PACIFIC JOURNAL OF MATHEMATICS
Vol. 55, No. 1, 1974

CHAIN BASED LATTICES

G. EPSTEIN AND A. HORN

In recent years several weakenings of Post algebras
have been studied. Among these have been P, -lattices by
T. Traczyk, Stone lattice of order » by T. Katrinak and
A. Mitschke, and P-algebras by the present authors. Each
of these system is an abstraction from certain aspects of
Post algebras, and no two of them are comparable. In the
present paper, the theory of P,-lattices will be developed
further and two new systems, called P;-lattices and P,-lattices
are introduced. These systems are referred to as chain
based lattices. P,-lattices form the intersection of all three
weakenings mentioned above. While P-algebras and weaker
systems such as L-algebras, Heyting algebras, and B-algebras,
do not require any distinguished chain of elements other
than 0, 1, chain based lattices require such a chain.

Definitions are given in § 1. A P,-lattice is a bounded distributive
lattice A which is generated by its center and a finite subchain con-
taining 0 and 1. Such a subchain is called a chain base for A. The
order of a P,-lattice A is the smallest number of elements in a chain
base of A. In §2, properties of P,-lattices are given which are used
in later sections. If a P,-lattice A is a Heyting algebra, then it is
shown in § 3, that there exists a unique chain base 0 = ¢, < e, < --- <
¢,-, = 1 such that ¢,,,— e, = ¢, forall 1 >0. A P,lattice with such
a chain base is called a P-lattice. Every P,-lattice of order » is a
Stone lattice of order ». If a P.-lattice is pseudo-supplemented then
it is called a P,-lattice. It turns out that P,-lattices of order n are
direct products of finitely many Post algebras whose maximum order
is n. In §4, properties of P,-lattices are studied. In §5, equational
axioms are given for P,lattices. P,-lattices share many of the proper-
ties of Post algebras and have application to computer science. Among
examples of P,-lattices are direct products of finitely many p-rings.
These further remarks on P,-lattices are in §6. In §7, prime ideals
in P,-lattices are studied. It is shown that the order of a P,-lattice
is one more than the number of elements in a chain of prime ideals
of maximum length. A characterization of P,-lattices by properties
of their prime ideals is given. Such a characterization of P,-lattices is
also indicated.

1. DEFINITIONS. We use ¢ for the empty set. Let A be a
distributive lattice which is bounded, that is, has a largest element
1 and a smallest element 0. The dual of A is denoted by A¢ The
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complement of z is denoted by Z or —z. The center of A is the set
B of all complemented elements of A. We use zVy for the join,
and z A ¥ or zy for the meet of two elements ¢, ¥ in A. x—y denotes
the largest z € A (if it exists) such that xzz < y. A is called a Heyting
algebra if x—y exists for all ,ye A. —x =2—0 is called the
pseudo-complement of x (when it exists). An element x is called
dense if —x =0. A is called pseudo-complemented if —x exists
for all xe A. &=y denotes the largest z¢ B such that 2z <y. A4
is called a B-algebra if © =y exists for all z, ycA. lx =1=2x is
called the pseudo-supplement of x. A is called pseudo-supplemented
if lx exists for all x e A.

A Stone lattice is a pseudo-complemented lattice satisfying the
identity —aV ——a = 1. An L-algebra is a Heyting algebra satis-
fying @x—y)V(y—x) =1. A P-algebra is a B-algebra satisfying
(x=y)V (@ =1) =1. We denote the interval {z: z < z < y} by [z, y].
A is an L-algebra if and only if every interval in A is a Stone lattice
[1, 8.11]. The identity z — (¥ V2) = (x—y) V (x — z) is satisfied in
an L-algebra. The identity x = (y V2) = (x =) V (x = 2) is satisfied
in a P-algebra.

2. Pr-lattices. Let A be a bounded distributive lattice and let
B be a Boolean subalgebra of the center of A. A chain base of A
is a finite sequence 0 = ¢, <e¢, < --- < e,_, = 1 such that A is gener-
ated by BU {e, -+, e,_.}. If A has a chain base then A is called a
P,-lattice [13], in which case every element zc A can be written in
the form

n—1

(1) x:__vbiei’

where b, B. If b,=b,,, for all ¢, then (1) is called a monotone
representation (abbreviated mon. rep.) of x. If bb; =0 for ¢ +# j,
then (1) is called a disjoint representation (disj. rep.) of z. Every

element in a P,-lattice has both a mon. rep. and a disj. rep.

LemMMA 2.1. If (1) is @ mon. rep. of x and y = V,ce, is a
mon. rep., then xNVy =VY,0;,Ve)e, and a2y = V,bce, are mon.
reps.

Proof. This follows from the distributivity of A.

The following theorem shows that B must coincide with the
center of the P,-lattice A, and gives a method for constructing
P,-lattices.

THEOREM 2.2. Let A be a bounded distributive lattice. Let
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B be a subalgebra of the center of A and let 0 =¢, < -+ Z e,_, = 1.
If A, is the sublattice generated by B U {e, -+, ¢,_.}, and B, is the
center of A,, then B, = B.

Proof. Let x = V;b,e; be a disj. rep. of an element x€ B,. For
each ¢, b, = be; is in B,. Let V,ce; =0 be a mon. rep. of the
complement of b,e;. Then be; V;ce; =0 implies b,c.e; =0, hence
be, < b,. Alsol=b,e,\ V;cje; implies 1 < e, \V¢;, hence 0,8, < bee,.
Thus b,e, = b,¢, € B for all ¢, and so ze B.

