
PACIFIC JOURNAL OF MATHEMATICS
Vol. 55, No. 1, 1974

ON THE REGULARITY OF THE /^-INTEGRAL
AND ITS APPLICATION TO SUMMABLE

TRIGONOMETRIC SERIES

S. N. MϋKHOPADHYAY

The symmetric P2m-integral (and P2w+1-integral) as defined
by R. D. James in "Generalized nth primitives", Trans. Amer.
Math, Soc, 76 (1954), is useful to solve problems relating to
trigonometric series (see R. D. James: Summable trigonometric
series, Pacific J. Math., 6 (1956)). But the definition of the
integral is not valid, since Lemma 5.1 of the former paper
of James, which is the basis of the whole theory, is incom-
plete due to the fact that the difference of two functions
having property B2m-2 may not have this property. Therefore,
all the subsequent results of James also remain incomplete
and a complete systematic definition of the integral is needed.

In the present paper a definition of the P2m-integral (and
P2m+1-integral) is given and it is shown that all the results
of the later paper of James remain valid with this integral.

1* Definitions and Notations* Most of the definitions and

notations of [8] will be used with essential modifications. The gener-
alized symmetric derivative [8] (also called symmetric de La Vallee
Poussin derivative [18]) of even and odd orders and the generalized
unsymmetric derivative [8] (also called Peano derivative [13] or
unsymmetric de La Vallee Poussin derivative [11]) of a function/at
xQ will be denoted by Drf(xQ) and /<r)(cc0) respectively, where r denotes
the order of the respective derivatives. If D2kf(x0) exists, 0 <̂  k <£
m - 1, define Θ2m(f; x0, h) by

- J ^ M / ; *o, h) = ±{f(x0 + h)+ f(xQ - h) - g ^

The upper generalized symmetric derivate of / at x0 of order 2m is
defined as

D2mf(x0) = lim sup θzm(f; xQ, h) .
A->0

Replacing Ίimsup' by Ίiminf one gets the definition of D2mf(xQ).
The function / is said to satisfy the property <9im at xQ, written

a s / e ^ m ( £ 0 ) , if

lim sup hθ2m(f; x0, h) >̂ 0 ,

and fe£$m(x0) if — fe^ζm(x0). The function / is said to be smooth
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at xQ of order 2m if

limhθ2m(f;x0, h) = 0 .
h-*0

Clearly smoothness of order 2m implies smoothness of order 2m — 2

and if / is smooth at x0 of order 2m then fe<9ζm(x0) Π S^m(Xo)- For

symmetric derivatives of odd order, 02w+1(/; xQ, h), D2m+1f(x0), D2m+1f(x0),

£%m+i(x0), ̂ m+i(%o) are defined analogously.
If f(r)(x0) exists, 0 ^ r ^ n — 1, 7n(/; α?0, &) is defined as

-^7 M (/ ; as,, h) = /(<cβ + Λ) - Σ - ^ / U * . )

The upper generalized unsymmetric derivate of / at xQ of order n is
defined as

/<»>(«<>) = lim sup 7Λ(/; a?0, h)

with a similar definition for f{n)(x0). By restricting h suitably one can
define one-sided derivates which are denoted by fw(xo)9 etc. For
convenience, the first order derivates /(D(#O)>/U)(#O)> etc., will be denoted
simply by f(x0), f+(xQ), etc. The ordinary nth derivative of / at x0

will be denoted by f{n){xQ).

A function / is said to satisfy the property & in an interval J,
written / e ^ ? in /, if for every perfect set P c ί , there is a portion
of P in which / restricted to P is continuous (see [17]). A function
/ i s said to satisfy the property Jf in (α, 6), written / G ^ 7 ^ in (α, b),
if there exists a function F continuous in [α, b] such that i ^ ) = / in
(α, δ) for some n. The class of all Darboux functions will be denoted
by &. From the properties of Darboux functions it follows that if
D2kfe^f and if g is continuous then D2kf + ge &. This fact will
be used in the sequel. For the definition of ^-convex functions we
refer to [8, 1].

