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MEASURABLE UNIFORM SPACES

ZDENEK FROLIK

A uniform space is called ^"measurable if the pointwise
limit of any sequence of uniformly continuous functions (real
valued) is uniformly continuous. A uniform space is called
measurable if the pointwise limit of any sequence of uniformly
continuous mappings into any metric space is uniformly con-
tinuous.

It is shown that measurable spaces are just metric-fine
spaces with the property that the cozero sets form a σ-algebra,
or just hereditarily metric-fine spaces.

Metric-fine spaces seem to form a very useful class of spaces;
they were introduced by Hager [5], and studied recently by Rice [7]
and the author [2], [3]. Separable measurable spaces are studied in
Hager [6].

The notation and terminology of Cech [1] is used throughout; for
very special terms see Frolik [2], The main result of the author's
[3] is assumed, and [4] may help to understand the motivation.

If X is a uniform space we denote by coz X, zX or BaX accord-
ingly the cozero sets in X (i.e., the sets coz/ = {x \fx Φ 0} where / is
a uniformly continuous function), or the zero sets in X (i.e., the
complements of the cozero sets), or the smallest σ-algebra which
contains coz X (equivalently: zX). Since any uniform cover is realized
by a mapping into a metric space, the completely coz-additive uniform
covers form a basis for the uniformity. Completely coz-additive
means that the union of each subfamily is a cozero set.

If X is a uniform space then eX is the set X endowed with the
uniformity having the countable uniform covers of X for a basis of
uniform covers; eX is a reflection of X in the class of separable
uniform spaces (i.e., in spaces Y with eY = Y).

We denote by a the usual coreflection into fine uniform spaces.
Recall that aX is the set X endowed with the finest uniformity which
is topologically equivalent to the uniformity of X. The first theorem
is a version of a simple classical result on measurable functions. The
equivalence of Conditions 1-5 appears in Hager [6]. This theorem
is repeatedly used in the sequel, and therefore an economical proof
is furnished.

THEOREM 1. Each of the following conditions is necessary and
sufficient for a uniform space X to be ^0-measurable.

1. eX is ^Q-measurable.
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2. coz X = zX — BaX, and every countable partition ranging in
BaX is a uniform cover.

3. Each countable partition ranging in BaX is uniform.
4. The countable partitions ranging in BaX form a basis for

uniform covers of eX.
5. A function f:X-+R is uniformly continuous if (and only

if) the preimages of open sets are the Baire sets in X.

Proof. It follows immediately from the definition that Condition
1 is necessary and sufficient. Condition 5 implies that X is y$o-measur-
able by the classical result that measurable functions are closed under
the operation of taking pointwise limits of sequences ("only if" in
Condition 5 is always satisfied). We shall check that each of the
Conditions 1-4 implies the subsequent one. Two implications are almost
self-evident; namely 2 implies 3, and for 3 implies 4 we must just
recall that eX always has a basis consisting of countable covers ranging
in coz X(BaX).

Condition 4 implies Condition 5, because if /is Baire measurable,
and if ^ is any countable open cover of R, then f~ι\^f\ is refined
by a countable partition ranging in BaX.

It remains to show that Condition 1 implies Condition 2. Assume
1. If G is a cozero set, and if / ^ 0 is a uniformly continuous function
with G = coz/, then the characteristic ( = indicator) function g of G
is a pointwise limit of the uniformly continuous functions

fn = min(l, m /) ,

and hence g is uniformly continuous by 1. Hence coz X = zX, and
hence coz X is a σ-algebra, and hence coz X = BaX. Now let {Bn} be
a partition ranging in BaX. Let fn be the n multiple of the char-
acteristic function of Bn. The limit g of uniformly continuous functions
Σ {Λ I w ̂  k} realizes {J5J in the sense that {Bn} = g'ι[U\ for some
uniform cover U of R. This concludes the proof.

THEOREM 2. For each uniform space X let M#0X be the under-
lying set of X endowed with the uniformity having for a basis of
uniform covers the covers of the following form:

(*) {Bn Π Ua I n e N, a e A}

where {Ua} is a uniform cover of X, and {Bn} is a partition of X
ranging in BaX.