DEFINITION 2.3. A P,lattice A is said to be of order n if n is
the smallest integer such that A has a chain base with n terms.

LEMMA 24. If (A;e, -+, e,y 1s a Prlattice, then (A% e,
cee, ey 18 a Prlattice. A® has the same order as A.

Proof. This is obvious by inspection.

THEOREM 2.5. If (A;e, +++, €,y 18 a Pylattice with center
B and A’ = [e, ¢;], where 1 < j, then {A’;e, -+, e;y is a P,lattice
with center B' = {e,\Vbej:beB}). If e, =f,< -+ <fr1=¢€ 18 @
chain base of A, then e, «++, €,y fo, =+, fresy €541, ***, €ny 1S & ChaIN
base of A. If A has order w, then A’ has order j — i + 1.

Proof. Let x = V3Z!b,e, be a mon. rep. of an element ze A’.

Then
= (e, V) = e,V ) \J/ bie, = 3 V (e V biejley, .
e =13+4+1 =4+1

B’ is clearly a subalgebra of the center of A4’. Therefore by 2.2, B’
is the center of the P,-lattice (A4’;e, ---, e;>. The remaining parts
of the theorem hold because if ¢ < k < j, then ¢, is in the sublattice
genera’ted by B, U {f‘Oy ) fr—l}'

LemMA 2.6. Let A be a bounded distributive lattice with center
B, and x, y, z€ A.

(i) If x—2z and y —z exist, then (x\Vy) —z = (x —2)(y —?).

(ii) If z—2x and z—y exist, then z—xy = (z — x)(z — ¥).

(iii) If x—vy exists, beB and ccB, then br—(cVy)=
bVeV (x—vy).

(iv) If x=2 and y =z exist, then (x\Vy) =2 = (x = 2)(y = 2).

(v) If z=2 and z=1y exist, then z=zy = (2 = 2)(z =1Y).

(vi) If x=1y exists, beB and ccB, then bx=(cVy) =
bVeV(x=1y).
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Proof. The proof is straightforward.

LemmaA 27, If 0, < - Za, and b, = -+ = b,_, are elements
of a distributive lattice, then V7= a;.b; = a,b, A7= (a;V b)).

j=2

Proof. This is easily proved by induction.

THEOREM 2.8. Let (A;e, +--, e,_,) be a Py-lattice with center B.
Then the following are equivalent:

(i) e,=0 exists for all 1.

(ii) —e, exists for all 1.

(iii) A is pseudo-complemented.

(iv) A is a Stone lattice.

(v) Each xe A has a mon. rep. x = Y, be;, such that
b, < ¢, for every mon. rep. x = Y, ce,.

Proof. (i) implies (ii): Let xze, = 0 and suppose © = VY ;bse; is a
mon. rep. of . Then be; = 0 for j < ¢, while if j > 1, then be, =0,
s0 b; < e;,=0. Hence x <¢,=0. Therefore, —e; exists and equals
e, = 0.

(ii) implies (iii): If 2 = V,b,e, is a mon. rep., then by 2.6(i)
and 2.6(iii), —« exists and equals A, (b;\V —e;). If follows from 2.7
that

(2) ~—‘x=?\_751ﬁei_l.

(iii) implies (iv): If z,ye A, then by 2.1 and (2), —(xy) =
—2\V —y. This implies that A is a Stone lattice [8].

(iv) implies (v): If = = V,cee; is any mon. rep., then ¢,z =0,
S0 ¢, < —, hence x < ——x < ¢,. Therefore 2 =VY,;(c;=—x)e;,. If
we set b, = ¢, m— 2, we get a mon. rep. in which b, = —— x.

(v) implies (i): Let ¢, = V;bje; be a mon. rep. of e, having the
property stated in (v). Then be, = 0. If be B and be, = 0, then
e, < b, so e, = V;bbse;. By hypothesis, bb, > b,. Therefore b < b,
and so ¢, =0 = b,.

LEMMA 2.9. If A is a bounded distributive lattice, then A®1is a
Stone lattice if and only if A is pseudo-supplemented and (x 'V y) =
le 1y for all x, ye A.

Proof. It is easily verified that the pseudo-complement of x in
A% is Iz in this case.

THEOREM 2.10. Let (A;e, ---, €,y be a Pylattice. Then the
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Sollowing are equivalent:

(i) lei exists for all 4.

(ii) A s pseudo-supplemented and !(x\ y) =le\Vly for all
x, yeA.

(iii) Each xe A has a mon. rep. Y, b.e, such that b,_,=c,_, for
every mon. rep. x =V, ce,.

Proof. This is derived from 2.8 by using 2.4 and 2.9.

THEOREM 2.11. Let {A;e, -+, e,y be a pseudo-complemented
Prlattice. Then A has a chain base 0 =f,<fi<---=fuu=1
such that f, is the smallest demse element of A. If 0 =g, = -+ =
g, =1 1s any chain base of A such that g, is dense, then g, = f,
and for any mon. rep. x = V= b;g;, we have —x = b,.