We now come to the definition of major and minor functions. Let
/ be defined in (α, 6) and let a = aι < a2 < < a2m = b. A function
Q is said to be a P2m-major function or simply a major function of /
over (a^ 1 ^ i :g 2m) if

( i ) Q is continuous in [α, 6],
(ii) D2m-2Q exists and D2k e & Π J^~ in (α, &), 0 ^ fc ^ m - 1,
(iii) Q(at) = 0, 1 ^ i ^ 2m,
(iv) D2mQ ^ / a.e. in (α, 6),
( v ) u 2 m Q > — oo, except on an enumerable set Ea(a, 6),
(vi) Q is smooth of order 2m on E.

The function q is a minor function of / if — q is a major function of
—/. The P2w+1-major functions and P2m+1-minor functions are defined
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similarly.
This definition of major and minor functions differs from that of

James [8] in allowing certain exceptional sets in (iv) and (v). But
this is standard and is also noted by James in his modified definition
of the P2m-integral [9]. Another difference is in condition (ii) where
we are assuming D2kQ e & Π ̂ ~ instead of James' [8] requirement
that Q has properties A2m and B2m_2. (The property & is weaker
than A2m by Lemma 3.2 of [8] and the property ^~ is stronger than
#2m-2 by Lemma 8.1 of [8] or by Theorem 2 of [13].) But this is
necessary since the difference of two functions in & Π J7~ is in
& Π ̂ Γ which is not true with the property B2m_2. We shall prove
in the sequel that this is a proper definition of major and minor func-
tions and the P2 w-integral defined by these major and minor functions
is capable of handling trigonometric series.

2* Preliminary lemmas,

LEMMA 2.1. If f is smooth of order 2m + 1, as well as of order
2m + 2, at x0 then f(2m)(x0) exists. If fin)(xQ) exists then f is smooth
of order n + 1. More generally, i//<ΐ+i)fo),/(ή+1)(ce0), fά+ί)(x0), fά+ι)(χo)
are all finite, then

lim sup hθn+2(f; x0, h) ^ 2L±A{f++1)(χ0) - /(-+1J(α0)}

lim inf hθn+2(f; x0, h) ^ 2L±1 {/++1)(a;0) - /i;+1,(a;0)} .
h0 2 "

Proof. The first part is clear. For the last part, since f{n)(x0)
exists, Drf(x0) exists, 0 ^ r <̂  n, and

(2-1) γ{7.+ 1(/; xQ, h) + 7n+1(/; α0, -h)} = θn+1(f; Xθf h)

4 { 7 % + l ( / ; x- h) - y»M ̂  ~h^ =
n

From (2.1)

lim hθn+1(f; x0, h) = 0 ,

and from (2.2)

n ~\~ 2
o { f i+i)
Δ

The other relation follows similarly.

~ fΓn+i)M) ^ lim inf hθn+2(f; χ09 h) .
h0
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LEMMA 2.2. If Or<w.-i>(α?o) and DnG(x0) exist and if Ge
then the function ωn+1(G; x0, h) defined by

(2.3) hn+1 ωn+ί(G; x0, h) = G(xQ + Λ) - Σ - ^ G ( r )(n + 1)! * =o r!

satisfies the relation

lim sup α>Λ+1(Cr; #0, λ) ^ 1™ inf ωn+1(G; x0, h) .
Λ-»0+ λ-»0-

Proof. Since

ωΛ + 1(G; a?o, h) - ωΛ + 1(G; α?0, - λ ) = — — Θ n + 2 { G ) x0, h) ,
n + 2

and since (? e <5<+2(x0), the proof is immediate.

LEMMA 2.3. // fin) exists in (α, b) and xoe(a, b) then

(2.4) (/ (.))+(O ^ /(ΐ+i)(*o), /ί+i)(a?o) ^ (/(.))+fe) , etc.

(2.5) (yy(α;0) ^ ΰ^+1/(α;0), D^f(x0) £ (fn))(x0) .

