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ON THE PRIME IDEAL DIVISORS
OF (a" — b")

EpwARrD H. GROSSMAN

Let a and b denote nonzero elements of the ring of integers
O  of an algebraic number field K, such that ab™! is not a root of
unity and the principal ideals (@) and (b) are relatively prime.

DEFINITION 1. A prime ideal p is called a primitive prime
divisor of (a” — b") if p| (a” — b") and pt(a*— b*) fork <m.

DEFINITION 2.  An integer n is called exceptional for {a, b} if
(a™ - b™) has no primitive prime divisors.

The set of integers exceptional for {a, b} is denoted by E(a, b).
Using recent deep results of Baker, Schinzel [4] has proved that if
n > ny(l) then n & E(a, b), wherel = [K : Q] and n, is an effectively
computable integer. In particular card E(a, ) < n,. In this paper,
using only elementary methods, upper bounds are obtained for

card {n € E(a, b) : n < x} which are independent of a and b.

1. Introduction. The prime divisors of the sequence of rational integers x,,
= a" — b" have been studied by Birkhoff and Vandiver. They showed [1, p. 177]
that if  and b are positive and relatively prime, then for n > 6 there is a prime p
which divides " — b" and does not divide a“ — b* for k < n. Postnikova and
Schinzel [3] have investigated analogues of this result for the ring of
integers Oy of an algebraic number field K.

To fix our notation and terminology, a and b will always denote
nonzero elements of O such that ab~' is not a root of unity, and the
principal ideals (@) and (b) are relatively prime. Note then that all the ideals
(a" — b") are nonzero.

DEFINITION 1. A prime ideal p is called a primitive prime divisor of
(@ — b")ifp|(a” — b") and pt(a* — b*) fork < n.

DEFINITION 2. An integer n is called exceptional for {a, b} if (a" — b") has
no primitive prime divisors.

The set of integers exceptional for {a, b} is denoted by E(a, b). Using a
theorem of Gelfond it can be shown [3, p. 172] that card (E(q, b)) < ny(a, b).
Recently, using deep methods, Baker [4] has improved Gelfond’s theorem,
and has shown that card E(a, b) < ny(/), where ! = [K : Q].In this paper we
obtain by elementary methods upper bounds for card {n € E(a, b):n <
x} which are independent of a and b. To state our theorem precisely we
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introduce the following notation: If M = 1 we define log, x = log x and if
M > 1is an integer we define logy x = log (logy _ ; x). The main result is

THEOREM 1. Let K be a finite extension of Q of degree |, a and b elements of
O such that (a, b) = Oxanda/b is not aroot of unity. If M = 1 is an integer, there
is an xo = xo(M, ) such that for x > x, card {n € E(a, b) : n < x} < logyx.

The proof of Theorem 1 as well as related results will be found in §4.
Sections 2 and 3 are preparatory.

2. Preliminary lemmas. Our first lemma provides an algebraic criterion for
an integer n to be exceptional for {a, b}. Let F,(x, ) denote the nth homogen-
eous cyclotomic polynomial. We then have

LemMA 1. Letl = [K: Q] and suppose n > 2'@" = 1). If the prime ideal
p|(@" — b") and is not a primitive prime divisor then ord,(F,(a, b))
< ord,(n). In'particular if n € E(a, b) then (F,(a, b))|(n).

Proof. See [3, p. 172]. We note without proof that the result also holds
provided n > 2/2' — 1).

From Lemma 1 if n is sufficiently large and n € E(a, b), then the ideal
norm of F, (a, b) satisfies the inequality N(F,(a, b)) < n'. We will show that
this can occur only if some conjugate of a/b is “very close” to a primitive
nth root of unity; moreover the set of integers n for which this holds must be
spaced very far apart.

We consider K as imbedded in some fixed manner in the field of
complex numbers. §, will denote the nth root of unity e*™". If a and b are
any complex numbers such that a/b is not a root of unity, we let {¥(a, b)
(or simply ¢* if a and b are understood) denote an nth root of unity
closest to a/b. For some n and complex numbers a and b, { is a primitive
nth root of unity, for others it is not. Moreover, if there is no unique nth root
of unity closest to a/b, .} will denote a fixed nearest one. Thus

la — bg¥| = min {|a — b, |:v=1,...,n}.

LEMMA 2.  Let m > nand suppose that { ¥ and { ¥ are primitive nth and
mth roots of unity satisfying

la — b§.¥| < max (la|, |b]) exp (—n'?)/n

and
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la — bt ¥| < max (|a|, |b]) exp (—m"?)/m,

thenm = 2 exp (n'?).