Proof. Let f, =0, fi = V=i (—e,_)e, and f;, = e,V f, for i = 2.
By 2, —fi=V.——e_,—e=0 Also f,=¢V Vi€ e .
Therefore f; = — e; = ¢,, since ——e, —¢;_, < ——¢; — e, = 0 for j > 1.
If x = V.be, is any element of A, then 2 = V, (b —— ¢,)f;. Thus
fo +++, faes is a chain base of A. Let g, --+, 9., be a chain base
of A such that g, is dense. If z = V,;b,g; is a mon. rep., then
—x = b, by (2). So if xz is dense, then = g,. Thus g, = f; is the
smallest dense element of A.

3. P-lattices.

THEOREM 3.1. Let {A;e, -+, e,_.) be a Pylattice with center B.
Then the following are equivalent:

(i) e, —e; exists for all 1, j.
(ii) A is a Heyting algebra.
(iii) A is an L algebra.

Proof. (i) implies (ii): If = = V,be; and y = V,c.e; are mon.
reps., then by 2.7, y = A=l (¢; V e,_,). Therefore by 2.6, x — y exists
and equals A.;(b; VeV (e, — e))).

(ii) implies (iii): Let 2 = V,b.e;,, ¥y = VY, c,e; be mon. reps. Then
r—y = A;(be;—y) = Ai(b;VVe). Therefore, (z—y)V({Hy—1a)=
A VeV A,V E)= Aui (b Vb;i Ve, VE) =1 since b, Vb =1
for 2= 7, and ¢;VV&; =1 for ¢ < 7.

(iii) implies (i): This is obvious.

DEFINITION 3.2. A P-lattice (4;¢, -+, ¢, is a P,lattice to-
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gether with a chain base such that e,,,—e¢, = ¢, It follows that
e,—e;=¢e; for 1> 7 and ¢,—e¢; =1 for i < j, so that (i) of 3.1
holds.

THEOREM 3.3. If (A;e, »+-, €,..> s a Py;lattice and A is a
Heyting algebra, then there exists a chain base 0 = f, < +++ < fooi =1
such that {A; fy, «+ -, fu-r is a P-lattice.

Proof. This is obvious for n =1, 2. Suppose = > 2 and the
statement holds for » — 1. By 2.11, we may assume e, is dense.
Let A" =e, 1]. By 2.5,{4’;¢e, +--, ¢,_,> is a P,-lattice. If z, ye 4’,
then z —ye A’. Therefore by the induction hypothesis, there exists
a sequence ¢, = f, < -++ < f,_, =1 such that (A;f, ++, fa_y is a
P-lattice. If we set f, =0, then by 2.5, {(4;f, -+, fa_y IS @ P-
lattice.

THEOREM 3.4. Let {(A;e, ---, e,y be a P,-lattice. Then for
some m=1, 0=¢ <e < <e,,=¢,=---=1. A has order
m. For each 1, e,., is the smallest dense element of [e; 1]. Thus
€, ***, 6u_y S the wunique strictly increasing chain such that
{Aj ey +**y by s @ P-lattice. If x = VI be, is a mon. rep., then
e, Vb =@—e)e, 0=i<n—1. Ifx= Vi be isa disj. rep.,
and y = ViZice, is a mon. rep., then t—y =y V Y= b, where
b, = Azl Z)—iy ¢ =1.

Proof. If m is the first integer such that e, = ¢,_,, then e,_, =
€n— €, = 1. Since e,,, is dense in [e, 1] it follows from 2.5 and
2.11 that e,., is the smallest dense element of [e, 1]. Using 3.3, it
follows that A has order m.

If = Vlbe, is a mon. rep., then Ve, = Vici, (¢; \V bye;.
Applying 2.11 to [e,, 1], we find (x \V e;) — e, = ¢, \V b,,,. Since (zV e,) —
e, = & — e, it follows by 2.6 that (x —e,)—e, =€, Vb,

To prove the last statement, we observe that

n—1 n—1
€—Y = .Vl (6. — cie;) = V0 (e; — ¢ci)(e; — €))
j= Jj=
i—1 n—1 .
=Vee;VVe;=yVe for 12i=n—-1.
j=1 i=1

Therefore,

sy =Abe—v)=AG VeV =yVAGVe)

=1

n—1

= y\/ Yobicz ’
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where the last equality is easily proved by induction.

DEFINITION 3.5. A Stome lattice (A;e, +++, €,_,» of order n is
an L-algebra A in which there exists a chain 0 =¢, <e¢ < :+- <
¢,_, = 1 such that e,., is the smallest dense element of [e, 1]. If
B, is the center of [e, 1], let h;: B, — B,., be the Boolean homomor-
phism defined by h,(x) = 2\ ¢,,,, with B, = B. These definitions are
in [11].

THEOREM 3.6. {(A4;e, +--, €,_,> 1s a P,-lattice of order n, if and
only if (A;e, +--, €,_.) is a Stone lattice of order n such that h; is
onto B,,, for each 1= 0.

Proof. If {A;e, ---, e,_.> is a P,-lattice of order =, then it is
a Stone lattice of order = by 3.4, and %, is onto by 2.5. Conversely,
suppose (A;e, ---, e,_,» is a Stone lattice of order » and h, is onto
B,,, for each ©. Then B, = {bVV e¢;:be B} by 2.5. It was proved in
[11, 8.4], that if xe A, then x = Az, where x,€ B,. Therefore
(A; e, -, e, is a P-lattice.

THEOREM 3.7. If A is a Heyting algebra with center B, 0=¢, =

- <e,.=1 e, ts the smallest dense element of [e; 1], and if

whenever © < J, the center of le,, e;] is {e,\V be;: be B}, then {A;e, -+,
e._y s o P-lattice.