Proof. If n = 0 this is immediate. Suppose w ^ 1. Then / is
continuous in (a, b). Let xQe[a, β]cz(a, b). Then each fk) is C&-
continuous in [a, β], 0 <, k ^ n, by Lemma 11.1 of [8]. From the
definition of Cesaro derivative (see [4]) we have CnD

+f{n)(x0) = f^+1)(x0)f
where CnD

+f{n)(x0) is the right hand upper nth Cesaro derivate of fln)

at xQm Since C0D
+fin)(x0) is the first order derivate (/U))+0EO)> (2.4)

follows from Theorem 2.1 of [4]. Lastly, from (2.1), Dn+ιf(xQ) ^
/(»+i>(&o) and hence (2.5) follows from (2.4).

LEMMA 2.4. Let g be continuous in [α, b] and D2g Ξ> 0 in (α, 6),

except on an enumerable set E c (a, b) and let g e S^(x) for xe E. Then

g is convex in [α, b].

This is proved in [19, I, p. 328], which sharpens a result of de La

Vallee Poussin (see [16, Lemma 3]).

3* 2m-convex functions* In this section and in §4, the results
are stated in a more general form than is necessary for P2m-major
and P2m+1-major functions. Since every member in j?~ possesses
Darboux property [13], we have ^~ Π & c ϋ ^ Π ̂  and hence these
results are applicable in §§5 and 6.

THEOREM 3.1, 2m. Suppose that
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( i ) f is continuous in [α, 6],
(ii) D2m~2f exists and D2kfe & Π & in {a, δ), 0 ^ k ^ m - 1,
(iii) Dlmf^ 0 m (α, δ), except on an enumerable set Ec.{a, δ),
(iv) / G ί ς ( « ) /or α e # .

J[)2m~2/ is cowyecc m (α, 6) cmcZ iί is £/̂ £ continuous derivative

The above theorem is true for m = 1 by Lemma 2.4. So, we
assume that the theorem is true for m = m0 i.e., Theorem 3.1, 2m0

is true and we prove that Theorem 3.1, 2 (m0 + 1) is also true and
so the theorem will be proved to be true for all m by induction on
m. We require the following auxiliary lemmas:

LEMMA 3.1, 2m0. Suppose that
( i ) G is continuous in [a, 6],
(ii) D2m°G exists in (α, b) and is Jΐf-integrable in [<z, 6],
(iii) D2kG G & Π & in (a,b), 0 ^ k ^ m0 - 1.

Then Ψ — G is a polynomial of degree at most 2m0 — 1 in [α, 6], where

(2m0 — 2)

g(x) - \'D2m°G(t)dt
Ja

and G(2m°~υ exists and is continuous in (a, b).

Proof. As in [10, Theorem 18], one can construct a sequence of
continuous functions {At} which converges uniformly to g in [α, b] as
ί —> oo and for all £

(AOίaO > D2^G(x) , xe(a,b) .

For each i, define

1 oM Γ ( x - ί ) ' " 0 " ^ ^ ) * - xe[a,b].

Then {Ui} converges uniformly to Ψ in [α, 6] as i —* oo. Since At is
continuous, taking (2m0 — l)th derivative

(x) = A<(x) , xe(a,b).

So, by (2.5) we have

(3.1 {AMx) = (Uj*»°-»)(χ) ^ D^U.ix) , xe(a,b) .

Since by construction (Aj)(x) > D2m°G(x) for x e (α, ό),
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(3.2) D2^[Ut - G](x) > D^U^x) - (AJ(x) , xe(a,b).

Hence from (3.1) and (3.2)

t - G](x) > 0 , a?e(α, 6) .

Since D2kGe & Π & and DikUt is continuous in (α, δ) f or 0 ^ k g
m0 - 1, jD2*[Z7t - G] G ̂  Π & in (α, δ) for 0 ^ A; ̂  m0 - 1. Hence by
Theorem 3.1, 2m0, D2m°-2[£7; - G] is convex in (α, δ) and so Ut - G is
2m0-convex in (α, δ) and by the continuity, Ut — G is 2m0-convex in
[α, δ]. Since Ut — G converges uniformly to Ψ — G in [α, δ], Ψ — G
is 2m0-convex in [α, δ]. It can be similarly shown that Ψ — G is 2m0-
concave in [α, δ]. Hence Ψ — G is a polynomial of degree at most
2m0 — 1. Since Ψ{2mo-v exists and is continuous, G(2m°~υ also exists and
is continuous in (α, δ).

