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STRONGLY SEMISIMPLE ABELIAN GROUPS

R. A. BEAUMONT AND D. A. LAWVER

For an abelian group G and a ring R, R is a ring on G
if the additive group of R is isomorphic to G. G is nil if
the only ring R on G is the zero ring, R2 — {0}. G is radical
if there is a nonzero ring on G that is radical in the Jacobson
sense. Otherwise, G is antiradical. G is semisimple if there
is some (Jacobson) semisimple ring on G, and G is strongly
semisimple if G is nonnil and every nonzero ring on G is semi-
simple. It is shown that the only strongly semisimple torsion
groups are cyclic of prime order, and that no mixed group is
strongly semisimple. The torsion free rank one strongly
semisimple groups are characterized in terms of their type,
and it is shown that the strongly semisimple and antiradical
rank one groups coincide. For torsion free groups it is
shown that the property of being strongly semisimple is
invariant under quasi-isomorphism and that a strongly semi-
simple group is strongly indecomposable. Further, for a
strongly indecomposable torsion free group G of finite rank,
the following are equivalent: (a) G is semisimple, (b) G is
strongly semisimple, (c) G^R+ where R is a full subring of
an algebraic number field K such that [K,Q] = rank G where
Q is the field of rational numbers and R = Jπ, where π is
either empty or an infinite set of primes in.RΓ, (d)G is nonnil
and antiradical.

Introduction* In [4], F. Haimo considered the problem of charac-
terizing those abelian groups G that are the additive groups of
nontrivial radical rings, where the radical under consideration is the
Jacobson radical. It was observed by the present authors that for
several classes of groups, those groups G that did not support non-
trivial radical rings (antiradical groups) satisfied a much stronger
condition, namely, that every nontrivial ring on G is semisimple
(strongly semisimple groups). This suggested the problem of identifying
classes of groups for which the antiradical and strongly semisimple
groups coincide, and the problem of characterizing strongly semisimple
groups.

Section 1 contains the basic definitions. The case of torsion and
mixed groups is disposed of in §2 where it is shown that the only
strongly semisimple torsion groups are the cyclic groups of prime
order, and that no mixed group is strongly semisimple. In §3, the
torsion free rank one strongly semisimple groups are characterized
in terms of their type, and it is shown that the strongly semisimple
and antiradical groups coincide. In §4, it is shown that the property

327



328 R. A. BEAUMONT AND D. A. LAWVER

of being strongly semisimple for a torsion free group is invariant
under quasi-isomorphism and that a strongly semisimple torsion free
group is strongly indecomposable. Applying results on torsion free
rings in [1], [2], and [6], we show in §5, that the results for rank
one can be recovered for strongly indecomposable torsion free groups
of finite rank.

Throughout the paper, group means additive abelian group and
ring means associative ring. The notation is standard and generally
follows that of [3]. The field of rational numbers as well as its
additive group is denoted by Q, Z denotes the integers, and ^(R)
is the Jacobson radical of a ring R.

1* Definitions. For any ring R, let <yf^(R) denote the sum of
all nilpotent left ideals. ^V{R) is a nil ideal and <yV"(R) contains
all nilpotent right ideals. Let ^f{R) denote the Jacobson radical of
R [5]. Then ^{R) 3 Λ^(R). If G is any group, then R is a ring
on G if R+, the additive group of R, is isomorphic to G. The zero
ring on G is the ring obtained by defining x-y = 0 for all x,yeG.
If R is the zero ring on G, then R2 = {0}, and R = ^f{R) = ^V(R).
A group G is a nil group if the only ring on G is the zero ring.
Otherwise G is nonnil.

DEFINITION 1.1. (Haimo, [4]) A group G is a radical group if
there is a ring R on G such that R = ^f(R) and R is not the zero
ring on G. Otherwise, G is an antiradical group.

DEFINITION 1.2. A group G Φ {0} is a semisimple group if there
is a ring R on G such that ^(R) = {0}.