Proof. The point of this theorem is that the condition that A
is an L-algebra is replaced by the condition that A is a Heyting
algebra such that the center of [e¢, e;] is {e;\Vbe;: be B}, for all
1 < 7. We omit details of proof since this theorem is not used in
what follows.

4, Pylattices.

DEFINITION 4.1. x = V! be, is called the highest monotone
representation (hi. mono. rep.) of x if for every mon. rep. Viz! c.e;
of x, the relation b, = ¢, holds for all 7. The lowest monotonic repre-
sentation (lo. mon. rep.) is defined in a similar manner.

THEOREM 4.2. Let {(A4;e, -+, e,_,» be a P-lattice. Then the
Sollowing are equivalent:

(i) e, =e; exists for all 1, j.

(ii) e;—e; and le, exist for all 1, j.

(iii) every xe A has a hi. mon. rep.

(iv) every xe€ A has a lo. mon. rep.
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(v) A is a B-algebra.
(vi) A is a P-algebra.
The hi. mon. rep. of x is V; (e; = x)e;, and the lo. mon. rep. of «

is V. (x=ce;_)e; .

Proof. The equivalence of (i), (v), and (vi) is proved exactly as
in the proof of 3.1. By [7], A is a P-algebra if and only if A is a
pseudo-supplemented L-algebra in which !(xVy)=I!lxVv!y for all
x, ¥y. Therefore, by 3.1 and 2.10, (ii) is equivalent to (vi).

To prove (iii) implies (i), let V,bje; be the hi. mon. rep. of e,.
Then b,,.6,.. <e,. Let beB, be;;,;, <e¢;. Thus ¢V :--Ve Vbe,, is

a mon. rep. of ¢,. Therefore b,., = b, which proves b,,, = ¢,,;, = e,.
Hence if © > 7, e, =e¢; = AlZi (e, = ¢€;.1), and for ¢ < 7, ¢, —¢; = 1.
To prove (vi) implies (iii), let * = V, b,e; be any mon. rep. Then

e, =% =¢ =be,=b,. Also ¢(e;=2x) <. Therefore,
r=V.ele, =)= V. be, =2x.

Thus V,e,(e; = ) is the hi. mon. rep. of z.

The equivalence of (iv) and (vi) is a consequence of the equi-
valence of (iii) and (vi), since the dual of a P-algebra is a P-algebra.
The formula for the lo. mon. rep. is obtained by duality, for if
¢ = V,be, is a mon. rep., then z = A, (b, Ve;,_,).

DEFINITION 4.3. A P,-lattice is a P,-lattice (4;e¢, +**, €,_,) such
that le, exists for all <.

Using 2.2, it is easy to construct a P-lattice which is not a
P,-lattice.

THEOREM 4.4. If {A;e, +--, ...y 18 @ Py-lattice of order n and
A is a B-algebra, then there exists a unique chain f,, +++, fa-r Such
that (A; f,, +++, fa_y 8 a Pylattice.

Proof. This follows from 3.8, 3.4, and 4.2.

THEOREM 4.5. Let {A;e, -, €,_,» be a Pylattice. Then

(i) Ewvery xc A has a unique mon. rep. VY, D,(x)e; such that
D,_(x) = o. This representation is also the hi. mon. rep. of x.

(ii) Every xc€ A has a unique disj. rep. V,C/x)e; such that
C,_.(x) = lz.

(iii) Dy(x) = e¢; =, C,x) = D,(x) — D,.,(z) and for i <m —1,
Ci(@) = (@ = e;)(e; = x) — !(e,).

(iv) Dz Vy) = Dix)V D(y), Di(xy) = D,(x)D(y).

(v) 2=y =Viz C’L(x)'D‘L(y)’ where Do(y) =1 and Co(x) =1-
D,(x).
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Proof. (i) Let x = V;bse; be a mon. rep. such that b,_, = lz.
If i > j, then e, =e; = l(e;—¢;) = le;. Therefore,

€ =T = V (e:=bje;) = Y (e, = bj)(e; = ¢;)
3 J
=V bjle; v VYV b; =b,,
i<i jzi

since ViZible; = lx <b,. We set D(x) =¢, =2 for 0 <1 <n — 1.
By 4.2, the hi. mon. rep. of z is V, D,(x)e;, and D,_,(z) = 1 =z = lz.
(ii) Follows from (i), with C;(x) = D,(x) — D,..(x).
(iii) For0=i<n—1,

v=e,= A (Di)e;=e) = A Dix) V (e; = ¢.)

i i

= />\ (Di(x) V le;) = Dyi(x) Ve,
Therefore (v = e;)(e; = ) = C,(x) \V Dy(x)le;. Since D,(x)le; < e (e; =
z) = «, we have Dy(x)le; < !z = D,_,(x). Hence D,(x)le, = lale, = !(we,).
Also Ci(x)lz = Cy(x)C,_.(x) = 0. Therefore,

Ci(x) = (x = e;)(e; = x) — l(ze)) .

(iv) follows immediately from D,(x) = e, = x.
(v) By 34, 2—y=yV Vi C(x)D,(y). Therefore,

2=y =lyVV C@DW =V CHDW) ,
since Viz Ci(x)D,(y) = D,,(y) Viz Ci(x) = ly.

THEOREM 4.6. The following are equivalent:

(i) <Ase, <+, e, 18 a -P-lattice of order n.