LEMMA 3.2, 2m0. Let G be continuous in [α, δ] and let D2m°G
exist in (α, δ) and be Jίf-integrable in [α, δ]. Let G(2m°~1) exist and
be continuous in (α, δ). // D2m°G attains a maximum at xoe(a, b)
then

lim sup ω2mo+1(G; x0, h) £ 0 ^ lim inf ω2mo+1(G; xQ, h) ,

where ω is the function defined in (2.3) with n = 2mQ.

Proof. Let

J(x) = Γ D2m»G(t)dt , xe[a,b].

Then by Lemma 3.1, 2m0 J - G(2m°~υ is constant. Since G(2m°~υ is
continuous in (α, δ), by mean value property, for any h, 0 < h < b — x0,
there is η, 0 < η < 1, such that

« W i ( G ; χOf h) = -A—{G{2m*-ι)(x0 + ηh) -

2 {D*m°G{t) - D2m°G(x0)}dt.
*0

Therefore, since D2m°G is maximum a t x0,

lim sup α)2 w o +i(G; x0, h) <L 0 .

The other part follows similarly.

LEMMA 3.3, 2m0. Suppose that
( i ) F is continuous in [α, δ],
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(ii) D2m°~2F exists and D2kFe &r Π & in (α, 6), 0 £ k £ m0 - 1,
(iii) D2m°F Ξ> 0 in (α, 6), except on an enumerable set Ec (a, b),

(iv) FeSΪmQ(x) for xeE.
Then

θ2mo(F; x,h)^0, for all x, h, a < x — h < x + h < b .

LEMMA 3.4, 2m0. Suppose that
( i ) G is continuous in [a, b],
(ii) D2m*G exists and D2kG e & Π & in (α, 6), 0 ^ fc ^ m0,
(iii) D2m°G attains a maximum at x0 e (a, b).

Then

D2mQ+2G(x0) ^ 0 .

The proof of Lemma 3.3, 2m0 is similar to that of Lemma 4.1, 2m0

of [8]. Lemma 3.4, 2m0 can be proved by using Lemma 3.3, 2m0 in
the same manner as in Lemma 4.2, 2m0 of [8].

LEMMA 3.5, 2m0. Suppose that
( i ) f is continuous in [a, b],
(ii) DZw*f exists and D2kfe & Π & in (a, 6), 0 ^ k ^ m0,
(iii) DZm°+2f^ 0 m (α, 6), except on an enumerable set Ea(a, b),
(iv) feSίmo+2(x) for xeE,
( v ) D2m°f is upper semicontinuous in (a, b) and ^f-integrable

in [α, 6].
Then D2m°f is convex in (a, b).

Proof. We first consider the special case when the inequality in
{iii) is strict inequality. Suppose that D2m°f is not convex in (α, b).
Then there is a subinterval [a, β] c (α, b) such that

ρ(x) = D2m°f(x) - —-— { (β - x)D2m°f(a) + (x - a)D2m«f(β)}
β — a

= D2m»f(x) - px - q

takes positive values somewhere in (α, β). Since p is upper semi-
continuous in [a, β] and p{a) = p(β) = 0, p attains maximum in (a, β).
So, if μ is sufficiently near to p then the function D2M°G, where

- q-Γ (2m0 + 1)! (2m,)!

also attains its maximum in (a, β), say, at xμ. Hence by Lemma
θ.4, 2m0
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D2m«+2G(xμ) = D2m°+2f(xμ) £ 0 .

Hence xμ e E. Now G satisfies the hypotheses of Lemma 3.1, 2m0 and

hence G{2m*~ι) exists and is continuous in (α, 6). Also since / e

for xeE, GeSΪmQ+2(xμ). Hence by Lemma 2.2

lim sup ω2 +1(G; xμ, h) ^ lim inf ω2 +ί(G; xμ, h)
h0+ λ > 0

where ω is the function as defined in (2.3) with n = 2mQf xQ = xμ. But
by Lemma 3.2, 2m0, since D2m°G is maximum at xμ,

lim sup ω2 +1(G; xμ, h) <: 0 ^ lim inf ω2 +ί(G; xμ, h)

and hence

lim inf ω2mQ+1(G; xμ, h) = 0

lim inf ω2mo+1(/; αĵ , h) = μ .