DEFINITION 1.3. A group G is a strongly semisimple group if
G is nonnil and ^(R) = {0} for every nonzero ring R on G.

We note that a nil group is antiradical, a semisimple group is
nonnil and that a strongly semisimple group is semisimple and anti-
radical. Moreover, if there is a nonzero ring R on G such that
^V{R) Φ {0}, then G is not strongly semisimple.

The cyclic group of order six, Z(6), is semisimple, antiradical, and
not strongly semisimple. The direct sum of 2*° copies of the additive
group of rational numbers, Q, is radical and semisimple [4].

The following simple observation will be useful.

LEMMA 1.4. If G = H($K,HΦ {0}, K Φ {0}, and either H or K
is nonnil, then there is a nonzero ring R on G such that ^K{R) φ {0}.
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Proof. Suppose H is nonnil and let RH be a nonzero ring on H.
Let Rκ be the zero ring on K. Then the ring direct sum R = RH +
Rκ is a nonzero ring on H®K such that ^Γ(R) ^RKΦ {0}.

2» Torsion and mixed groups* As mentioned in the introduc-
tion, our purpose is to characterize strongly semisimple groups. This
is easily done if G is torsion group or a mixed group.

By Theorem 69.3 [3], there is a ring R on a torsion group G with
*yV~(R) — {0} if and only if G is an elementary group. Since an
elementary group G Φ {0} is the additive group of a direct sum of
fields, there is a ring on G with ^(R) = {0}. Thus, a torsion group
G is a semisimple group if and only if G is elementary.

THEOREM 2.1. The only strongly semisimple torsion groups are
the cyclic groups of order p, Z(p), p a prime.

Proof. If G is strongly semisimple, then G is semisimple, and
by the above remarks, G is the direct sum of cyclic groups of order
p for various primes p. Since the groups Z(p) are nonnil, it follows
from 1.4 that if the direct decomposition of G has more than one
component, then G is not strongly semisimple. On the other hand,
every nonzero ring on Z(p) is isomorphic to the field with p elements.
Thus, Z(p) is strongly semisimple.

THEOREM 2.2. If G is a mixed group, then there is a nonzero
ring R on G such that Λ^(R) Φ {0}.

Proof. Suppose first that G is not reduced. If the maximal
divisible subgroup, Gd, of G is not torsion, then G = QQG19 where
G1 Φ {0}. By 1.4, there is a nonzero ring R on G with ^Γ{R) Φ
{0}. If Gd is torsion, then since Gd is a nil group and Gd is an ideal
in any ring R on (?, ^V(R) ^GdΦ {0} for any ring R on G. Since
G is mixed there is a nonzero ring R on G. On the other hand, if
G is reduced, then G = {x} φ G2, where {x} is a finite cyclic group
and G2 Φ {0}. Since {x} is nonnil, it again follows from 1.4 that there
is a ring R on G with ^V(R) Φ {0}.

COROLLARY 2.3. No mixed group is strongly semisimple.

3* Rank one torsion free groups. We first characterize the
strongly semisimple torsion free groups of rank 1 in terms of their
types. If G is a rank 1 group, we write the type of G as T(G) =
P i , K •••,&„, •••)]> where (ku K - ,K, •) is the height of a non-
zero element g e G; that is, for the prime pn, kn is the ^-height of g.
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Let π be an arbitrary set of primes, and let m be a fixed positive
integer such that (m, p) = 1 for every peπ. Denote by S(m, π) that
subring of Q consisting of all rational numbers of the form mr/s,
where s is a product of primes in π and r is any integer. Let πc be
the complement of π in the set of all primes, and let πf be the set
of all primes peπc such that (m, p) — 1.

LEMMA 3.1. ^{β(m, π)) = Γ\Peπ, pS(m, π) if πe
 Φ φ. Otherwise

J?(S(m, π)) = {0}.