(ii) <Asey ++-, €,y ts a Stone lattice of order m, the homo-
morphisms h; of 3.5 are onto, and the kernel of h, is a principal
ideal for each 1.

(iii) <{A; ey *++, €,y 18 a Stone lattice of order n and A? is a
Stone lattice.

Proof. The equivalence of (i) and (ii) follows from 3.6 and 2.9,
using the fact that the kernel of %, is a principal ideal if and only
if le,,, exists. The equivalence of (ii) and (iii) was proved in [11].

The following is the dual of the definition given in [5].

DEFINITION 4.7. A Post algebra is a P algebra {A4;e, ---, €,_.)
such that le,_, = 0; that is, e, , is dense in A% Note that A has
order =, unless A = {0}.
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THEOREM 4.8. If (A;e, -+, e,_.> is a Py-lattice then the follow-
g are equivalent:

(i) A is a Post algebra.

(ii) every element xc A has a unique mon. rep.

(iii) e;=e,_, =0 for all i > 0.

Proof. This was proved in [13].

LEMMA 4.9. If (Aj; ez, =+, €jm;—1y) s @ P,-lattice for jeJ, where
r=0,1,0r2 A=Tl;4; n =max {n;: jeJ} < o, and e;, is defined
to be €jin; 1y for k> m;, then (Aje, «-+, e,y is a P,-lattice, where
e, = {eirjed).

Proof. This is obvious.

LEmmA 4.10. If {A;e, -+, e,_.) is a Py-lattice, B is a distribu-
tive lattice and f: A— B is a lattice homomorphism onto, then
(B; f(ey), ++*, fea)) is a P-lattice. If (A;e, -+, eay 15 a P-lattice
and f: A— B is a Heyting homomorphism onto, then {(B; f(e), *-+,
fle,_)) is a P-lattice.

Proof. This is easy to verify.

THEOREM 4.11. Let A be a finite distributive lattice then the
following are equivalent:

(i) A is a Pylattice.

(ii) A s a P-algebra.

(iii)) A 7s a direct product of chains.

(iv) A has a chain base e, «--, e,_, such that {A;e, -+, €,_,) s
a Py-lattice.

Proof. (i) implies (ii): Since A is finite, A is a pseudo-supple-
mented Heyting algebra. By 4.2, A is a P-algebra.

(ii) implies (iii) was proved in [7].

(iii) implies (iv): If A is a finite chain 0 = a, < +++ < @py =1,
then (4;a, +--, a,_,» is a Pjlattice. Therefore (iv) follows by 4.9.

(iv) implies (i) is obvious.

A finite chain with » elements has exactly one chain base with
n terms. If (A;e, ++-, e,y and (B;f, -, fuy are Pylattices of
orders n and m respectively, where n < m, then A x B has more
than one chain base. In addition to the chain base described in 4.9,
there is also the chain base (60; fO)i ) (e fm—n); (61; fm—n+1)y (62) frn—ns2)s
<+, (€a_1, fu-1)- These remarks lead to the next theorem.
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THEOREM 4.12. A distributive lattice A is a Post algebra of
order n if and only if A has o unique n-term chain base.

Proof. Let A be a Post algebra of order =, and let e, -+, €,_,
be an m-term chain base. A is a subdirect power of an n element
chain C. If f; = A— C is the jth projection, then by 4.10, fi(e,),
-+, filea—y) is a chain base of C. This determines f;(e¢;) uniquely for
all ¢, j. Therefore ¢, ---, ¢,_, is unique.

Conversely, suppose A has a unique n-term chain base ¢, -, ¢,_;.
We prove A is a Post algebra of order » by induction. This is
obvious for » =1,2. Suppose » > 2 and the statement holds for
#n — 1. By 2.5, [e, 1] has a unique chain base with % — 1 terms.
Therefore, [e, 1] is a Post algebra of order » — 1. This implies ¢,,, =
e, =0 in [e, 1] for ¢ = 1. This implies e;,, —e¢, = 0 in A since the
center of [e, 1] is {b Ve,: be B}, where B is the center of A. By 4.8,
we need only show ¢, =0 = 0. If not, there exists b € B with be, = 0,
b+#0. Let B, ={0,b,b,1}, and let A4, be the sublattice of A gener-
ated by B, U {e, -+, e.—.}. By 2.2, A, has center B, and so every
chain base of A4, is a chain base of A. Thus A4, is a finite lattice
with a unique nm-term chain base. By 4.11, A, is a direct product of
finite chains. If all the chains have the same cardinal, then 4, is a
Post algebra with unique n-term chain base e, ---, ¢,_,, and by 4.8,
we have ¢, = 0 = 0, which contradicts be, = 0, b = 0. If two of the
chains have different cardinal, then A, has more than one n-term chain
base. This contradiction proves ¢, =0 = 0.

THEOREM 4.13. If (A;e, -+, e,y %5 a P-lattice with center B,
then there exists a Py-lattice (A'; e, -+, e,y with center B’ such that
B is a Boolean subalgebra of B’ and A is the sublattice of A’ generated
by BU{e, -+, €ui}.

Proof. By 3.1, A is an L-algebra. By [9], we may assume A
is a Heyting subalgebra of a direct product of chains C; jeJ and
the projections f;: A —C; are onto. Then by 4.10, {Cj; fi(e,), + -, fi(€n_1)>
is a P-lattice. Therefore, C; has at most » elements and (C;; fi(e,),
«oo, file,—r)) is a Pp-lattice. Let A’ = [[;.,C;. By 4.9, {4;¢, -+, €,
is a P,-lattice. Since A is a sublattice of A’ containing 0, 1, the center
of A is a subalgebra of the center of A’'.