Thus for each μ sufficiently near to p there exists xμeE and for
different μ the points xμ are also different. This contradicts the fact
that E is enumerable.

To complete the proof, consider, for arbitrary ε > 0, the function
gε where

*.v~, , v~, • - ^ ^ + 2 ) ;

Then by the above special case, D2m°gε is convex in (a, b) and since ε
is arbitrary, D2m°f is convex in (α, δ), completing the proof.

Proof of Theorem 3.1, 2 (mo + l) . To prove the theorem we remark
that under the hypotheses, if D2m°f is continuous in an interval (a, β) c
(α, δ), then by Lemma 3.1, 2m0, f^^-^ exists and is continuous in (α, β)
and so by Lemma 7 of [18], D2m°f is the continuous ordinary deriva-
tive / ( 2 m o ) in (a, β). Hence applying the mean value property it can
be shown that D2(f{2mG)) ^ D2mo+2f and that /(2m°> e Jf(a?) if fe St^^x)
for points in (α, /S) and so by Lemma 2.4, / ( 2 w o ) is convex in (a, β).

Let U be the set of all points x in (α, δ) such that there is a
neighborhood of x in which D2m°f is continuous. Then U is open.
Let (α, β) be any component interval of U. Then Z)2w°/ is continuous
in (a, β) and so by the above remark D2m°f is convex in (α, β). Hence
lime-e+ D2m°f(x) and l i m ^ . D2m°f(x) exist and by the property &r9

D2m°f is continuous in [a, β] Π (a, δ). Let P = (α, δ) - Z7. Then P is
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closed in (α, δ). Since D2m°f is continuous in the closure (relative to
(α, δ)) of each component interval of U, P is perfect in (α, b). If
possible, suppose that P Φ 0. Then there is [c, d] c (α, b) such that
[c, d] Π Pis a nonvoid perfect set. Since D2lcfe& in (α, 6), there is
a portion of [c, d] Π P, say, i ί = [α0, δ0] Π P on which D2kf/H is con-
tinuous for each kf 0 ^ k ^ mQ. It can be shown, as in Theorem
4.1, 2(mo + l) of [8] that Z)2m°/ is upper semicontinuous in [α0, δ0].
Hence there is M such that D2m°f(x) ^ Λf for xe[a0, b0]. Since the
theorem is true for m = m0, the function i^(^) = Mx2/2 — D2m°~2f(x)
is convex in (α0, δ0). Choose au bu such that α0 < ax < δx < b0 and
PΠ (αlf δj Φ 0. Then by Lemma 3.16 of [19, I, p. 328], D2F exists
almost everywhere in (α0, b0) and is .S^-integrable in [alf δj. Since F
is continuous, ί)2^7 = M — D2m°/holds whenever D 2 F exists and hence
D2W0/ is ^-integrable in [au δj. So, by Lemma 3.5, 2m0, D2m°f is
convex in (alf δ^. Hence D2m°f is continuous in (alf bx). This contra-
dicts the fact that (alf bx) ^ P Φ 0. Hence P = 0 and so D?m°/ is
continuous in (α, δ). Hence by our earlier remark D2m°f is convex in
(a, δ). The rest follows from Lemma 3.1, 2m0 and Lemma 7 of [18].
This completes the proof of the theorem for m = m0 + 1.

Thus the theorem is true for all m and so henceforth we shall
omit 2m in refer ing to this theorem. The usual extension of the
above theorem is the following

THEOREM 3.2. Suppose that
( i ) f is continuous in [a, δ],
(ii) D2m~2f exists and D2kfe &r Π & in (a,b), 0 ^ k ^ m - 1,
(iii) D2mf^ 0 a.e. in (α, δ),
(iv) D2mf> -co, except on an enumerable set Ed (a, δ),

(v) /eJfm(α0, /or α e # .
Tfcβ̂  D2m~2f is convex in (α, δ) α^d D2m~2f is the continuous deriva-
tive f{2m~2) in (a, δ).

This can be proved from Theorem 3.1 by using standard argument
used to prove Theorem 1.1 of [5] or Theorem 16 of [1] and so we
omit it.