Proof. If πe = φ, then m = 1 and S(m, π) = Q. Thus,
π)) = {0}. We show that if πc Φ φ, then {pS{m, π)\peπ'} is the collec-
tion of maximal modular ideals in S(m, π). Since p e πf <Ξ π% the ideal
pS(m, π) Φ S(m, π), e.g., m g pS(m, π). If mr/s e S(m, TΓ) and mr/sg
pS(m, 7r), we have (r, p) = 1. Then ccr + yp = 1 for x, y e Z> and
ccmr + /̂mp = m. Thus, m is in the ideal generated by pS(m, π) and
mr/s. That is, this ideal is S(m, π). Hence pS(m, π) is maximal.
Since p e π\ (m, p) = 1. Thus, ίcm + i/p = 1 for xfyeZ. If mr/s 6
S(m, TΓ), then (xm)(mr/s) + (yp)(mr/s) = mr/s, or mr/s — (xm)(mr/s) =
pymr/s e pS(m, π). Hence α m is an identity modulo j>S(m, TΓ). There-
fore, pS(m, π) is modular.

Suppose that ^ ^ {0} is an ideal in S(m, π). If mr is the least
positive integer in jF, then every element of ^ is a multiple of mr.
Note that (mr, p) = 1 for p e π. If r = 1, ^ = S(m, π). If r Φ 1,
^ £ rS(m, π) £ pS(m, π) for some p 6 ττc. Thus, the maximal ideals
in S(m, π) are the ideals p>S(m, π) for p e πc. If pS(m, π) is modular,
then in particular, there is an element mr/s e S(m, π) such that m —
(mr/s)m = pmrf/sr e pS(m, π). This equation yields ssf — mrsr = prrs.
Since (ss\ p) = 1 for p e π% it follows that (m, p) = 1. That is, p e π\

Note that if πf = φ, then the collection of maximal modular ideals
is vacuous and ^(S(m, π)) = S(m, π) = Π^e '̂ pS(m, re) [5, p. 9].

THEOREM 3.2. Let G be a torsion free group of rank 1. Then
the following statements are equivalent:

(a) G is semisimple.
(b) G is strongly semisimple.
(c) T(G) = [(ku k2, , kn, •••)]» where kn — 0 or oo /or αZZ w,

α^d either kn = oo /or αM % or fcw = 0 /or infinitely many n.
(d) G is nonnil and antiradical.

Proof. It follows from Definitions 1.2 and 1.3 that (b) implies (a).

To prove that (c) implies (b), we note that since kn — 0 or oo
for all n, it follows [3, p. 269] that G is nonnil and any nonzero
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ring R on G is isomorphic to a subring S(m, π) of Q, where π is the
set of all primes for which kn = oo. If kn = °o for all n, then JB ~
£(m, π) = Q, so that G is strongly semisimple. If kn = 0 for infinitely
many w, then πc is infinite, so that π'f the set of all primes p in τrc

such that (m, p) = 1, is also infinite. If mr/s e Γ\Peπ> pS(m, π), then
p\r for all peπ'. Hence, mr/s = 0. By Lemma 3.1, ^{S(m, π)) =
{0}. Therefore, G is strongly semisimple.

We next show that (a) implies (c). Assume that (c) is not satis-
fied. Then either 0 < fcΛ < <χ> for infinitely many nf or k% — 0 or co
for all n and kn = ^ for almost all w, but not all w. In the first case G
is a nil group, and therefore not semisimple. In the second case,
any ring R on G is isomorphic to an S(m, π), where πc is finite and
not empty. Therefore, π' is finite. By Lemma 3.1, ^f(S(m, π)) —
Πp6ff' 2>S(m, π) = S(m, π) if πr = ^, and ^ ( S ( m , π)) = ^p 2 pΛS(m,
TΓ) ̂  {0} if π' = {Pi, p2, , &̂} ^ ^. Therefore, G is not semisimple.

