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THE EXCHANGE PROPERTY AND DIRECT SUMS
OF INDECOMPOSABLE INJECTIVE MODULES

KUNIO YAMAGATA

This paper contains two main results. The first gives a
necessary and sufficient condition for a direct sum of inde-
composable injective modules to have the exchange property.
It is seen that the class of these modules satisfying the con-
dition is a new one of modules having the exchange property.
The second gives a necessary and sufficient condition on a
ring for all direct sums of indecomposable injective modules
to have the exchange property.

Throughout this paper R will be an associative ring with identity
and all modules will be right R-modules.
A module M has the exchange property [5] if for any module A
and any two direct sum decompositions
A=MGN-=> DA,

1el
with M’ = M, there exist submodules A} & A, such that
A=MODYDA:.

iel
The module M has the finite exchange property if this holds whenever
the index set I is finite. As examples of modules which have the
exchange property, we know quasi-injective modules and modules
whose endomorphism rings are local (see [16], [7], [15] and for the
other ones [5]).

It is well known that a finite direct sum M = @7, M, has the
exchange property if and only if each of the modules M; has the
same property ([5, Lemma 3.10]). In general, however, an infinite
direct sum M = @@,.; M, has not the exchange property even if each
of M;s has the same property. On the other hand, Fuller [8] has
recently proved that every module over a generalized uniserial ring
has the exchange property (c.f., see [9, Theorem 9 and corollary to
Lemma 12]).

Therefore, two interesting questions arise:

(1) When does the infinite direct sum M = @,.; M; of modules
M,(i e I) with the exchange property have the same property?

(2) What ring R has the property that every module M has
the exchange property?

In this paper we consider these two problems for the class of
modules M which are direct sums of indecomposable injectives and
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completely make answers to them for such a class of modules. In
§1 we show a sufficient condition for a direct sum of modules with
local endomorphism rings to have the finite exchange property. In
§2 we prove the following results (1') and (2').

(1) A module M which is a direct sum of indecomposable in-
jective modules has the exchange property if and only if it has the
finite exchange property, and moreover any of these assertions is
equivalent to that the Jacobson radical of the endomorphism ring
Endy (M) of M is {f €eEnd, (M)|Ker f is essential in M}.

(2") A ring R satisfies the ascending chain condition for (meet-)
irreducible right ideals if and only if every direct sum of indecom-
posable injective modules has the exchange property.

It is not known whether the exchange and finite exchange properties
coincide, so the first equivalence in (1') is meaningful. Since any direct
summand of a module with the exchange property has also the same
property as mentioned above, the second equivalence in (1) trivially
includes [2, Corollaire 5] concerning a problem on an indecomposable
decomposition of a direct summand of the module which is a direct
sum of indecomposable injectives (this is a problem of Matlis). (2')
is a strengthening of [19, Theorem 1] and, as seen in it, such a ring
in (2') has interesting properties concerning the Krull-Remak-Schmidt-
Azumaya’s theorem and a problem of Matlis. If a module M is
quasi-injective, all properties in (1’) are also valid for M, but con-
versely neither of them implies the quasi-injectivity of M. In §3 we
show this fact with an example which means that the class of all
modules with the exchange property which are direct sums of in-
decomposable injectives is a new one of modules with the same
property. In §4 we generalize the results of Chamard [3, Théoréme
3] and Yamagata [17, Theorem 4] which are obtained from the point
of view of a problem of Matlis.

The author wishes to express hearty thanks to Prof. Tachikawa
for his advices.

1. A semi-T-nilpotent system. We will recall some definitions
and elementary results from [9] and [10]. A family {M},.,, with an
infinite index set I, which consists of modules M, whose endomorphism
rings are local is called (resp. semt-) T-nilpotent system if for any
family of nonisomorphisms {f; : M, — M, |n = 1} (resp. i, # 1, for
n # n') and any element x, € M,, there is an integer m depending
on x; such that f; f; -+ f (x,)=0. If o is the full subcategory
of the category of all right modules whose objects are isomorphic to
direct sums of M,’s, then it is said to be the induced category from
{M};.; and we denote by _# the class of all morphisms f in .% such
that for two objects X = @;.; X;and ¥ = @,.x Y, of . with f: X —
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Y and indecomposable modules X; and Y., each 7,fk; is a noniso-
morphism where £; is the canonical injection of X; to X and 7, the
projection of Y to Y,. In [9] we then know the quotient category
&7 = o7|_F is Cycompletely reducible abelian.

For a morphism f: M — N and a submodule M, of M, f|M,: M,—
N denotes the restriction of f to M,. We denote by End, (M) an
endomorphism ring of a right module M, over a ring R.

Now we write the proposition, without proof, which will play an
important role in our proofs.