Then:
1. eM#0X has for a basis of uniform covers the countable parti-

tions ranging in BaX.
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2. Mχ0X is the meet of X and M#oeX.
3. MχQX is a coreflection of X in the category of ^-measurable

spaces.

Proof. 1. The partitions {Bn} are uniform because the cover (*)
refines {Bn}. If {Vk} is a countable uniform cover of M#0X, take a
cover of the form (*) which refines {Vk}; we may and shall assume
that the union of any subfamily of {Ua} belongs to cozX. Put

= Bnn\J{Ua\Bnf)Uac:Vk}.

Clearly {Ckn} is a countable cover which ranges in BaX and refines
{Vk}. Now take any partition which refines {Cnk}. This concludes the
proof of 1.

2. The assertion 2 follows from 1.
3. Every M#oX is y$0-measurable by Theorem 1 because obviously

BaM^X = coz M^X = BaX .

Let / be a uniformly continuous mapping of an ̂ -measurable space Y
into X. We must show that the mapping /: Y—> M#QX is uniformly
continuous. Taking in account the description of M*0X, it is enough
to show that the preimage under / of any partition {Bn} ranging in
BaX is a uniform cover of Y, and this follows from Theorem 1
because /: Γ—>X is self-evidently "Baire measurable".

THEOREM 3. The sumsf quotients and subspaces of ^-measur-
able spaces are #0~measurable.

Proof. This follows immediately from Theorem 1.

REMARK. Theorem 3 implies by a purely categorical argument
that ^measurable spaces form a coreflective category, and also the
coreflectivity of ^-measurable spaces (established in Theorem 2) implies
that the sums and the quotients of ^o-measurable spaces are ̂ 0 -
measurable, again by a purely categorial argument.

For separable uniform spaces the next theorem is Hager [6, 6.5].

THEOREM 4. Each of the following two conditions is necessary
and sufficient for a uniform space X to be #0-measurable:

(1) Every uniformly continuous function on X factorizes through
M*0R.

(2) Every uniformly continuous mapping of X into a separable
metrizable space S factorizes through M#QS.
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Proof. Since M#o is a functor Condition (2) is necessary, and
clearly (2) implies (1). Condition (1) implies immediately that the
pointwise limit of uniformly continuous functions is uniformly con-
tinuous.

For the next result we need to recall further definitions. A
uniform space X is called metric-fine if for every uniformly continuous
mapping / of X into a metric space M the mapping /: X —> aM (see
introduction) is uniformly continuous. A uniform space is called
(separable metric)-fine if the condition is fulfilled for f's into separable
ikf's. For properties of metric-fine and (separable metric)-fine spaces
we refer to Frolίk [3]; Hager [5] is a good reference, but it is not
enough for our purpose. We need the following description of the
coreflections mNoX and mX of a uniform space X in (separable metric)-
fine or metric-fine spaces respectively (see Frolίk [3, Theorems 1 and 3]:

The covers of the form

{UaΠBn\aeA,neN}

form a basis for nbχ0X, and the covers

{U:nBn\neN,ae An}

form a basis for the uniform covers of mX, where {Ua \ a e A},
{Ua I a e An] are uniform covers of X, and {Bn} is a cover of X by
elements of coz X; in addition we may assume that all covers are
completely coz X-additive.

We also need to know that

emX = em^0X = meX = m#oeX .

A uniform space X is called inversion-closed if the set U(X) of
all uniformly continuous functions is inversion-closed, and this means,
that if fe U{X) and fx Φ 0 for all xeX, then 1// is uniformly con-
tinuous.

If X is (separable metric)-fine then X is inversion-closed; this is
obvious.

LEMMA 1. Let Y be an inversion-closed subspace of a uniform
space X. For each zero set Z c X — Y there exists a zero set Z'' z>Y
such that Zf Π Z — φ. Hence, if Y is a cozero set in X, then Y is
a zero set.