Proof. 1f max (|a|, |b]) = |b| then we have 4/mn < |{} — (X <
1/2

exp(—n'?)/n + exp(—m'?)/m < 2exp(—n"?)/n and so m =
2exp (n"?). If max (|a|, |b]) = |a| then a similar estimate holds for
I — Ex.

LEMMA 3.  Let A be a subset of the positive integers such that whenever
n,m € A andm > n, thenm > exp (n'"?). If M is any positive integer there
is an xy depending only onM such that for x = xy, card{n € 4 :n < x}
=< logy x.

Proof. Letk =card{n €A :n=x}.Ifn,<nm<--<n <xare
the k elements of A less than x, then for any integer j < k

) e _; < (3log;x)>

iflog;x > 2log 3.

We first assume k > M + 1. Then takingj = M + 1in (1) and x large
enough so thatlog,, , ; x > 2log 3 we have thatn, _ » _ < (3logy . 1%
in particular k — M — 1 < Blogy,;x)> and so k < (M + 1) +
(3logy +,x)2. Since this inequality also holds whenk < M + 1and (M +
1) + (3logy 41x)* = o(log,, x) the lemma is proven.

Denoting by E’(a, b) the set of n such that {* is a primitive ath root of
unity and such that |a — b¢¥| < max (|a|, |b]) exp (—n '*)/n, Theorem 1
will follow from Lemma 3 if it is shown that if # is sufficiently large and is
notin UE'(a", b)), where a®” and b denote the conjugates of a and b,
then n & E(a, b).

To perform the analysis we first break up Z* — E’(a, b) into two
disjoint sets:

S, = {n:|a — bt} > max (|a|, |b]) exp (—n"?)/n}

S, = {n:|a — bt < max (|al, |b]) exp (—n'?)/n, and
{x not a primitive nth root of unity}.

Before continuing we note that if » is an integer for which there is no
unique closest nth root of unity to a/b thenn € S,.
It will be convenient to have the following notation. For any {* let k
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be the divisor of n such that {* is a primitive kth root of unity. If d|n define

a?-b? if kid

@ [af- 5T = | 4,4
if k|d.

a- b}

In terms of this notation we have the following easy but basic lemma.
LemMA 4. If§} is a primitive kth root of unity and k < n then

F,,(a,b) - ¢11-|[ [ad_ bd]#(n/d)
n

Proof.

H [a? - b"]"(”/d) - H (a? - bd),u(n/d) H ( a? - p? (i)
din din din\ @ - b¢,'
ktd kld

= F,(a,b)(a- b{,,*)'L, where

L = Y an ap(n/d). Setting n' = n/k > 1, d = d/k we have L =
> awi(n'/d) = 0.

3. Bounds for |a¢ — b“| and |[a? — b7]].

The representation of F,(a, b) given in Lemma 4 as well as the usual
product formula

F,,(a,b) - ‘]1'![ (ad— bd)“(”/d)
n

will be used to provide lower bounds for N(F,(a, b)). In this section we
derive the necessary estimates for |a? — 59| and |[a® — b]].

LEMMA S. Foralld = 1
3) la” — b%| < 2d max (||, |b])?

2dmax(|al,|b])¢ if k = order{,*d

4 d_p9]| <
@ Ils I 2dmax(|al,|b])?"" if k = order(,*|d
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Proof. Inequality (3) and (4) in the case k td follow from |a? — | <
2 max (|a|, |b|) % If k|d then from (2)

a? - b

d_ pd]| =
ta? - 5411 = | 25500

= |a% V4 a®2(b) + ..+ (BG)47

< dmax(al,]b])?.

Lower Bound Estimates: We first prove a preliminary lemma.

LeMMA 6. Let z be a complex number such that |z| < 1 and |z —
$¥a D> — 1| =A,. Thenn > 6and 1 — |z| > (\/3/2)A,.

Proof. Recall that {*(z, 1) is a closest nth root of unity to z. First we show
thatif z = re”, where 1 = r = max (0, cos #/n — /3 sin w/n) and |§] <

7/n, then |z — 1| < A,. We have in fact

|z -1)% - A,f < (r - (cosajn - /3sinznln))(r - (cosz/n +/3sinnln)) < 0.