ProrosiTiON 1.1 ([12], [13]). Let {M;},.; be an infinite family of
modules with local endomorphism rings and M = @,.; M,. Then the
following conditions are equivalent.

(1) {M},c; is a semi-T-nilpotent system.

(i) _Z NEnd, (M) is the Jacobson radical of End, (M).

In this case, each direct summand of M is also a direct sum
of indecomposable modules which are isomorphic to some M,.

LEMMA 1.2. For two modules M, and M,, let
M= M1 @ Mz

and 0 a projection of M to M,. Then for a mnonzero submodule N
of M with NN M, = 0 the restriction o|N is a monomorphism. If,
Surther, o(N) ts a direct summand of M, then there exists a sub-
module N, of M, such that M = N & N, D M,.

Proof. The first assertion is clear. For the rest let o(N) be a
direct summand of M, M = o(N) @B M' and o a monomorphism on N.
By the modular law, we then have

M, = o(N) &N,

with a projection = of M, to o(IN) where N, = M, N M'. We con-
sider the decomposition

M=poN)SN.OD M, .

It is then easy to see that the projection of M to o(N) be mo and
the restriction 7o | N of wo to N is an isomorphism by the first part
of this lemma. As a consequence, we obtain the desired decomposi-
tion

M=NDONODM,.

The following corollaries are essentially proved in [9] but we
include proofs for completeness. In them, without proofs, we will
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use some properties for completely reducible objects in . but they
are easily proved in the same way as for completely reducible modules
(see [9, p. 331-332]).

COROLLARY 1.3. Let M be a direct sum of indecomposable mod-
ules M, (teI), where each M; has a local endomorphism ring, and
{Nj}ies an independent set of indecomposable submodules of M with
local endomorphism rings such that it is a semi-T-nilpotent system.
Then, if X;cr B N; 18 a direct summand of M for every finite sub-
set F'C J, there exists a subset K I such that

M=3ON;© > OM,..

REMARK. If J is finite, the finite direct sum >;.; @ N; has the
exchange property by [15, Proposition 1] and [5, Lemma 3.10] and
is a direct summand of M by hypothesis. Hence there exists a sub-
set Kc I such that M = 3., D N; B Siex D M,

Proof. We assume Jis infinite. Let . and _Z be as above and
EEN= 3., N;— M an inclusion map. For a morphism f in .o
we denote by f the induced morphism of f in the quotient category
&7 = 7 _#. Since N; @ --- @ N;, is a direct summand for any
finite subset {j,, ---, j.} of J by assumption, the restriction of £ to
le@ .- J\—/',n is then an injection in .o This will imply that £
is an injection in .7

To show this we suppose that the kernel K = Ker £ is not zero.
Then there is a finite subset {j,, ---, j.}<J such that KN
(N;, -+- @ N;,) # 0, because .o~ is a Cy-abelian category and N =
®;.s N; in .o~ ([9, Theorem 7]). Hence (KN Xj-.@H N;) =0 by
the fact that £|3}., @ N;, is injective in .7 a contradiction.

Then, since the category .o~ is Cs,-completely reducible abelian,
the morphism £: N— M splits and by the note just before this corol-
lary there is a subset K I such that

(1) M= 3 OMO 3 DM
and

(2) =N &,

(3) -3 one3 o,

Let the projection of M to >j;c;_x ® M; be p. Then in (3) the pro-
jection of M to c;,_x M, is clearly p and so g o £ is a bijection of N
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onto X,.;,_x @ M, in view of (2) and (3). This means that there is a
morphism ¢ of .., D M, to Nsuch that o gok =1yand pokog =
1y,., .ei;- Hence we obtain that ¢o(0ck) — 1 and (0ok£)e ¢ — 1 be-
long to _#(End, (N)) = # NEnd,(N)and #(End,(,., xDM)) =
# NEnd,; (X, x D M,) respectively. We will show that o« is an
isomorphism of N to 3, , «.x P M,.

First, ¢ o (0o k) — 1e _ (End, (N)) implies that g¢o(0ck) is in-
vertible, because 7 (End, (N)) is the Jacobson radical by Proposition
1.1. The morphism 0o £ is hence a monomorphism.

Secondly, to show that 0ok is an epimorphism it suffices to show
that the family {M},., . is a semi-T-nilpotent system by the same
reason in the first part. Now since N = 3., @ N, is isomorphic to
Sierox @ M, there is a bijection 0:J— I — K such that N; = M,
for every je. because .o/ is a completely reducible C;-abelian cate-
gory (see the note before this corollary). It is therefore easy to see
that N, is isomorphic to M,,, for every je.J on account of the facts
that _# N End,(N,) and _# N End, (M,,) are the Jacobson radicals
of End, (V;) and End,, (M, ;) respectively. Hence the assumption that
{N,};c; is a semi-T-nilpotent system implies that the family {M},.,_«
is also semi-T-nilpotent, as desired.