REMARK 3.1. The property D2kfe ^r for 0 <; k g m - 1, in the
above theorem plays an important role. For, consider the function /
where

lx\

Then D2f exists everywhere but D2f g £&+ Also / satisfies all the other
conditions of the above theorem and D4f — 0 everywhere; but D2f is
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neither convex nor concave in any interval including 0.

REMARK 3.2. The above example shows that if D2mf replaces
D2mf in the hypotheses (iii) and (iv) of the above theorem and if in
(v) smoothness of / of order 2m is assumed everywhere, then even
under this stronger conditions the theorem is false without the property

4* (2m + l)-convex f unctions. Now it is natural to ask whether
the analogous results hold for odd order derivatives. In [8], it is
indicated that the proof of Theorem 4.1, 3 of [8] was similar to that
of a theorem of Saks [14]. But Saks used the lower derivate Dzf and
not JD3/ and so the induction on m in [8] ensures the validity of
Theorem 4.1, 2m + 1 of [8], provided D2m+1f is replaced by D2m+1f in
its hypotheses. But if in the hypotheses of Theorem 4.1, 2m + 1 of
[8], D2m+1f is replaced by D2m+ιf then this new theorem is only a
consequence of Theorem 4.1, 2(m + 1) of [8] for the integrated func-
tion. The proof of Theorem 4.1, 2m + 1 of [8] is thus incomplete.
We complete the proof in the following more general theorem.

THEOREM 4.1. Suppose that
( i ) f is continuous in [α, 6],
(ii) D2™-1/ exists and D2k+1fe & Π & in (α, 6), 0 ^ k ^ m - 1,
(iii) S2m+1/:> 0 in (α, 6), except on an enumerable set E a (a, b),
(iv) fe<9ξm+1(x) for xeE.

Then D2™'1/ is convex in (α, b) and it is the continuous derivative
f{2m~1] in (α, 6).

The proof is similar to that of Theorem 3.1. It is necessary to
prove this theorem for m — 1 and to do this, Lemmas 4.1, 1, 4.2, 1,
4.4, 1, 4.5,1, which are analogous to Lemmas 3.1, 2m0, 3.2,2m0, 3.4,2m0,
3.5, 2m0, will be needed. The proofs of Lemmas 4.2, 1 and 4.5, 1 are
similar to those of Lemmas 3.2, 2m0 and 3.5, 2m0 respectively. In
proving Lemma 4.1, 1 one is to appeal to a result of [12] instead of
assuming Theorem 3.1, 2m0 as it was done in Lemma 3.1, 2m0 and in
proving Lemma 4.4, 1 one is to notice that since DιG e 3$, by the
same result of [12], ΌιG has mean value property and hence for any
h there is ζ, x0 — h < ξ < x0 + h, such that

h2θz{G) xOt h) = 3! φ Ό ί ί ) - D'GiXo)} £ 0

giving D3G(x0) <; 0. The proof of Theorem 4.1 for m = 1 will now
follow the same line of argument as in Theorem 3.1, 2(m0 + 1). The
^-integrability of D1/ will follow from the fact that F(x) = Mx —
f(x) is nondecreasing in [α0, δ0], [12] and M — D'fis the derivative of
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F where it exists. Proving the above theorem for m — 1 and sup-
posing it to be true for m = m0, all the lemmas beginning 4.1, 2mQ + 1
through 4.5, 2m0 + 1 can be proved and the proof of the theorem
for m = m0 + 1 can be completed. We remark that an analogue of
Theorem 3.2 is also true in this case.

5* The P2 m-integraL We now come to the definition of the
integral. We must show that the definition of major and minor func-
tions, as introduced earlier, actually helps to obtain a proper definition
of the integral. For, because of the presence of the exceptional set
E in condition (v) and (vi) of the definition of major function we
cannot apply directly Theorem 3.2 to prove that Q — q is a 2m-convex
function for arbitrary major and minor functions Q and q respectively.
(As the definition of the P2m-integral in [9] and that of the P2-integral
in [7] are also affected by the exceptional sets S and EQ respectively,
(see [9] and [7]) they would also need this clarification; but the
definition of the P2-integral in [6] is not affected since the smoothness
of major and minor functions is assumed everywhere). We shall
follow the method adopted in [15].