THEOREM 4.14. Let {A;e, +--, ¢,y be a Pylattice of order n
with center B. Then A is order isomorphic with a direct product
of Post algebras of maximum order n.

Proof. Let u,=1le, —le,.,1<k=<n—1. Then uu, =0 for
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j#*k,and u,V+++Vu,,=1. Let P, =10, u,]. Clearly the center
of P,is BNP,. Lete,=¢cu,0=1=k. If x= Vi be, is a mon.
rep. of any z e P,, then

n—1

k—1 n—1 k
T — XU, = -v1 beu, = \( b.eu,\V Vk bu, = \/1 (bup)e; .
i= = i= i=

Therefore (P,; ey, -, €y 1S a Py-lattice. If be P, N B, bey, = e,u_y),
0<1%=<k, then be; <e,_,. Therefore b =<e¢ —e,_, =le_,. This
implies b = 0, since b < u,. Thus by 4.8, P, is a Post algebra of
order k + 1, or else P, = {0}. Define f: A — [z P, by f(x) = (zu,,

., Xu,_,). fisonto sinceif z, € P,, then f(z,V - - \/z,H) =Ry, ***, Zp_1).
If « <y then f(z) = f(¥), and f(») =< f(y) implies

x :yxuigwiyui =Y.
Therefore f is an order isomorphism. Finally, P,_, has order = since
Upoy 7 0.

Theorem 4.14 may be used to apply known results on Post
algebras to P.-lattices. For example, since every Post algebra is
isomorphic with the set of all continuous functions on a Boolean space
to 'a finite discrete chain, it follows that every P.-lattice is iso-
morphic with the set of all such functions which are < some fixed
continuous function. In other words, a P,-lattice is a principal ideal in
a Post algebra. It also follows from 4.14 that a P,-lattice is complete
if and only if its center is complete, and that the normal completion
of a P,-lattice A is a P,lattice whose center is the normal completion
of the center of A. Also every P,-algebra is isomorphic with its
dual. This isomorphism is given explicitly in the following theorem.

THEOREM 4.15. Let (A;e, +-+,e,.,y) be a Py-lattice. Let f,=

mi-igle 0, 0Si<n—1 and f,_,=0. Then A is isomorphic
fwzth A? under the normal involution

8@ ="V D@fs = AD@ V7).

Proof. We have f,= Vici(le, —le,)=1. For 0<i<n—1,
1f; =0, so that by 4.5(), Dk(ﬁ) =lep s, for 1<k<n—1-—14, and
D,(f) =0 for k= n — 1.

Ifi1gsi<n -2,

B(ﬁ)=2ﬁ_1D_j(f_i)~ V fislernv Vi

j=n—1i

n—1

= V Siclei = _Vl lej i kyi AT

<-“?

n

n—q n—1 n—k
,V (lejpimr — lejips) \/k \4_1 2 Vl (lejrim1 — lejsns)
i=1 =1 j=

k=1
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But VizF(lejis — lejie) = 0 if £ >4, and by 2.7, if k <1,

— n—1 - -
j\_/1 (lejpims — lej i) = le,, A2 (lespz Vi) = log .
M FA

Therefore, B(f:) = Vizi (e, — les) = e;.
Now = < y implies B(x) < B(y) and

B6@) = V £V D@DI7) = V 8(7)D(@) = V D@ = -

This implies that B: A— A? is an isomorphism. The proof that 2 is
a normal involution—that is, that 28(x) < v V B(y) for all , ye A—
is omitted since this fact will not be used here [10].

5. Axioms and P,functions. P,-algebras (4;e, -, €,y of
order <n may be regarded as algebras (4;V, A, C, ++-, Co_y, €
-+, e,_,y with two binary operations, n binary operations, and =
distinguished constants. This class of algebras can be characterized
by the following set of equational axioms, in which ¢ < y is used as
an abbreviation for x Ay = x.

H1. Identities characterizing {4; Vv, A) as a distributive lattice
[8, pp. 5, 35].

H2. (a) ¢=2x

(b) e,Ze;for0<i<j<n-—1
(c) z=e,,
H3. (a) Cix)ACix) =e¢, for i = J
(b) Co(w) V Cl(x) VeV Cn—l(x) = €4
H4. (a) CileAy) = (Cx)A Vizi Cu¥)) V (Cy) A Vizi Cul@))
(b) CiuleVy) =Cu(@)VCi(y)
H5. (a) Cyfe;)) =¢ for j*=iand t<n —1
(b) Cn—l(eo) =&

H6. 2= (C@)Ae)V - V(Ci(x) A€,oy)-

Note that in every P,-lattice H4 holds by 4.5(iv) and H5 holds
by 4.5(ii). Conversely, if A satisfies the axioms then one proves
C...1) =1, C(0) =0, C(x) = —2 and C,_,(x) = lz. Then using H4
and H5, it can be proved that xe; = e¢,_, implies £ = ¢,_,. This shows
that {(4;e, ---, e,_.> is a P,lattice.

The class of Post algebras of order = (together with the trivial
lattice {0}) can be characterized by adding the axiom C,_,(e,—,) =0
(see also [6]).