Now then, since (0o £)(N) = o(N) = 3\.c;_x @ M, is a direct sum-
mand of M, we can apply Lemma 1.2 to our case and have that

M=N® S ©M,,
which completes the proof of the corollary.

COROLLARY 1.4. Let M be an infinite direct sum of indecom-
posable modules M, (v€ I) with local endomorphism rings. Assume
the family {M.},.; is a semi-T-nilpotent system and let {N,}.=, be a
Jamily of direct summands of M such that N, & N,., for all in-
tegers m = 1. Then the union U.,s, N, of the family {N,},z. ts also
a direct summand of M.

Proof. Since, according to Proposition 1.1, the union U,s, N, is
also a direct sum of indecomposable modules with local endomorphism
rings, it is an immediate consequence of Corollary 1.3.

For two modules M = @,.; M, and N = @,., N; we can represent
every homomorphism f of M to N as a column summable matrix
(f5), that is, for the injections £, of M, to M and projections 7; of
Nto N;(vrel, jel), f;, = w;fk,: M,— N; and, for any xe M and i€
Jii(0.(x)) = 0 for almost all je.J where o, is the projection of M onto
M,. Hence, in this case we may denote that f(x) = >,;7;f(z) =
i i) for any xe M and f; = 3., f;: (see [9], p. 332).
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A submodule N of M is essential in M (N&'M) if NN L +#0
for all nonzero submodules L of M and M is uniform if every non-
zero submodule is essential in M. In the following we will denote
the kernel of a morphism f by Ker f.

LEMMA 1.5. Let M be a direct sum of uniform modules M, (i€ I)
and = (f;;) € End; (M). Then Kerf is essential tn M if and only
if each Kerf;; is essential in M, for all i, jel.

Proof. Suppose that Ker f;, is essential in M, for all ¢ jel.
Then to show that Ker f &’ M it suffices to show that Ker fN M, &’
M, for all 1eI. Now contrary to it, suppose that for some 7€ I,
Ker N M, is not essential in M, or equivalently Ker fN M, =0 by
reason of the uniformity of M,. Then for 0 * x, € M, there exists a
finite subset {j,, ---, 7.} &I such that 0+ fi(x,) = X, fi.(x;) and
filz) =0 for all j = j,, where f, = >,;c, fi;» Because the restriction
fi=fIM: M,— M is a monomorphism. On the other hand, by hy-
pothesis, (M., Ker f;,) N« # 0 and f((Nio. Ker f;,,) N 2,R) =
e f5,0(Ni= Ker f;,,) N2, R) = 0, a contradiction. Thus Ker N M;
is essential in M, for every 71¢l.

Conversely, we assume that Ker f &’ M. Clearly this implies
that Ker fN M, &' M, by the uniformity of M, (:€I). On the other
hand, since f,(x,) = >};c; fr.(®;) and f;,(x,) € M; for every x,€ M,, that
fi(x,) = 0 implies that f;,(x,) = 0 for all jcI. Therefore, Ker f;; # 0
for all 4, eI, because Ker f, = Ker fN M, + 0. As a consequence,
Ker /i, &' M, for 1, jel.

LEmmA 1.6 ([9], [10]). Let {M,}.., be a family of a semi-T-
nilpotent system of modules with local endomorphism rings and
M=@,..M,. Then S|J is a regular ring in the semnse of wvon
Neumann and an idempotent of S/J can be lifted to S, where S 1is
an endomorphism ring of M and J its Jacobson radical.

This follows from Proposition 1.1, [9, Theorem 7} and [10, Theo-
rem 3J.

ProrosiTioNn 1.7. Let {M.},.; be a family of a semi-T-nilpotent
system of modules with local endomorphism rings. Then M =
@D..: M, has the finite exchange property.

Proof. Let S = End, (M) and J the Jacobson radical of S. Then
S/J is a regular ring and every idempotent is lifted to S by Lemma
1.6. Hence, for every element se S there exists an idempotent ec S
such that sS+ J=eS + J. This shows that S has the exchange



INDECOMPOSABLE INJECTIVE MODULES 307

property as a S-module and so M, has the finite exchange property
by [17, Theorems 3 and 4].

2. The exchange property. In this section we prove our main
theorems being concerned with modules which are direct sums of
indecomposable injectives.

First we will continue to consider a general case of modules with
local endomorphism rings instead of indecomposable injectives.

LEMMA 2.1. Let M, N, and A, (i€ I) be submodules of a module
A such that

A= PA, =MEN
iel
and, furthermore, let M be a direct sum of indecomposable submodules
M; (5 € J) with local endomorphism rings. Lf M >, P A, =0 for
some finite subset F of I, then there exist elements i,€ F and j,€J
such that

= M;, D A;, D 2, DA

iel—

for a suitable submodule Al of A,.