LEMMA 5.1. Given ε0 > 0 and x o e(α, b) there is a major func-
tion Q for the function t(x) = 0 such that

( i ) Q(2m~2> is continuous in [a, b],
(ii) D2Q{2m~2) ^ 0 in (a, 6),
(iii) lim M2(Q(2w-2); χOf h) > 0, lim hθ2(Q{2m~2); x, h) = 0, for x Φ x0,

(iv) | 5 2 - 2 ) | ^ ε 0 in (α, 6),
( v ) I hθ2(Q{2m-?); x,h)\<> "ε<>, for x Φ x 0 , and x , x ± h e (a, b).

Proof. Let g be the function such that

g(x0) = 0 , g(ά) = — min |^o(#o - α), ε° j ,

and g is linear and continuous in each of the interval [a, x0] and [xQ, b]
and let G be the (2m — 2)th indefinite integral of g in [α, b]. Then
the function Q defined by

Q(x) = G(x) - Σ X(x; a%)G{a%)

satisfies the requirements, where

<5.1) λ(x; at) = Π ^ , α = a, < a2 < < a2m = b .
gi at - as
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LEMMA 5.2. If Q is a major function of f and e > 0, then there
is a major function Qε such that

I D2m~2Qε - D2m~2Q I ^ ε , D2mQε > - co , in (a,b) .

Proof. Let ^ , #2, , xkf be an enumeration of the exceptional
set Ea (a, 6), where D2mQ = — oo holds. For each positive integer &,
let JF7* be the major function obtained from Lemma 5.1 with ε0 and
x0 replaced by ε/2k and xk respectively. Set

Ψ(x) - Σ Fl2m-2\x) , F(x) = Σ Fk{x) .

The first series being uniformly and absolutely convergent, Ψ is
continuous and Ψ = F{2m~2). By the mean value property there is η,
0 < rj < 1, such that

β2m(F; x, h) = Θ2(Ψ; x, ηh) = Σ Θ%{F?»-*>; x, ηh)
fc = l

and since by (i), (ii) of Lemma 5.1 and by Theorem 3.1, each F[

k

2m~2>

is convex in (α, 6), D2mF ^ 0 in (α, b). Also, for &< e JS/, the series
Σk=i+ihθ2(Fk2m~2); Xi, h) is uniformly and absolutely convergent with
respect to h and hence

lim hθ2m(F; xiy h) = lim Λ^2(r xif h)

h k

Now set

Q.(x) = Q(x) + F(x) .

Then if x^E,

lim hθ2n(Qε; xu h) = lim hθ2m(F; xif h) > 0

and hence D2mQt(xt) = oo. Clearly Qε is a major function o f / a n d by
construction | D2m~2Qε ~ D2m~2Q \ ̂  e.

LEMMA 5.3. If Q and q are any major and minor functions
then Q — q is 2m-convex.

Proof. By Lemma 5.2, for each positive integer n there is a
major function Qn and a minor function qn such that
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(5.2) I D2m~2Qn - D2m~2Q I ^ — , D2mQn > - oo , in (α, b)
n ~~

and a similar relation for qn holds. Hence D2m[Qn — qn] ^ 0 a.e. in

(α, b) and D2m[Qn - qn]> -oo in (α, 6). Since D2kQn e ^ and D2kqn e

^ 7 we have D2fc[Qπ - <?J e ^ " and hence D2k[Qn - g j e &, for each
A, 0 £ k ^ m - 1, [13]. So, by Theorem 3.2 D2m'2[Qn - g j is convex
in (α, 6) and hence by (5.2) and a relation for qn, D2m~2[Q — q] is
convex in (α, b) and so the result follows.