We may also characterize P,-lattices equationally as the class of
all algebras (4; \V, A, =, &, +--, €¢,_,» with 3 binary operations and
n constants which satisfy the following axioms.
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K1. Identities characterizing {4; \V, A, =, e, ¢,_,» as a P-algebra
(see [7]).

K2, ¢,<¢; for i<y

K3. e..(e;=e)<e; for j<i<mn—1

K4. = = Vi (e, A (e; = x)).

Indeed, if we set D,(x) = ¢;—=a for 0 <¢ <n — 1land let C(x) =
Dyx) — D, ,(x) for i <mn, then H1-3, H5(b), and H6 are obvious. By
properties of P-algebras, D,(x\ y) = D,(x)\V D,(y) and Dz Ay) =
D,(x) A D,(y). This proves H4. H5(a) is equivalent to ¢;—e; = e,.,—¢;
for j#14,i<m — 1. This is obvious for ¢ < 7, and follows from

K3 for 7 > j.
P.-lattices may also be characterized equationally as algebras
CA; V, A\, —, ey o e, ), sincex =y =l(xz—y),c—y=yVE=1y)

and lx = 1 = 2.

A P-function of order % in m variables is a function built from
the identity functions Iz, +--, 2,) =2; 1 < j < m, and the oper-
ations in any of the fundamental sets of operations described above.
A normal form for such functions is given in the next theorem.

THEOREM 5.1. If h is a P.-function of order n in m variables,
then

h’(xly Tt xm) = V h(eil, ) eim)cil(xl) ot sz(xm) .
0=Sip<n—1

Proof. The n™ terms C,(x,) --- C, (v,) are pairwise disjoint and
have join 1, by axiom H3. By HS, the statement holds when % is
one of the identity functions. If the statement holds for %, and #k,,
then it holds for h,\/ &, and h, A h,. If it holds for &, then it holds
for D,(h) by 4.5(iv). From this it follows that the statement holds
for Cj(h).

The normal form in 5.1 was proved for Post algebras in [5], and
gives a truth table approach to Post functions. However, in a
Pylattice, h(e;, -+, e;,) is not necessarily in {e, -, ¢,,}, as is the
case for Post algebras.

6. Applications. P,-lattices are of interest in computer science.
They can be applied to the theory of machines with m,-stable devices,
2=<m;=n, and to the analysis of machines with 2-stable devices
Q. (flip-flops) whose outputs are discretized as signals in transition
0=¢<e < ---<e,,=1. The case n =3 is of special interest
and is studied in [2] and [3]. P.-lattices provide the complete
multiple-valued logics for these applications.

Py lattices which admit operations of ring addition and multipli-
cation are of interest in information processing. It is known that
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if R is a ring with unit element which satisfies the identities z* =
and pr = 0, where p is a prime (so-called p-rings [12]), then lattice
operations can be defined as polynomials in such a way that R becomes
a Post algebra of order p. Conversely in any Post algebra of order
», ring operations can be defined in terms of the Post operations so
that we obtain a p-ring. Therefore, direct products of finitely many
p-rings are P,-lattices. Such direct products can be characterized
equationally. Indeed one can show that a ring R with unit element
is a direct produect of rings R, ---, B,, where R, is a p,ring and
p; # p; for ©# 7, if and only if R satisfies the following set of
identities:

(1) z™=wx, where m =1+ l.em. (p, — 1, ---, p, — 1).

(2) p---p2x=0.

(3) (I p)@” —2) =0,1 <7 < ¢.

7. Prime ideals.

DerINITION 7.1. Let <Z2(A) be the set of prime ideals of A. Let
(A; e, +++,€,_,> be a Pr-lattice with center B. If Qe Z”(B) and
1<k=<n-1,let P(Q) = {xrec A: x has a mon. rep. VY, b,e, such that
b.cQ}. It was proved in [13, Th. 1.5] that either P,(Q)e .Z”(4) or
P(Q) = A (the latter possibility was not mentioned). If P,(Q) +# 4,
then P(Q)N B = @ since if be @ then b = V, be, € P,(Q) and prime
ideals in B are maximal ideals. If Pec.Z%(4), then P is said to be
of type k if k is the smallest integer such that e,¢ P. Since ¢,_, =
e,V Ve, € P(Q), P(Q) is of type = k.

LEMMA 7.2. If Pis a prime ideal of type k in A and @ = PN B,
then
P = P(Q) = {a: for every mon. rep. Y,be, of x,b,€Q}.

Proof. If xe€ A has a mon. rep. V,b,e, with b,€@Q then z =
¢, Vb,e P. If x€ P and V,b,e, is any mon. rep. of x, then b,e. € P
and ¢, ¢ P, so that b, ¢ Q.

THEOREM 7.3. The prime ideals of a Py-lattice (A;e, -+, €,_1)
lie in disjoint maximal chains with at most n — 1 members.

Proof. By 7.1, each prime ideal of A is of the form P,(@). If
PyQ) & Pi(Q,), then @, = P(Q)NB S Pi(Q:)NB = @, so0 that @, = Q..
It is obvious that P(Q) & P...(Q). This proves the theorem.

LEMMA 7.4. If {A;e, -+, e,y 18 a Pylattice with center B,
and Qe F(B), then P Q) = {x: for some becQ, z < e, ,\/b}. Also
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P (Q) = PUQ) if and only if e, € Py(Q).