Proof. First we remark that, since each M, (j€J) has a local
endomorphism ring, it has the exchange property by [15, Proposition
1], so that any finite direct sum of M;’s has also the exchange prop-
erty ([5, Lemma 3.10]).

Now by hypothesis there exists a finite subset JJ, of J such that
Der, D M; N >er B A, # 0. Hence applying the exchange property
of 3c;, M; to the given decomposition 4 = >),.;D A,, we have
decompositions such that

=B ®C Gicl),
(1) ;@B@;@a
and
(2) =S OMONOC.

Here there exists at least one element ¢, of F such that B, = 0.
For, if the contrary were true, >,.,@® B, =0 and hence >,.., P
A =3:rDC So 3, OM;NZcrBC =25 @M;N S D
A, # 0 by the definition of J,, which contradicts the decomposition (2).
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Now it is clear that M’ = 3., @ M; is isomorphic to >, B,
via the restriction 7| M’ of = to M’, where 7 is the projection of 4
onto >};.; D B, in the formula (1). It follows that
(3) (M) = 3, 7(M) =B, ® 5, B
Since each w(M;) for jeJ, is isomorphic to M;, it has a local endomor-
phism ring. We can thus apply the Krull-Remak-Schmidt-Azumaya’s
theorem [1, Theorem 1] to this module 7(M’) and the projection & of
n(M’) onto B, in the formula (3). As a consequence, there exists an
element j,€J, such that the restriction &|m(;) is a monomorphism
and én(M;) is a direct summand of n(M’) and hence of B;. On the
other hand, a simple computation shows that the projection of A to
B,, in the decomposition (1) is éx. Thus from these facts and Lemma
1.2 there is a submodule D, of B, such that

A= Mi(,@Dio@ieI;io)@Bi@%@Ci

because the restriction éx|M; is clearly a monomorphism. Setting
Al = C, @ D,, we finally have a desired decomposition

A=M; RA,D 3 @A, .

ie I—{ig}

From now on we will consider indecomposable injectives.

LEMMA 2.2. Every indecomposable injective module is uniform
and has a local endomorphism ring.

This is well known (c.f., see [6, §5 Proposition 8]).

Assume M, and M, are indecomposable injectives and f a mor-
phism of M, to M,. If f is a nonmonomorphism, then its kernel
Ker fis essential in M, by Lemma 2.2 and the converse is, of course,
true. This shows that f is a nonisomorphism if and only if Ker f
is essential in M,. Under this observation we have

PROPOSITION 2.3. Let {M},.; be an infinite family of indecom-~
posable injective modules and M = @;.; M;. Let S be an endomor-
phism ring of My and J the Jacobson radical of S. Then J =
{feS|Ker f &' M} if and only if the family {M},c; s a semi-T-
nilpotent system.

Proof. We will represent every endomorphism f of M as a
column summable matrix: f = (f;,), where f;, = 7;fk, for the projec-
tions 7; of M onto M; and injections &, of M, into M(¢, j€ I). Then,
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in accordance with our earlier notations (see § 1), by the above remark
we have

F NS={f=(fi)eS|Kerf; &" M}
and by Lemma 1.5
{(f=(fineS|Kerf;; &' M)} = {feS|Ker f&" M} .

On the other hand, we know by Proposition 1.1 that the family {M,},.;
is a semi-T-nilpotent system if and only if J= _# NS. It follows
from them that {M,},.; is a semi-T-nilpotent system if and only if
J ={feS|Ker f <’ M}, which proves the proposition.

We need more lemmas for the main theorems.

LEMMA 2.4. A module M has the exchamge property tf for any
modules A,(i € I) which are isomorphic to submodules of M and any
decomposition A = @..; A, = M' @ N where M’ = M, there exist sub-
modules A} = A, such that A = M P >,,., D Al

This is well known in [5, Theorem 8.2] and its proof will be
omitted.

LEMMA 2.5. Let G= MG N for submodules M and N of a
given module G. We moreover assume M = >;.; B M,, where {M.};;
is an mfinite family of indecomposable injective submodules of G
and o semi-T-nilpotent system. Then tf a module A is tsomorphic
to a submodule of M and contains an injective submodule, there
exists @ maximal submodule A, of A with the property that A, is a
direct sum of indecomposable injective submodules. In this case
such o module A, is a direct summand of A.