Since (b) => (d) by Definitions 1.1 and 1.3, we complete the chain
of implications, by showing that (d) implies (c). Here we observe from
the above argument that if (c) is not satisfied, then either G is a nil
group, or any ring R on G is either radical or pφ2 pkR is radical.
But since G ~ R+ ~ (pj>2 pkR)+, G is isomorphic to a radical group,
and hence is radical. Haimo [4, Theorem 4] proves that (c) and (d)
are equivalent in a somewhat different manner.

COROLLARY 3.3. Z and Q are strongly semisimple.

4* Quasi-isomorphism* We show that for torsion free groups
the property of being strongly semisimple is invariant under quasi-
isomorphism. This follows from Thorem 2.6 and Corollary 2.7 in [2].
Theorem 2.6 in [2] states that if G and H are quasi-isomorphic, and
if R is a ring on G, then there is a ring S on H and a positive
integer n such that S is isomorphic to a subring T of R and nR £
T. Corollary 2.7 in [2] states that if G and H are quasi-isomorphic
and R is a ring on G, then there is a ring S on H such that the
rational algebras Q ®z R and Q ®z S are isomorphic. It follows at
once from this result that if G and H are quasi-isomorphic and G is
a nil group, then H is a nil group.

THEOREM 4.1. Let G and H be quasi-isomorphic torsion free
groups. If G is strongly semisimple, then so is H.

Proof. Assume that G is strongly semisimple and H is not strongly
semisimple. Then either H is nil or there is a nonzero ring R on H
such that ^(R) Φ {0}. If H is nil, then G is nil and hence not
strongly semisimple. In the second case, it follows from the above



332 R. A. BEAUMONT AND D. A. LAWVER

remarks, that there is a nonzero ring S on G such that S is isomorphic
to a subring T of R and nR £ T for some positive integer n. Now
w^(jβ) is an ideal in R and n^{R) SnRS T. Thus, n^f{R) is
an ideal in T. Therefore, ^(T) 3 ^ ( Γ ) Π n^{R) = ^ ^
Moreover, ^(n^iR)) = ̂ ( Λ ) Π ^ ^ ( 2 2 ) = n^f(R). Hence
nj^{R) Φ {0}. Therefore, Γ is not semisimple, and consequently Sis
not semisimple. This contradicts the hypothesis that G is strongly
semisimple.

A torsion free group G is strongly indecomposable if whenever
G is quasi-isomorphic to a direct sum Gx 0 G2, Gx and G2 torsion free,
then either Gt — {0} or G2 — {0}. Otherwise G is quasi-decomposable.

THEOREM 4.2. A strongly semisimple torsion free group G is
strongly indecomposable.

Proof. Assume that G is quasi-decomposable. Then G is quasi-
isomorphic to (?! 0 G2, where Gx and G2 are nonzero torsion free groups.
By Theorem 4.1, G10 G2 is strongly semisimple. If either Gt or G2

is nonnil, then by Lemma 1.4, Gx 0 G2 is not strongly semisimple.
Hence we may assume that both G1 and G2 are nil groups. Moreover,
Gx 0 G2, being strongly semisimple, is nonnil.

Let * be a nontrivial associative multiplication on G10 G2. Let
πGl and πβ2 be the projections of Gx 0 G2 onto G, and G2, respectively.
For (xlf 2/0, (#2, 2/2) in Gx 0 G2 define a multiplication © on (τL 0 G2 by
(»i, Vi) o («., ».) - (0, TΓβJfo, 0)*(«2f 0)]). If πG2[(xly 0)*(xt, 0)] ̂  0 for some
xlf x2 6 Glf then © is an associative multiplication on Gx 0 G2 such that
(G^G^Φ {0} and ( G ^ G , ) 8 = {0}. Therefore, G , 0 G 2 is a radical
group, contradicting the fact that Gt 0 G2 is strongly semisimple. If
πG2[(xu 0)*(xi9 0)] = 0 for all xίf x2eGlf define (xlt y,) x (x2, y2) = (πGl[(0,
2/i)*(0, yj\, 0). As above, if πGl[(0, yd*(P9 V*)\ Φ ° f ° r some »lf 2/2eG2,
x is an associative multiplication on Gγ 0 G2 such that (G± 0 G2)

2 Φ
{0} and (G^G.Y = {0}, again contradicting the fact that G i 0 G 2 is
strongly semisimple.