By rotation it now follows that if 1 = |z| = max (0, cos7/n —
V/3sinm/n) there is an nth root of unity ¢, such that lz — & < A,
Finally if n < 6 we have cos #/n — /3 sin #/n < 0 and so the condition |z|

<1z — §,*| > A, isimpossible. If n > 6 then 1 — |z| = 1 — cos7/n +
V3sinw/n > (V3/2A,.
LeMMA 7. Ifn € S, and d|n then

(5) la? — b?| = max (|a|, |b))“exp (—=n"*)/n  or

© ot = 0] 2 max(lal, o) (T 1z = /1) exp(-n"®),

(1)

in which case d > 1 and |z| < 1 satisfies |z — {§(z, 1)] = A,
Proof. Since n € S, we can write

) la? — b?| = max (|a|, |b])?|2* — 1|

where z = a/b or z = b/a satisfies |z| < 1 and

®) lz — £¥(z )] > exp (—n'?)/n.
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Ifn = 1and d = 1 then (5) isimmediate. If n > 1 and d > 1 we distinguish
two cases accordingly as |z — §¥| > A, or |z — {}| < A,. In the former case
Lemma 6 gives 1 — |z| > (1/3/2)A, > 2 V/3/n; hemce |27 — 1| =1 — |z] >
2 \/3/n > exp (—n'"*)/n, which when combined with (7) gives (5).

If |z — ¥ < A, then we must also have |z — {}| < A, Otherwise
Lemma 6 gives (\/3/2)A; < 1 — |z] < |z — {¥| < A, which is impossible
since n/d = 2. Observing now that (6) follows immediately from (7) and
(8), the proof is complete.

LeMMA 8. Ifn € S,and d|n, then iforder {} = k+d

®

[a? — b?]| = max (|a|, |b])? exp (—n "*)/n or

(10)  1fa? - 51 > max(lal,loiy ' T lz- 1) exp(-n®)n

G0 (z1)
in which case d > 1 and |z| < 1 satisfies |z — {}| < A,. Iforder {} = k|d

(11) |[a? - 91| = max(lal,|6))" " JT 1z- ¢},

{dv * (dt

where for d = 1 the product on the right side of (11) is one and ifd > 1, |z| =
1 satisfies |z — {F| =< A,.

Proof. Since n € §,, withz = a/b or b/a we have |z] < ],
(12) |z — ¢¥ < exp (—n'?)/n

andorder{¥ =k <n.
If k+d wehave n > 1 and since {,}* is not a dth root of unity (12) implies

lz —$H =8 = & — |z — &} > exp (—n'?)/n.

We can now argue as in the previous lemma.
If k|d then we have

a_ _ d-1 z9 -1
(3 et = el |

where |z| =< 1 satisfies (12). If d = 1 then since kld, {¥ = 1 and (13) is
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precisely (11). For d > 1, (11) and the condition |z — {,’| < A, follow from
(12) and (13) in view of { ¥ = {F.

In order to complete the lower bound estimates we must obtain lower
boundsfor [[ ,, .|z - ¢;'|, whered > 1 and |z| < 1satisfies |z — §J| = Aq.

We first prove

LEMMA 9. Let d > 1 be an integer and r a real number satisfying0 < r
<land|r — 1] <A, then

d-1
(14) H Ir_c'dvl > d—31+1
v=1

wheret = 7, = [\/7d/2] + 1.

Proof. Since r is real we have

[42]

d-1
(15) I ir=citz i) I1 1= e,

We give a lower bound for the latter product. From |r — 1| < A, we obtain
(16) r=8/ 1z =81 —1—r=|1 =8| - A

Lett = 7, = [\/7d/2] + 1 and suppose first that [d/2] > 7,and v satisfies
[d/2] = v > 7,;. Then

A7) 1 =& — [ — &7| = 4sin (71/2d) cos w(v/d — 1/2d)
= 4r/d)(d — 2v + 1)/d = 4% /d* = 2x/d = A,

Thus from (16), [r — ;| = [§,/ ~" — 1| and so

[4/2] [4/2]

(18) Mir-catz M-t -

v=7+1

[d2]

H l"(dvl vl;llll - {4

_ v=1

[42]
1-0r
v=[d/l2-!-—r+ll Cdl
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Since r = 0 we have
(19) r=8S1=1r— 8 >2/d
if d = 4 and the same inequality (Jr — {,| = 2/d) holds for d < 4.
Observing finally that |1 — {;| =< 2 and
[dp2] d-1
I 11 -Gtz I n-dl=d

we obtain (14) from (15) and (18).
Now if 7, = [d/2] we have from (19)

d-1
H Ir" (dvl 2 (Z/d)d-l > (2/d)2[d/2] > d—21221 > d_3t+1
v=1

and so (14) is also proven in this case.
LemMma 10. Ifd > 1and |z| < 1 satisfies |z — §*| < Ay then

(20) I 1z-¢2a?