Proof. Let the monomorphism of A to M be fand E an injective
submodule of A. Then by [1, Theorem 1] and Lemma 2.2, f(E) con-
tains an indecomposable injective submodule isomorphic to some MM,
in view of that f(&) is a direct summand of M. This implies that
A contains a submodule isomorphic to some M,. Now then we can
take a family {A4,},., of submodules of A4 such that each 4, is a
direct sum of indecomposable injectives and A4, & A,,, for any » = 1.
Then, by Zorn’s lemma, we will be done if we can show that the
union 4, = J, 4, is also a direct sum of indecomposable injectives
and, furthermore, a direct summand of A.

Since f is a monomorphism, the image f(4,) of A, by f is also
a direct sum of indecomposable injectives and hence f(A4,) is a direct
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summand of M for any jeJ by Corollary 1.8 and Lemma 2.2. Thus
the union U, f(4,) is also a direct summand of M and a direct sum
of indecomposable injectives by Corollary 1.4. Taking account of
J(A4) = U, f(4,), we have M = f(A,) @ N for a submodule N of M
and A, is a direct sum of indecomposable injectives since 4, = f(4,).
By the modular law, f(4) = f(4,) @D f(4A) N N. We therefore have
A=ABf'(f(A) N N), where f(f(A)N N) is the inverse image
of f(A)N N by f, which proves the lemma.

It is clear that the exchange property implies the finite exchange
property, but it is not known whether the converse is true in general.
However, in our case that modules are direct sums of indecomposable
injectives we can conclude this question affirmatively.

THEOREM 2.6. Let M be a module which is o direct sum of
indecomposable injective modules and let S be an endomorphism
ring of My. Then the following assertions are equivalent.

(i) M has the exchange property.

(ii) M has the finite exchange property.

(iii) The Jacobson radical of S is {f € S|Ker f &’ M}.

Proof. Let M= >,,.,D M,, where every submodule M, is in-
decomposable injective. If the index set I is finite, then M is clearly
injective, so all of the above assertions (i), (ii), and (iii) are true. It
therefore suffices to show the theorem for only the case with the
infinite index set I.

Now let I be an infinite index set. By Proposition 2.3 the asser-
tion (iii) is then equivalent to

(iii") The family {M};c; ts a semi-T-nilpotent system.

Thus we will consider (iii’) instead of (iii) in the following.

The implication (i) = (ii) is trivial.

(ii) = (iii"). The idea of the proof is due to [9, Lemma 9]. As-
sume that M has the finite exchange property. Take an arbitrary
countable subfamily of {M},.;, say {M,}.»,, and nonisomorphisms
foiM,— M,  (n=1). For every xe M, we will find an integer n(x)
depending on x such that f,.) fuw-: - filx) = 0.

For this put M, = {x + f,(x)|ze M,}. It is then clear that M, @
M,,=M, DM, for n=1. Since each M, is indecomposable in-
jective, every nonisomorphism f, is only nonmonomorphism, i.e.,
Ker £, # 0. This implies that M, N M, = 0 for every n = 1.

It is clear that
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(1) >OM=MOMOMOM D - O M Mo, D -
(2) =MOMOMOMSD - DM, DM, D -+

and we put
N=MSMD--DM,.D---.

Then, applying the fact that N has also the finite exchange property
([5, Lemma 3.10]) to the decomposition (2), we have that 32, P M, =
NP XPY for some submodules X and Y of S, P M,_, and
S 6 M,, respectively. Here, in fact, it will hold X = 0.

To show this, suppose that X == 0 contrary. Then by Lemma 2.1
there exists M,,_, such that

SOM=NOM, SX Y

i=1

for some submodule X’ of X.
This however contradicts that 0 = M, ,N M}, & M,,_,N N.
Thus it holds

SOM=NDY.
7=1
Now we take an arbitrary nonzero element x e M, and we let

=19y + 2 with ye N and zc¢ Y. Considering these ¥ and z in the
decompositions N = 32, @ M;,_, and 3.2, €@ M;, respectively, we have

Y= 3 @+ @)
and
2= 3 @+ Fulew)
and substituting these expressions for y and z, we have
2= 3 @+ fun) + 3 @+ fulaw)
=2+ 5 (A + B + Fulan) -
Therefore, x = x,, fi(x,) + .., = 0(1 < 7 < 25 — 1) and fi.(x.,) = 0, that
18, % =@, L= —f1(%®), * -+, Xos = fs(Xe_,) and fis_,(25) = 0. By successive

substitutions, we obtain x,,=(— 1)*"'f,,_, - - - £i(x) and, finally, fo.fsey - - -
filx) = 0. Thus we can put n(x) = 2s, which completes the proof of

(i) = (iii).
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(iii") = (i). We assume the family {M.},.; is a semi-T-nilpotent
system. Suppose A = >}, D A; = M' D N, where M’ = M and each
A; is isomorphic to a submodule of M’. Then, taking account of
Lemma 2.4, we will be done if we can find submodules A of A;
(jeJ) such that A = M’ P >, D Al