We may now assume that πβt[(xlf 0)*(a?8, 0)] = 0 for all xlt x2 e Gx

and that πGl[(0,2/i)*(0, y2)] = 0 for all ylf y2eG2. It follows that (x19

0)*(a?2, 0) - ( ί φ x , α2), »Λ °) f ^ all α?x, ίc26 G, and that (0, i/O^O, y2) =
(0, i/d/i, i/2)) for all τ/x, i/2 e G2. Then xfx2 = «(«!, a?2) and 3/1*1/2 = l/(l/i, l/2)
are associative multiplications on Gt and G2, respectively. Since G1

and G2 are nil groups, x(xlf x2) = i/d/i, i/2) — 0 for all xl9 x2 e Gx and
all yίf y2eG2. That is, {xu 0)*(a?2> 0) - (0, 0) and (0, !/,)*«), V l ) = (0, 0)
for all xu x2 e Gx and all ylt y2 e G2, so that under the multiplication
*, Gx and G2 are subrings of G, 0 G2 such that G{ = {0} and G\ = {0}.

Let r(Gj) and r(G2) be the right annililators of Gx and G2, respec-
tively in the ring Gx 0 G2 with multiplication *. Then r{G^ 3 Gx and
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r(G2) Ξ2 G2. If r(Gi) = Glf then r(Gλ) is a nonzero nilpotent right ideal
in GίφG2. Hence Jfifi&G^ 2r(G0 = G i ^ {0}. Therefore, the group
Gx φ G2 is not strongly semisimple, contrary to hypothesis. If r(Gt) 3
Gx, let # e r(G0, fir £ Glβ Since r(Gx) 2 Gx and r(G2) 3 G2, r(G0 + r(G2) =
GY@G2. Therefore, g = gt + g2J where ^ e Glf #2 € G2, and g2 Φ 0. Thus,
Qz = 0 — 0i e KGO Π G2. It follows that the infinite cyclic group (g2)
is a nonzero nilpotent left ideal in G1 φ G2. Indeed, if # + ?/ e Gx φ
G2, xeGlfye G2, then (# + 2/)*#2 = #*#2 + /̂*̂ 2 = 0 + 0 = 0, since g2 e
rίGJnG,. Therefore, ^ ( G i φ G2) 3 (gr2) ^ {0}, and again we have
contradicted the fact that G i φ G 2 is strongly semisimple, completing
the proof.

5* Strongly indecomposable torsion free groups* Theorem 4.2
allows us to restrict our attention to strongly indecomposable torsion
free groups in our investigation of strongly semisimple groups. It
is possible to generalize Theorem 3.2 for rank one groups to strongly
indecomposable groups of finite rank. To do this, we rely heavily on
results in [1] and [2].

If H is a subgroup of the torsion free group G such that G/H
is a torsion group, then H is a full subgroup of G. A subring S of
a torsion free ring R is a full subring of R if S+ is a full subgroup
of R+. We recall that each torsion free ring R is naturally embedded
as a full subring of the rational algebra Q®ZR [2].

In the following lemmas, G is a strongly indecomposable torsion
free group of finite rank n.

LEMMA 5.1. If R is any ring on G, then either ^(R) = {0} or
is finite.

Proof. It follows frow Theorem 1.4, Corollary 3.6, and Theorem
1.13 in [2], that if R is any ring on G, then the rational algebra
Q ®z R is either nilpotent or is an algebraic number field of dimension
n over Q. In the first case, R is a nilpotent ring, so that ^f(R) =
R. In the second case, if I is a nonzero ideal in R, then Rjl is finite
[1, p. 206]. Thus, if Q (&z R is an algebraic number field, then either
J'iR) = {0} or R/^(R) is finite.

