 1) N(K) = Vv()- N©) ,

the last step following from [6], §3. By [3], Theorem 9,
V' 0(3,) N#) c N(&,) = D, .

Hence N(L,)c D, for each p, and N(L)c D.

For (ii), define +: C*(V4) — 9 to be the linear map with (1) =1,
v(ap) =daB for a, Be V., 4 is clearly one-to-one. To see that it
is an algebra isomorphism, it will suffice to verify that it preserves
multiplication on basis elements of C*(V%). We will carry through
the computations for one case. A basis for C* (V%) is (1, B, B:, Bs)
where B, = 7.7, B: = VsV, and B; = 7%,. Noting that, in C*(V%),
’Yg = _dodz'l, then

"1’(/33;81) = "’dodz“#(%%) = —did,7¥s = did:7\7s
= diY,-dYs = iV = oY\ 72 doYSTs
= P(Bs) V(B
So Ct(V%) ~ .
(iii) We will show that +,(;) =3, at each p. Using the
notation of the beginning of this section, we write
K, = D,a, + D,&, + D,d,
as a lattice on V,, and if 4, = a,D,,
L, = Dya, @, + Dpay@; + Dypaps
as a lattice on V. The order in C*(V%) corresponding to L, is
8, = Dy-1 + Dyal@a; + Dyai@, + Dya’dd, ,

and its image ¥,(4,) in A, is an order with basis
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(1, d.a%a.q;, dasd,d;, dafda,) .
Since v(¥%) = v(J,)™!, another basis for V¥o(Pz,) over D, is
1, 07 &, &, 67 @,A,, 07'®,&,) .
Let
r ' S—1a & _ a-1n & _ s—1a &
ay =1, a; = 0G4, a, = 07'@,Q,, af = 0'A,Q, .

If we show that B(a}, @;) = 0,; (Kronecker symbol), the result will
follow by the uniqueness of the dual basis. The only difficulty lies
in showing that B(al, @) =1,7=1,2, 38, and since B(a}, @) = —
07 B(a,d,d;, 1), we need only prove that B(@,d,d,, 1) = —i(d,, &, &, &,).
Using the relationships in (2), a computation shows that

B(a,a,a, 1) = det T- B(v,7,Y,;, 1) .
From (3),

B(a’ld’zaa, 1) = W * B(71f7273, 1) .

Now,
B(7, 7%, 1) = B(V, 7,77, 1) = —B(7i7:, 1) = —N(7,)N(7) -

Hence B(&,@,as, 1) = —o(a,, @, 0y, &), and ¥,(F,) = &, for each p.

Sinee (V(P1))p = ¥(J1,) = &, for every p, ¥(3;) = ¢, and the theorem
is proved.

In [6], §4, Peters has proved that a necessary and sufficient
condition that a quaternion order ¢ be an image of a ternary lattice
under Eichler’s map is that N(#)™ = vV »(). The following corollaries
allow us to compare those orders which are images of ternary lattices
under our correspondence and those which are images under Eichler’s.

COROLLARY 5.2. Assume ¢ is the tmage of a lattice L under
Eichler’s correspondence. Then & is an image under our mapping
if and only if N(L) is a square in the ideal class group of D.

Proof. From §3, (2)
(&) = d*N(L)*A*

where A is a fractional ideal and de F. If N(L) is a square in the
ideal class group of D, it is obvious that 1/ »(¢) has the same property.

If 9 is the image of an integral ternary lattice under the mapping
defined in this paper, then for some ideal B and for some d,e F,
v(?) = d:B*. Hence
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&*N(L)™A* = diB*,
and
N(L) = dd7'[N(L) " AB™ ']} = ¢,C?,
a square in the ideal class group of D.

COROLLARY 5.3. Assume & is the image of a lattice L under the
correspondence defined in §3. Then & is an tmage under Eichler’s
mapping if and only if N(L) = D.

Proof. It is a trivial consequence of (1), (2) of §3 that if N(L) =
D, then ¢ is the image of L under Eichler’s map.

Assuming ¢ is an image under both mappings, on the one hand
10 = N7, and on the other V(&) = d,A* for some fractional
ideal A and some d,e F. From the proof of Theorem 5.1, we may
assume that L = (AK)% where K = {®w€d* B(w, 1) = 0}. From [6],
§3, N(¥) = N(K). Thus

ML) = d,A2N(K) = V() -N@*) = D.

So it is easy to find orders which are realized as images of ternary
lattices under our mapping but not under Eichler’s. Furthermore,
it is well-known that there exist Dedekind domains with (integral)
ideals which are not squares in the ideal class group. The image
under Eichler’s correspondence of a lattice whose norm is such an
ideal is not an image under our mapping.

Additionally, there are orders which are not images under either
correspondence. To construct an example, let Z denote the rational
integers, let D = Z[V/—10], and let A =5Z + 1V —10Z, an integral
ideal which is not a square in the ideal class group of D (see [1],
p. 425). We note that A* =5D. Let V be the ternary quadratic
space with orthogonal basis z, x,, %, satisfying

N(z) =5, N(@,) = N@@) =1.
In the even Clifford algebra of V, consider the order
¢ = D-1 + Axx, + Dx®, + Dax, .

# is not an image under either correspondence, since V(%) = 54,
not a square in the ideal class group, and N(#)™ = 5D = V' v(d).
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