GG

where T = 74 = [\/7d/2] + 1.

Proof 'We may assume that {,* = 1 and z = re”, where 0 < § <
w/d, thus we must prove the lower bound (20) for [[}2 1|z — §J|. Let 2’ =
re™% Thenif | < v<[d/2],|z — {J| > |z — §i|andif[d2] <v<d—
1, |z — &J| = |r — ¢J|. Combining these results and using |z — §;| = A;/2
= 2/d we obtain

Te-cne 224 e
v=1 " |r = ¢ 92 v=1 a
21 d-1
> a1 ] Ir- gl
v=1
Since |r — 1| < |z — 1] =< Ay, (20) follows from Lemma 9 and (21).

From Lemmas 7, 8 and 10 we arrive at our final lower bound esti-
mates.

Lemma 11. Ifn € S| and d|n then
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(22) la? - b9 > max(|al|,|b])9d*exp (- 1/2)/n

wheret = 74 = [\/7d/2] + 1.
Ifn € S,, djn, then if order { *(a, b) = ktd, (22) holds for |[a® — b°]|. Ifk|d
we have

(23) [[a® — b%]| = max (|a|, |B)? ~'d~™".

4. Main theorem and related results.  The proof of Theorem 1 will
follow easily from the following lemma.

LEMMA 12.  There is an integer ny such that ifn > nyandn € §; U S,
then

4)  log|F,(ab)| 2 p(n)max (log|al, log|6]) - 2 n*".

Proof Ifn € S, we use Lemmas 5 and 11 and the formula F,(a, b) =
[Jan @ = B9)*¥? to obtain (24).

If n € S, then (24) follows from Lemma 4 and the estimates of
Lemmas 5 and 11.

Proof of Theorem 1. Recall that S, U S, is the complement of the set
E(@a b) = {n € Z*:|a — b{¥| < max(|a], |b]) exp (—n'?)/nand {} a
primitive nth root of unity}. Let E = U/_, E'(a”, b*), where I = [K : Q]
and a", b™ denote the conjugates of @ and b. If n & E’ then the lower
bound (24) is valid for all v provided n > n’y. Thus

/
(25) log|N(F,(a,0))| = Y log|F,(a®,5™)|
v=1

> Ap(n) - 2" p where

/
= Y max(log|a®)], log|6*)])
v=1
(26)
2

= log|N(b max (1
gl Z ax (log| L — 0

V=

}o>

If[N(b)| = 1, then a/b is in O and there is a constant c, depending only
on [K : Q] such that [a” /6| > ¢k for some v. Thus 4 = min (log 2,
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logck) = C%k. Using the well-known [2, p. 114] estimates ¢(n) >
cin/loglog n and 2" < ¢, (e)n" (with € = 1/8), (25) gives

> llogn for

log|N(F,(a,b))] =

n > ny(/) and so from Lemma 1, n & E(a, b).

Thus E(a, b)) C E’ U {n < n,} and the density estimate for E(a, b)
follows in view of Lemmas 2 and 3.

We can extract additional quantitative information from the above
proof. Let us write (@" — b") = AV where A + B = Oxand P|A if and only
if 8 is a primitive prime divisor of (a" — b"). We call % the primitive part of
(@" — b") and denote it by P, (a, b). Then we have

Lemma 13, Ifn > ny(K)andn & E' then
7 log|N(P,(a,b))| = Ap(n) + O(n**)
where A is defined by (26) and the constant implied by O depends only on K.
Proof. Lemma 1 implies that for n > 202 =1
log| N(F,(a,b))| - llogn < log|N(P,(a,b))| < log|N(F,(a,b))].

Ifn € S, U S, the left side can be bounded from below using (24).
Moreover, asin Lemma 12 one shows that for n sufficiently large,n € §, U
A

log|F,(a,b)| < ¢(n)max(log|al,log|b|) + 2V 38,
Using these estimates we immediately obtain (27).

Lemma 13 and the density estimate for E’ enable us to derive both a
normal order and average order for log |[N(P,(a, b))|. The proofs are
straightforward and are omitted.

THEOREM 2. log |N(P,(a, b))| has p(n) A as a normal order, i.e. for any
e>0if

T(e,x) = {n < x:|log|N(P,(a,0))| - p(n) 4| < ep(n) 4},

then card T{(e, x)/x > 1 as x >co.
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Tueorem 3. Y log| N(P,(a,b))| = 3—’;x2 + 0(Ax™)
T

nix

where the constant implied by O( ) depends only on K.
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