A torsion free group G is quotient divisible (or a q.d. group) if
G contains a full, free subgroup F such that G/F is divisible. Each
torsion free group G of rank n is embedded in a rational vector space
V of dimension n. Let Sf(V) be the ring of all linear transforma-
tions of V. Then

= {φ e £f(V)\nφ{β) S G for some n Φ 0 in Z)

is a subring of £?{V) called the ring of quasi-endomorphisms of G.
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LEMMA 5.2. If G is semisimple, then G is a q.d. group, i?((τ)
is an algebraic number field K such that [K: Q] — n, and there is a
ring B on G such that Q ®^ R = K.

Proof. Let S be a (Jacobson) semisimple ring on G. If N is the
radical of Q ®^ S, then N ft S is the maximum nilpotent ideal in S,
and the rank of Nf]S is equal to the dimension of N [2, p. 71].
Since N f] S g ^(S) = {0}, it follows that N= {0}. Thus, Q ®z S
is a semisimple algebra. By [2, Corollary 4.9] G is a q.d. group. By
[1, Corollary 4.6], &(G) is an algebraic number field if such that [K:
Q] = n. Finally, by [1, Theorem 4.1], there is a ring R on G such
that Q®ZR~K.

LEMMA 5.3. If G is semisimple, then every ring R onG is isomor-
phic to a full subring of a single algebraic number field K such that
[K: Q] = n.

Proof. As in the proof of Lemma 5.1, if R is any ring on G,
then Q (g)̂  R is either nilpotent or is an algebraic number field K such
that [K: Q] = n. Wickless [6, Theorem 2.3] shows that it is impossible
for both alternatives to hold. By Lemma 5.2, there is a ring R on
G such that Q®ZR~K= gf(G). Therefore, by Wickless' result, if
S is any ring on G, then Q ξξ)z S is an algebraic number field L such
that [L, Q] = n. But by [1, Theorem 4.1] L = gf (G) - K. That is,
every ring R on G is isomorphic to a full subring of if ((?).

Two subrings R and S of an algebraic number field K are quasi-
equal (R = S) if there is a positive integer n such that nR £ S and

LEMMA 5.4. Let R and S be subrings of an algebraic number
field K such that R — S. Suppose further that R+ is strongly inde-
composable. If R is semisimple, then so is S.

Proof. Assume that S is not semisimple. Note that since R = S,
then R+ and S+ are quasi-isomorphic, so that S+ is strongly indecom-
posable. Since ^(S) Φ {0}, it follows from Lemma 5.1, that there
is a positive integer n such that nS S ^{β). Since R = S, there is
a positive integer m such that mR £ S and mS c R. Hence nmR £
nS £ ^ ( S ) . Since mS £ i2, nm2R £ m S £ m^{S). Each element
of nm2R has a quasi-inverse in the quasi-regular ideal m^(S) of S.
Moreover, m^{8) £ mS £ ίϋ. Thus, each element of nm2R has a
quasi-inverse in J2. But nm2R is an ideal in R, hence a quasi-regular
ideal. Therefore, ^(R) 2 %mlR ̂  {0}, contradicting the hypothesis
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that R is semisimple.
Let J be the ring of integers in an algebraic number field K.

In [1] it is shown that the quasi-equality classes of full subrings of
K are in one-to-one correspondence with the sets of prime ideals in
/. If P is any prime ideal in J, let JP = {x/y\x, y eJ.yίP). Also,
if π is any set of prime ideals in J, define Jπ = Γϊpeπ Jp. Then every
quasi-equality class of full subrings of K contains one of rings Jπ, Jπ

is integrally closed and is the integral closure of every ring in its
class. It should be noted that the prime ideals of Jπ are precisely
the ideals PJπ and that nonzero prime ideals in Jπ are maximal. It
follows that

THEOREM 5.5. Let G be a strongly indecomposable torsion free
group of finite rank n. Then the following statements are equivalent.