Proof. Take a nonnegative function / in U(X) such that Z =
{x I fx = 0}, and let g be the inversion of the restriction of / to Y.
Take a uniformly continuous pseudometric d on Y such that / is
uniformly continuous on (X, d), and g is uniformly continuous on the
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subspace Y of (X, d). The function g extends to a uniformly con-
tinuous function gf on the closure Z' of X in <X, d); Zf is a zero set
in <X, d), hence in X. We shall check that Z' n Z = φ; iί zeZ'0 Z,
then fz = 0, and a sequence {?/„} in Y converges to z; in (X, d)9 since
fz = 0 necessarily fyn —> 0; hence the value of the extended g should
be oo g iί, and this contradiction proves the lemma.

REMARK. In the proof of Lemma 1 we used the following simple
but useful proposition:

If 7 c X, M is metric, and g: Y~+M is uniformly continuous,
then there is a uniformly continuous pseudometric d on X (X!) such
that g is uniformly continuous on <Y, d). (Proof. For each n, let
%» be a uniform cover of X such that the trace of un on F refines
the inverse image under g of the 1/w-cover of M. Arrange it so that
un+1 star-refines un for each n, and let d be the pseudometric asso-
ciated with the sequence {un}.) The existence of the d in the proof
of Lemma 1 now follows. We note that the proposition implies that
if YaX and g: Y —» B is uniformly continuous, then g has a continuous
extension over X: Choose d as above, extend g over the d-closure of
Y by uniform continuity, then over all a X by the Tietze-Urysohn
Theorem. (If g is bounded, there is a uniformly continuous extension
by Katetov's well known theorem.)

THEOREM 5. The following properties of a uniform space X are
equivalent:

1. X is ^0-measurable.
2. X is hereditarily (separable metric)-fine.
3. X is (separable metric)~fine, and each subspace is inversion-

closed.
4. X is (separable metric)-fine, and each cozero subspace of X

is inversion-closed.

Proof. Since ^-measurable is hereditary and implies (separable
metric)-fine, Condition 1 implies Condition 2. Next (separable metric)-
fine implies inversion-closed, and hence Condition 2 implies Condition 3.
Self-evidently Condition 3 implies Condition 4. It remains to show
that Condition 4 implies Condition 1. Assume 4. By Lemma 1 we get
coz X = zX, hence coz X = BaX. As is noted above, since X is
(separable metric)-fine, this implies that X is %0-measursible.

REMARK. For separable spaces, the equivalence of 1 and 2 in
Theorem 5 is in Hager [5, 4.2]. We are in a good position to derive several
results which are not needed in the sequel, but may help the reader
to get better understanding of the spaces used. Again for separable
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spaces, Propositions 1, 2, 3 and the corollaries appear in Hager [5].

PROPOSITION 1. The following properties of a subs pace Y of a
{separable metric)-fine space X are equivalent:

1. Y is inversion-closed.
2. Y is (separable metric)-fine.
3. If GZDY is a cozero set, then YaZ<z.G for some zero set Z.

Proof. By Lemma 1 Condition 1 implies Condition 3, and obviously
Condition 2 implies Condition 1. The remaining implication is obtained
as follows: If {Un} is a countable cover of Y by cozero sets in Y,
then we can take cozero sets Gn in X such that Gn Π Y = Unf and apply
Lemma 1 to Y, the complement Z of U {Gn}> and to X. Let Gf be
the complement of Z'. Clearly all Gn together with G' form a count-
able cover of X, which consists of cozero sets in X, hence form a
uniform cover of X. The {Un} is just the trace of the cover on Y.

COROLLARY. // YaX, then m#0Y is a subspace of m^QX if and
only if Condition 3 of Proposition 1 holds.

The following Proposition 2 is a corollary to Corollary.

PROPOSITION 2. Let Y be a dense subspace of a uniform space
X. Then m#QY is a subspace of m^0X if and only if Y is Gδ-dense
in X (i.e., X — Y contains no nonvoid Gδ-set, or equivalently, no non-
void zero set).

Finally:

PROPOSITION 3. Let K be a compactification of a topological
space X (completely regular). The following properties are equivalent:

1. K is the Samuel compactification of some metric-fine uni-
formity on X.

2. K is the Samuel compactification of some inversion-closed
uniformity on X.

3. If G is a cozero set in K, XaGaK, then Kis a Cech-Stone
compactification of G.

Proof. Since every metric-fine uniformity is inversion-closed,
Condition 1 implies Condition 2. Assume Condition 2, and let g be a
bounded continuous function on Gz> X, G being a cozero set in K.
Pick up a bounded nonnegative continuous function / on K such that
G = coz /. The function /• g on G extends to a continuous function h
on K; indeed, put hx = 0 for x in K — G. Thus the restriction of g
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to X is the ration of two uniformly continuous functions, namely

gx = hx/fx ,

hence is uniformly continuous, and hence extends to K.