For this, we will first refine the given decomposition 4 = >;., B
A;. We should note that M’ is also a direct sum of indecomposable
injective submodules M/(ieI). By Lemma 2.1 there exists at least
one element j,e.J such that A; has a nonzero submodule isomorphic
to some M. Let the subset of J of such elements j,eJ be J,. By
Lemma 2.5 there exist maximal submodules B; of A;(jeJ,) such
that each B; is a direct sum of indecomposable injective submodules
of A;, in which case every B; is a direct summand of A4;, say A; =
B; P C; for a submodule C;c A; for jeJ,. Consequently, we have
such a refinement of A = 3., P 4; that

(1) A= 3 @BB;D > DPCD X A4,
jedg jedg jed—Jg
where J — J, is the complement of J, in J and if J— J, is empty,
we put A; in the formula (1) to be zero submodule of A for con-
venience.
Next we will have that

(2) MN(EOCD S GA)=0.

jedy

For this we suppose that M’ N (e, @ C; D Xljes—s, D 4;) # 0. Then
by Lemma 2.1 and the choice of J, there exists M such that for a

submodule X; & C;

o’

A= M’!O@XjO@Bjoe}jeZ{jo,@Aj .
This implies there exists an injective submodule C; of C; which is
isomorphic to M;. However, in this case we have that B, ¢ Cj is a
direct summand of A; and a direct sum of indecomposable injective
submodules, which contradicts the maximality of Bj,.

Now we can exchange the complement N of M’ for a direct sum
of submodules of A;(jeJ). For this let the projection of A onto
Siics, ®B; in (1) be p. The family {M/},.; is semi-T-nilpotent by
hypothesis, and so is {o(M})},.; because the restriction o| M’ of o to
M’ is a monomorphism by (2) and Lemma 1.2. Using Corollary 1.3
the image p(M’) therefore is a direct summand of 3;.,, @ B; and
there is a subset K J, such that 3., @ B; = o(M) D Xex D B,
and, consequently we have A = o(M') D Scx DB D 2ics, DC; D
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Siics—, B Aj. Computing the projection of A to o(M’) and by Lemma
1.2, we therefore have a decomposition

A=NOSOBOZ OGO X B4,

which completes the proof of the implication (iii’) = (i). Thus we
conclude the theorem.

The original definition of the exchange property given in the in-
troduction is due to Crawly and Jonsson [5]. However, we will con-
sider the following weaker exchange property, too ([10]).

DEFINITION. A direct summand M of a module A has the ex-
change property im A if for any direct sum decomposition 4 = >;c; P
A,;, there exist submodules A & A, such that A = M@ >, Al

We recall that for a ring R a right ideal I is (meet-) irreducible
provided I # R and I = I, N I, implies I = I, or I = I, for all right
ideals I, and I, or R.

THEOREM 2.7. The following conditions are equivalent.

(i) A ring R satisfies the ascending chain condition for irre-
ducible right ideals.

(ii) Any direct sum of indecomposable injective modules has
the exchange property.

(i) Any direct sum of indecomposable injective modules has
the finite exchange property.

(iv) Any direct summand of the module M which is a direct
sum of indecomposable injective modules has the exchange property
m M.

(v) For any direct sum M of indecomposable injective mod-
ules, the Jacobson radical of the endomorphism ring Endp (M) is
{f € End, (M)|Ker f &' M}.

Proof. The equivalences (ii) < (iii) < (v) are trivial from Theorem
2.6, and (ii) = (iv) follows from [5, Lemma 3.10]. The implication
(iv) = (i) is contained in [19, Theorem 1].

(i)=(ii): Let M= 3,,.,P® M, where M, is indecomposable in-
jective for any 2e I. If I is finite, then M is clearly injective, so it
has the exchange property ([16, Lemma 2]). If I is infinite, the
family {M.};.; is a semi-T-nilpotent system by [19, Theorem 1 and
Lemma 2]. Therefore, M has the exchange property by Proposition
2.3 and Theorem 2.6.

3. Example. Here we show the existence of modules which are
not quasi-injective but isomorphic to direct sums of indecomposable



314 KUNIO YAMAGATA

injectives and have the exchange property.

We first note that a quasi-injective module M over a ring R is
injective by the criterion of Fuchs [7, Lemma 2] provided that M has
the property that some finite direct sum of copies of M contains an
element with a zero annihilator right ideal or, equivalently, contains
a submodule isomorphic to the ring R.

The ring R regarded as a right (left) module over itself will be
written R;(xR).

LEMMA 3.1. For a ring R the following conditions are equivalent.

(i) R s right perfect and its injective hull E(Ry) ts projective,
2-(quast-) injective.