(a) G is semisimple.
(b) G is strongly semisimple.
(c) G = R+, where R is a full subring of an algebraic number

field K such that [K, Q] = n, and R = Jπj where π is either empty
or infinite.

(d) G is nonnil and antiradical.

Proof. By definition, (b) implies (a) and (b) implies (d). We show
that (d) implies (b), (a) implies (c), and (c) implies (b).

(d) implies (b). Assume that G is not strongly semisimple. Then
G is either a nil group or there is a nonzero ring R on G such that
^f(B) Φ 0. In the latter case, it follows from Lemma 5.1 that there
is a positive integer m such that mR § ^(R). Since mR is an ideal
in R, we have ^(mR) = ^{R) Ω mi? = mR. Hence mR is a nonzero
radical ring, so that mG is a radical group. Since G = mG, it follows
that G is a radical group. Thus, if G is not strongly semisimple,
then G is either nil or radical.

(a) implies (c). By Lemma 5.3, every ring R for which G ~ R+

is a full subring of an algebraic number field K such that [K, Q] —
n. By the remarks preceding the theorem R = Jπ for some set π of
prime ideals in J. Suppose that π is nonempty and finite, and let
7Γ - {Plf P2, , Pk). Then ^(Jκ) = Γ U , PJ* 2 P^ P*Λ Φ {0}.
Hence Jπ is not semisimple. By Lemma 5.4, R is not semisimple.
But at least one ring R such that G = R+ is semisimple. For that
ring R, R = Jπ, where TΓ is either empty or infinite.

(c) implies (b). If π is the empty set of prime ideals in J, then
Jπ = ΠpeπJp = K. Rence Jπ is semisimple. If π is an infinite set of
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prime ideals in J, then ^{Jr) = Piper PJπ = {0} since Jπ is a Dedekind
ring. Again Jπ is semisimple. Thus, if (c) is satisfied, it follows
from Lemma 5.4, that there is a semisimple ring R on G. That is, G
is semisimple. By Lemma 5.3, every ring R on G is isomorphic to a
full subring of K, and hence is quasi-equal to a ring Jπ for some set
of prime ideals π in J. Suppose Rx and R2 are rings on G, R1 = Jπi,
R2 = JΓ l, R2 = JZ2. Then

J J == RT ~ R2 — Jl2 t

so that Jΐ is quasi-isomorphic to Jt2.
Let πf be the set of rational primes p such that p ί P for all

Peπ. Then J+ is p-divisible if and only if peπ'. If peπ'f then
1/p e Jπ. Hence, if x/y e Jπ, x/y = (px/y)(l/p) = v(%/yp) Therefore, Ji
is ^-divisible. On the other hand, if p£π',peP for some PGTΓ. If
Jπ were p-divisible, 1 = p(x/y) for some x/?/ e J. But then y — pxe
P. This is a contradiction, since if x/yeJπ, y&Peπ.

If G and H are quasi-isomorphic torsion free groups, G is in-
divisible if and only if H is p-divisible. Thus, it follows from the
result of the preceding paragraph that if J ^ and J?2 are quasi-iso-
morphic, π[ — π'2. If πx is empty, then π[, and consequently π'2, is
the set of all primes. Hence π2 is empty. If πt is infinite, then since
each rational prime has only a finite number of prime ideal divisors
in J, it follows that the complement of π[ in the set of all primes is
infinite. Since π\ = π'2, the complement of π2 is infinite. If π2 were
finite, then since each prime ideal P in J contains exactly one rational
prime, it follows that π2 contains almost all primes. But then the
complement of π2 would be finite, a contradiction.

We have shown that if R is any nonzero ring on G, then R = Jπ,
where π is either empty or infinite. We have seen that every such
J- is semisimple. By Lemma 5.4, every nonzero ring R on G is
semisimple. Hence G is strongly semisimple.
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