Assume Condition 3, and let us consider the (separable metric)-fine
coreflection of the relativization of the uniformity of K to X. We
must show that every uniformly continuous bounded function / extends
to K, and in view of Condition 3, it is enough to extend / to a cozero
set G z> X. Take a countable base {Un) for R and extend each Un to
& cozero set Gn in R; let G be the union of all Gn. Clearly / is
uniformly continuous with respect to the relativization of the fine
uniformity of G to X, and hence / extends to a continuous function
on G. This completes the proof.

COROLLARY. The Samuel eompactification of a uniform space X
enjoys the properties in Proposition 3 if and only ifmXis proximally
equivalent to X.

For more results on rings of uniformly continuous functions we
refer to Hager [5].

Now we proceed to measurable spaces which seem to be quite
interesting. The first result is a characterization of measurable spaces
which will be used to describe the coreflection into measurable spaces,
and which connects immediately the theory of measurable spaces with
the theory of metric-fine spaces.

THEOREM 6. A uniform space X is measurable if and only if for
•any sequence {{Ua \ a e An}} of uniform covers of X, and for any
partition {Bn} of X ranging in BaX the cover

<*) {Bnf)U?\neN,aeAn}

is uniform.

Proof. First assume that X is measurable, and let (*) be given.
We shall realize (*) by a uniformly continuous mapping g into a metric
space Y.

Since X is ^-measurable, for each n the cover

Tn = {BknUa
n\keN,aeAn}

is uniform, and hence there exists a uniformly continuous mapping
/ of X into a metric space <M, d), which realizes all 71- We may
,and shall assume that d ̂  1, and the preimage of the 1/%-cover of
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<Λf, d) under / refines Tk for k ^ n. In particular, the preimage of
the 1-cover of M, d refines {Bk}. Hence Ck = f[Bk] form a uniformly
discrete partition of <M, d). Now let Y be the set N x M endowed
with a metric D defined as follows:

D((n, y), <m, z}) = 1 if n Φ m ,

= min (1, n.d(y, z)) if n = m .

If we put d% = min (1, w.ώ), then ώ% is a metric for Λf uniformly
equivalent to d, and

Λ = {y > <n, y)}: <M, dTO> > (Y, D)

is metric preserving (hence uniform embedding).
Define a sequence {hn} of uniformly continuous mappings of M

into Y, and a mapping h:M—>Y (which will not be uniformly con-
tinuous in general) as follows:

gy = (n, y) for y in Cn ,

QnV = (k, y) for y in Ck with k <: n ,

= <w, 2/) for 2/ in Cfe with k^n .

The mappings gn:M—>Y are uniformly continuous, because

#„ = Jk on I?* with k < n

9n = J« on U {Bk I fc ̂  ^} .

For each y in M the sequence {#„#} is eventually constant and converges
to gy, namely if yeCk then gny = #2/ for n^ k.

Now let h^gof, hn = gnof. The mappings Λw are uniformly
continuous, and hence h is uniformly continuous because {hn} converges
point wise to h and X is measurable.

It is easy to check that the preimage of the 1-cover^ of Y under
h refines our given cover (*). Indeed,

h-'ln xM]= /-ι[CJ - Bn ,

and if U is the open sphere of radius 1 centered at a point (n, y),
then Uan x M and V = Jΰ^U] is the open sphere of radius 1 in
(M, dn) centered at y, and hence V is the sphere of radius 1/n in
(M, d) centered at y, and hence/"^F] is contained in some Ua Thus

is contained in Z7*, and since Uan x M,

h

This concludes the proof.
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Now assume the condition, and let {fn} be a sequence of uniformly
continuous mappings of X into a metric space M, which pointwise
converges to a mapping f: X—+ M. We must show that /: X-^Mis
uniformly continuous. For each positive number r, and for each n
consider the set

Br

n = {x I d(fkx, fx) ^ r f or k, h ^ n) .