(ii) R s left perfect and its injective hull E(zR) is projective,
Z-(quasi-) injective.

REMARK. By the above note the “X-quasi-injective” and “X-in-
jective” are coincident in Lemma 3.1.

Proof. We will only prove that (i) implies (ii) as the converse
follows by symmetry.

Assume (i). Since R is right perfect, E(R;) has an indecomposable
direct sum decomposition, E(R;) = 3., P,, where each P, is in-
jective projective right module. Let R=¢,RP --- e, R for primi-
tive idempotents ¢,. Then there is an integer £(¢) such that P, = ¢,,R
for any 1 <7 < m. Let {P;}:_, be a subclass of mutually nonisomorphic
projective modules of {P;}1, such that each P,(1 < ¢ < m) is isomorphic
to some P;j(1 < j <s) (here, if need, the indecies are renumbered)
and we put M= P, P --- @ P,, then a right ideal I=¢,,RP ---
@ e, R is isomorphic to M. Since M is clearly 3S-injective and faith-
ful, so is then also I. Thus, by [4, Theorem 1.3], E(zR) is projective,
and R is left perfect and contains faithful, 3-injective left ideal

I, @ E(S;), where {S;}\_, is the representative class of simple left
ideals which are nonisomorphic mutually and E(S;) an injective hull
contained in R. As a consequence, E(zR) is 2-injective because E(rR)
is isomorphic to a submodule of a finite direct sum of copies of

L, E(S;). This completes the proof.

Now then, we suppose R is a (left and right) perfect ring such
that E(Ry) is projective and E(zR) is not projective (for the existence
of such a ring, see Miiller [14] and Colby and Rutter [4]). Then,
E(Ry) = 3", P,, where each P, is indecomposable injective for 1 <
% < m and, since the radical of every projective right module over
a right perfect ring is small, any infinite family of modules each of
which is isomorphic to some P, is a T-nilpotent system ([12, Theorem
3]). On the other hand, an infinite direct sum M= @,.; M, with
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M, = E(R;) is not quasi-injective by Lemma 3.1. Thus M is the
desirable module having the exchange property by Proposition 2.3
and Theorem 2.6.

4. Applications. We will generalize the theorems of Chamard
[3, Théoréme 3] and Yamagata [18, Theorem 4].

We recall definitions. A submodule N of a module M is said to
be closed if it has no proper essential extension in M, thatis, if N&’
X for any submodule X of M, then N= X. A module M is said
to be well-complemented in case any finite intersection of closed sub-
modules of M is also closed.

LEMMA 4.1. Let M be a direct sum of indecomposable injective
modules M, (teI) and N a direct summand of M. If N is well
complemented, then N is also a direct sum of indecomposable in-
jective submodules.

Proof. By [1, Theorem 1] it is clear N has a nonzero indecom-
posable injective submodule, so we can choose a maximal independent
set {N;};c; of indecomposable injective submodules of N. Put N, =
ZieJ @ M

We will show N = N, To show this take an arbitrary nonzero
element x € N. Then there exists an injective hull E(@xR) of R in N
by [18, Lemma 2] and it is a finite direct sum of indecomposable
injectives by [1, Theorem 1], say E@xR)= E. @ --- G E,. By the
maximality of {N,};c;, it is evident that N;N E, % 0 for 1 <1 < n.
Then, since N is well-complemented by hypothesis, this will imply
E, =N, for 1 <7 =<mn and so x¢ E(zR) & N,, which means N = N,.

Because there exists a finite subset {5, ---, j.} & J such that
SN, NE;#0 for 1L<¢=<n. Since 37, P N, and E; are in-
jective, they are closed in N and so is >\, @ N;, N E; by hypothesis
of N for any 1 <4 < n. Then, since E; is an essential extension of
> @ N;, N E; by Lemma 2.2, it must be that B, = 32, @ N; N E,
and therefore E; & X7, @ N;, for any . Consequently ze E(xR) &
S @ N;, & N, which concludes the lemma.

Under the same assumptions as in Lemma 4.1, we remark that
N has no proper essential submodule which is a direct sum of in-
decomposable injectives from the proof of Lemma 4.1. This is first
shown by Chamard [3, Lemma 4.1].

PROPOSITION 4.2. Let M be a direct sum of indecomposable in-
jective modules M,(ie I) and N a direct summand of M; M= N@
N'. If N is well-complemented, then N has the exchange property
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and N and N' are also direct sums of indecomposable injective
submodules.

Proof. By Lemma 4.1, N is a direct sum of indecomposable in-
jective submodules N;(jeJ). To show that N has the exchange
property we will check the property (iii) in Theorem 2.6.