Lemma 5.3 gives the analogue of Lemma 5.1 of [8]. Once this
lemma is proved all the subsequent results of [8] can be deduced with
this definition of major and minor functions. The definition of P 2 m -
integral thus obtained remains valid and all the results of [8] except
Theorem 5.4 of [8] are true. We state Theorem 5.4 of [8] in our
setting whose proof is similar to that in [8]

THEOREM 5.1. If G is such that
( i ) G is continuous in [a, b],
(ii) D2m~2G exists and D2kG e & Π ̂  in (a, b), 0 £ k <: m - 1,
(iii) D2mG exists a.e. in (α, 6),
(iv) — oo < D2mG ^ D2mG < °o, except on an enumerable set Ed

(a, b),
(v) G is smooth of order 2m on E,

then D2mG is P2m-integrable over (a^ x), where a ^ ax < a2 < <
a2m ^ 6, and if ar ĝ x < ar+1, then

(-1)' Γ f(t)d2mt = G(x) - Σ λ.(«; «.)<?(«.)
J(oί) i=l

where λ is ίΛ,e function defined in (5.1).

6. The P2 m + 1-integraL The definition of P2w+1-integral can be
obtained from the P2m+1-major and minor functions in the same manner
as in the case of P2m-integral. The PMntegral i.e., P2w+1-integral for
m = 0 is not defined in [8]. Theorem 3 of [12] shows that the defini-
tion of PMntegral is also valid and so the definition of symmetric
PMntegral is valid for all n ^ 1.

7. The unsymmetxic PMntegraL The unsymmetric Pw-integral
as defined in [8] is not affected by Lemma 5.1 of [8]. We state here
the conditions to be satisfied by an unsymmetric P%-major function Q
of the function / in our improved setting:

( i ) Q is continuous in [α, 6],
(ii) Q{n-D exists in (α, 6),
(iii) Q(αέ) = 0, 1 ^ i ^ n,

(iv) Φu) ^ / a.e. in (α, 6),
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(v) Q(n) > — oo, except on an enumerable set Ed (a, b).
It is easy to verify that for any major and minor function, Q and qr

the difference Q — q is ^-convex. The definition of the unsymmetric
Pw-integral now follows that of the symmetric PMntegral. For differ-
ent approach we refer to [2, 3].

8* Application to trigonometric series* Now we shall show that
the results of [9] remain true with this definition of the P2m-integral.
For the notations Ak(x), Bt{x) and the upper and the lower (C, k) sums
Sk(x) and sk(x), which we shall use here, we refer to [9] (see also [19,
I, pp. 74-77]).

THEOREM 8.1. (Gf. Theorem 6.2 of [9].) Suppose that the series

1 °°

(8.1) —α0 + Σ (an cos nx + bn sin nx)
2 »=i

is summable (C, k) almost everywhere to a finite function f on [0, 2π]
and let

(8.2) - oo < sk(x) ^ Sk(x) < oo ,

except on an enumerable set in [0, 2π]. If for xe[0, 2π]

(8.3) Ak

n-\x) = o{nk) , Bk

n-\x) = o(nk) ,

as n—* oo, then f(x), /(x)cosrx, /(x)sinrx, are Pk+2-integrable over
{at) x) and the coefficients of (8.1) are given by

(8.4) ar = k^
k

 k+2 \ f(x) cos rx

(8.5) br = fe+1

fc

fc+2 I /(») sin rx

where

X f{ r

 ίf k is even

if k is odd .

Proof. Since (8.1) is summable (C, k), the series obtained by-
integrating (8.1) term by term k + 2 times converges uniformly to a
continuous function F and

an = o(nk) , bn = o(nk) ,
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as n—> oo, (see [18]) and hence F is smooth of order k + 2 (see [9,
Theorem 3.1]). Since the once-integrated series of (8.1) is also sum-
mable (C, k — 1) a.e. in [0, 2π] (see [11]), F is smooth of order k + 1;
hence by Lemma 2.1, 2^, exists and by Lemma 6 of [18], F{i)e&
in (0, 2π) for 0 ^ i <, k. By [18, Theorem B] we get from (8.2)

- c o < Dk+2F(x) ^ Dk+2F{%) < oo

except on an enumerable set and Dk+2F(x) = fix) a.e. in (0, 2π). So,
by Theorem 5.1, / is P&+2-integrable over (a,; sc). The proofs that
f(x) cos rx and /(#) sin rx are also Pfc+2-integrable and that the coeffi-
cients of (8.1) are given by (8.4) and (8.5) are similar to those given
in [9, Theorem 4.2 and its corollary].
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