Thus d(fx, fix) <£ r for a? e Br

n1 l^>n. Clearly the union of the
sequence {Br

n} is X for each r, and each Br

n belongs to BaX. Now
given any positive number ε choose a uniform cover {U? \ a e An} such
that the diameter of /*[£/?] is less than 1/3 ε for each α in An. Finally
put

Bn = Br

n — Br

n^

with r = l/3ε. Clearly the diameter of each f[Bn Π Ϊ7*] is at most ε.
By our assumption {j?n Π £7?} is a uniform cover, and hence / is
uniformly continuous. This concludes the proof.

THEOREM 7. The sums, subspaces and quotients of measurable
spaces are measurable.

Proof. By a routine argument from Theorem 6.

THEOREM 8. The following conditions on a uniform space X are
equivalent:

1. X is measurable.
2. X is #Q~measurable and metric-fine.
3. X is hereditarily {separable-metricYfine and metric-fine.
4. X is hereditarily metric-fine (i.e., each subspace of X is

metric-fine).

Proof. If we compare the characterization of metric-fine spaces
recalled above and Theorem 6 we see that Conditions 1 and 2 are
equivalent. Conditions 2 and 3 are equivalent by Theorem 5. Finally,
obviously Condition 4 implies Condition 3, and is implied by Condition
1 because measurable spaces are hereditary.

It follows from Theorem 7 that measurable spaces are cor effective.
Now we shall describe a coreflection measurable spaces and get as a
byproduct that measurable spaces are coreflective.

THEOREM 8. For every uniform space X let MX be the set X
endowed with the uniformity having for a basis of uniform covers
the covers of the form described in Theorem 6. Then:

1. eMX has for a basis of uniform covers the countable parti-
tions ranging in BaX, and hence eMX is ^0~measurable, and BaX =



102 ZDENEK FROLIK

BaMX.
2. eMX = eM*0X = MeX = M^eX.
3. MX is a coreflection of X in measurable spaces.

Proof. Let {Wk} be a countable cover of MX, and let

be a defining cover which refines {Wk}. We may and shall assume
that {Ua I a e An) are completely coz-additive (such covers form a basis
for every uniform space). Put

It is easily seen that {Ckn} is a countable cover which ranges in
BaX, and {C }̂ refines {Wk}. Thus the countable partitions ranging
in i?αXform a basis for uniform covers of eMX, hence BaX=o,oz MX—
BaMX, hence eMX is ^-measurable. This proves 1.

It follows from 1 and Theorem 2 that eMX = eM#QX, again by
Theorem 2 we have eM#0X — M#QeM. If X is separable then clearly
MX is separable (we may take all {Z7*} in the basis consisting of
countable uniform covers, and then the defining covers are countable),
and hence M^eX = MeX. This concludes the proof of 2.

Every space MX is measurable, because it follows from the defini-
tion of MX and from 1 that MMX = MX, and by Theorem 6 X is
measurable if and only if MX = X. It remains to show that if
/: Z—+X is uniformly continuous and if Z is measurable then /: Z—>
MX are measurable. This follows from Theorem 6, and the definition
of MX. This concludes the proof.

The next result says that the functor M is metrically determined.

THEOREM 9. MX is projectively generated by mappings f: MX—+
MP where f are uniformly continuous mappings of X into metric
spaces P. A uniform space X is measurable if and only if for
each uniformly continuous mapping f of X into a metric space P
the mapping f:X~>MP is uniformly continuous.

Proof. The second assertion follows immediately from the first
one. The first assertion follows from Theorem 8, because any sequence
of uniform covers, and a sequence of Baire sets may be realized in
a metric space by a uniformly continuous mapping. To be sure we
formulate the fact about the realization of Baire sets in a lemma.

LEMMA 2. Let {Bn} be a sequence of Baire sets in a uniform
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space X. Then there exists a uniformly continuous mapping f into
a separable metric space S, and a sequence {Cn} of Baire sets in S
such that f~ι[Cn] = Bn for each n.