Let S be an endomorphism ring of N, and J its Jacobson radical.
We must show that J= {feS|Ker f <’ N}. The inclusion J &
{feS|Ker f &’ N} is known in [2, p. 564]. Conversely take an ar-
bitrary element fe S with Ker f &’ N. To show that feJ, it is enough
to show that 1 — f is an isomorphism.

First we will prove that 1 — fis a monomorphism. If Ker(1— f) =+
0, xRN Kerf== 0 for any nonzero element zcKer (1 — f) since
Ker f &’ N. There is hence a nonzero element y of xR with f(y) = 0
and so ¥ = (1 — f)(y) which must imply v = 0, because y € Ker (1 — f),
a contradiction.

Next we will prove that 1 — f is an epimorphism. Since 1 — f
is a monomorphism, (1 — f)(N) is also a direct sum of indecomposable
injectives. Take an arbitrary nonzero element xe N. Then zRN
Ker £+ 0, that is, there is a nonzero element yecazRN Kerf. We
therefore have xRN (1 — f)N) # 0, because y = (1 — f)y)exzRN
(1 — f)(N). This shows that (1 — f)(IN) is essential in N, so that
N = (1— f)N). Because N has no proper essential submodule which
is a direct sum of indecomposable injectives by the remark just
before this proposition.

Thus we have shown that N has the exchange property. We
can then exchange N’ for >,..x @ M, for some subset KC I, M =
NP Scx D M,. This implies that N’ = 3,.x @ M,, which completes
the proof of the proposition.

Let M, be any nonsingular module over a ring R, that is, M =+
0 and if f = 0 for x € M and essential right ideal I of R, then « =
0. It is then well known that the lattice of all closed submodules of
M is complete and so M is clearly well-complemented (c.f., see [6,
Corollary 8, p. 61]). Thus we can sharpen [18, Theorem 4] and [11,
Proposition 4].

COROLLARY 4.3. Let M, N, and N’ be as above. If N is non-
stngular, then it has the exchange property and so N and N’ are
also direct sums of indecomposabdle injective submodules.

REFERENCES

1. G. Azumaya, Corrections and supplementaries to my paper concerning Krull-



INDECOMPOSABLE INJECTIVE MODULES 317

Remak-Schmidt’s theorem, Nagoya Math. J., 1 (1950), 117-124.

2. A. Cailleau and G. Renault, Anneau associé @ une somme directe infinite de modules
quasi-injectifs, Arch. der Math., 21 (1970), 561-566.

3. J. Y. Chamard, Modules riches en co-irréductible et sous-modules compléments, C.
R. Acad. Sc. Paris, t. 264 (1967), 987-990.

4. R. R. Colby and E. A. Rutter, Jr., Generalizations of QF-3 algebras, Trans. Amer.
Math. Soc., 153 (1971), 371-386.

5. P. Crawly and B. Joénsson, Refinements for infinite direct decompositions of
algebraic systems, Pacific J. Math., 14 (1964), 797-855.

6. C. Faith, Lectures on Injective Modules and Quotient Rings, Lecture Notes in
Mathematics, 49, Springer-Verlag, 1967.

7. L. Fuchs, On quasi-injective modules, Annali della Scuola Norm. Sup. Pisa, 23
(1969), 541-546.

8. K. R. Fuller, On generalized uniserial rings and decompositions that complement
direct summands, Math. Ann., 200 (1973), 175-178.

9. M. Harada and Y. Sai, On categories of indecomposable modules I, Osaka J. Math.,
7 (1970), 323-344.

10. M. Harada, On categories of imdecomposable modules II, ibid., 8 (1971), 309-321.

11. , Note on categories of indecomposable modules, (to appear).

12. M. Harada and H. Kanbara, On categories of projective modules, Osaka J. Math.,
8 (1971), 471-483.

13. H. Kanbara, Note on Krull-Remak-Schmidt-Azumaya’s theorem, ibid., 9 (1972),
409-413.

14. B. J. Miiller, Dominant dimension of semi-primary rings, J. Reine Angew Math.,
232 (1968), 173-179.

15. R. B. Warfield, Jr., A Krull-Schmidt theorem for infinite sums of modules, Proc.
Amer. Math. Soc., 22 (1969), 460-465.

16. , Decompositions of injective modules, Pacific J. Math., 31 (1969), 263-276.
17. , Bxchange rings and decompositions of modules, Math. Ann., 199 (1972),
31-36.

18. K. Yamagata, Nonsingular rings and Matlis’ problem, Sci. Rep. Tokyo Kyoiku
Daigaku, Sect. A, 11 (1972), 114-121.
19. , A note on a problem of Matlis, Proc. Japan Acad., 49 (1973), 145-147.

Received July 17, 1973 and in revised form April 9, 1974.

TokyYo UNIVERSITY OF EDUCATION
OT1sUKA, BUNKYO-KU, TOKYO, JAPAN