Proof. Take a countable collection {Ua \ a e A} of cozero sets in
X such that all Bn belong to the smallest σ-algebra containing all Ua.
We may and shall assume that A = N. Take uniformly continuous
functions fn such that

Un = coz/; ,

and 0 ^ fn <* 1/2*. Then fn are uniformly continuous, and

f:X >RN

has the required properties, where / is the reduced product of {/«},
i.e., fx = {fnx}. This concludes the proof.

The next result describes a nice basis for MX.

THEOREM 10. The space MX has for a basis of uniform covers
the collection of all σ-uniformly discrete (in X) partitions of bounded
class in BaX.

COROLLARY. A space X is measurable if and only if each σ-
uniformly discrete partition of bounded class in BaX is a uniform
cover of X.

We must explain the notion "of bounded class in BaX". We know
that BaX is the smallest σ-algebra which contains coz X (or equiva-
lently, zX). It follows that

BaX =\

where ^ = cozX, ^ = zX, and by induction &a {0ϊ> resp.) is
obtained from U { ^ | β < a}(\J {^ \ β < a}) by taking all countable
intersections (countable unions) or countable unions (countable inter-
sections) according to as a is odd or even.

DEFINITION. A family {Xa} is of bounded class in BaX if {Xa}
ranges in some &a (J &a\ the smallest a is called the class of {Xa}.

Proof of Theorem 10. Let {X; | n e N, a e A} be a (/-discrete par-
tition of bounded class, say a, in BaX. Put Bn = U {XI \ aeAn}.
The sets Bn are of class at most a + 1 because {Xt \ a e An} are uni-
formly discrete. The sets Xl are cozero sets in J5Λ, and they form
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a uniform cover of the subspace Bn of X. By Theorem 6, {X%} is a
uniform cover of MX.

It remains to show that these covers form a basis. By A. H.
Stone Theorem every uniform cover ^ of every uniform space X has
a uniformly σ-discrete refinement IT = \J {Vk}; T is not necessarily
uniform, but it is a uniform cover of MX by Theorem 6 (in fact it
is a uniform cover of mX, which is the coreflection in metric-fine
spaces); indeed put Cn = [J { Tn}> Bn = Cn - \J {Ck \ k < n}. Now if
{Ua ίΊ Bn) is a typical defining cover of MX, we may replace each cover
{Ua \aeA) by a uniformly (in X) σ-discrete cover {Vk\keN}f and
put Bnk = Bnf] V*. Then | J {Bnk Π [ Tk

n]} is a uniformly (in X) σ-
discrete cover of a bounded class which refines {UZΓlBn}. We need
a partition; well order {(n, k)} according to ωQ, and take the differences
as above. This concludes the proof.

In conclusion we show that for mappings of metric-fine (and hence
of measurable) spaces uniform continuity depends on two data only:
Cozero sets and "σ-discreteness". I do not know whether this property
characterizes metric-fine spaces. Recall (we shall not use it) that just
metric-fine proximally fine spaces are completely determined by cozero
sets, see Frolίk [3, Theorem 4]. First let us stress that the only
distinction between metric-fine spaces and measurable ones is in cozero
sets.

THEOREM 11. A uniform space X is measurable if and only if
coz X — BaXy and X is metric-fine.

Proof. This follows immediately from Theorems 1 and 7.

THEOREM 12. Assume that X is metric-fine. A mapping f of
X into a uniform space Y is uniformly continuous if (and obviously,
only if) it enjoys the following properties:

A. The preimages of cozero sets are cozero sets.
B. The preimages of uniformly σ-discrete families are uniformly

σ-discrete.

Proof. Assume that X is metric-fine, and that/: X—• Ysatisfies
Conditions A and B. To prove that /: X—> Y is uniformly continuous
it is enough to show that

h = gof:X >Z

is uniformly continuous for every uniformly continuous mapping g of
Y into a metrizable space Z. If ^ is any uniform cover of Z, then
by the A. H. Stone Theorem we can take a uniformly <7-discrete open
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refinement °Γ = \J { T^} (not necessarily uniform), and the preimage
of T* under h is, in view of Conditions A and B, uniform by Theorem
2 in Frolίk [3], which was recalled just after Theorem 5.

REMARK. M. Rice [7] proved independently that a space X is
hereditarily metric-fine if and only if the condition in Theorem 6 is
satisfied.
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