Proof. If xe P,(Q), there exists a mon. rep. V,b,e; of x such
that b,e Q. Alsox=<e¢,_,Vb,. Ifx=<e,,\Vband beQ then zc P,(Q)
since e, , Vb = Y'Ile; vV V2Zibe;. Suppose e, € Py(Q). If ze P,..(Q),
then z < ¢,V b for some b e Q, hence € P,(Q). Thus P,.,(Q) = P.(Q).
Conversely if P,.,(Q) = P.(Q), then e, c P,(Q) since ¢, € P,.(Q).

THEOREM 7.5. Let (A;e, -+, e,..> be a P, lattice with center
B, and let I, be the ideal {becB:be,<e,,} im B, 1<k=<=n-—1.
Then the following are equivalent:

(i) Ewvery chain in P(A) has fewer than m — 1 elements.

(ii) For every Qe Z7(B), there exists be Q and an integer k=1
such that e, < e,_, \V b.

(111) Il\/ s \/In—l = B.

(iv) A has a chain base with fewer than m elements.

Proof. (i) implies (ii): If Qe <?(B), then either P, ,(Q) = A or
P(Q) = P,,,(Q) for some k< mn — 1. Hence by 7.4, e,c P(Q) for
some k,1 <k <n—1, and therefore there exists be @ such that
e, = e,_, \Vb.

(ii) implies (iii): If L\ ---\V I,_, # B, there exists Q¢ .7°(B)
such that Q 2 I,V --- VI,_,. There exists be @ and k such that
¢, < e,_,Vb. But then bel, & Q, which is impossible.

(iii) implies (iv): There exist elements b,<c I, such that 1 =b,V
+++Vb,_,. By replacing the b, by smaller elements, we may assume
the b, are pairwise disjoint. Let f, = 0 and

k
fi=e Ve Vb, 12k=sn—2.
j=1

Then f, < f,., and f,_, = 1, since b,V +++ \V b,y = b,_, and b,_, < e, .
Now fiea Ve ViZhii b5 = €.,V Viwr b, Therefore,

n—1

€ =fk_1\/fij b; ,

k+1

and so f,, -+, fu_, is a chain base of A.
(iv) implies (i) by 7.3.

THEOREM 7.6. Let A be a Py-lattice. Then A is of order n if
and only if the maximum number of elements in o chain in FP(A)
m n— 1.

Proof. This follows from 7.3 and the equivalence of 7.5(1) and
7.5(@1v).
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DEFINITION 7.7. Let &#(A4) = 4, and let Z7,,.,(A) be the set of
minimal elements of .Z#(A4) — .Z,(4).

THEOREM 7.8. Let {(A;e, -+, ¢,y be a P,-lattice with center B.
Then for 0 <t <n — 2,

¢; € ngwl(A) - ]g UgJ(A) .

Proof. By 7.4, P(Q)+ A for all Qe &#(B). Hence F(A)=
{P(R):Qe FB). If 1<i1<n-—2, then ¢;€ P(Q) if and only if
e; <e,_, Vb for some be Q. Thisin turn is equivalent to b < ¢;—e,_,
which is equivalent to b <e,_,, or 1 <e,_,\Vb. By 7.4, this is equiva-
lent to P(Q) = A. Also, P(Q) = P,,,(Q) if and only if e, e P(Q).
Therefore F(A4) = {P,(Q): P,(Q) + A}, and e, ¢ P,(Q) for all P(Q)e
F(A). Since e; e P, (Q) for all Qe Z(B), the proof is complete.

LEMMA 7.9. Let A be a bounded distributive lattice. Suppose
FP(A) is a union of disjoint maximal chains and there exists an
element ec N (FP(A) — F(A) — U FA(A). Let A, =]e 1. Then
F(A) = {PN A;: Pe & (A)} for each i = 1.

Proof. If Pe F(A) — F(A), let p(P) = PN A,. Then o(P)e
F(A). If Qe F(A), let ¥v(Q) = {xe A: x = an element of @}. Then
¥(Q) e F(4) — F(4) and yo(P) = P. Thus ¢: F(4) — F(4)— F(A)

is an order isomorphism.

LEMMA 7.10. Under the hypotheses of 7.9, let B and B, be the
centers of A and A, respectively. Then B, = {bVe:beB}. IfxcA,
then there exists be B such that x = b(e \V x).

Proof. Let {D;:i€S} be the set of maximal chains in F#(4).
The intersection and union of any nonempty subset of D, is in D,.
Let P, and @, be respectively the smallest and largest member of
D, let V={i:P,#+@Q;}. For ieV, let R, =N{PeD;:ecP}). R,
is the immediate successor of P, in D,. We divide the proof of the
lemma into several parts.

(a) If xe P, there exists y such that vy = 0 and y¢ @Q,.

Indeed for each j such that x¢ P;, choose y;€ P; — Q,. Then
every prime ideal in A contains a member of {x} U {y;: 2 ¢ P;}. There-
fore, the filter generated by this set is not proper and so there exists
a finite meet y of the y; such that 2y = 0. Clearly y¢ Q..

(b) If z¢Q,, there exists y e P, such that x Vy = 1.

For each j such that xe@Q; choose y;e€ P, — Q;. The ideal
generated by {z} \V {y;: 2 € Q;} is not proper. Therefore, a finite join
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y of the y; satisfies the requirements.

(c) If z¢ @, there exists ¥y <2 such that y¢Q, and ye P;
whenever r e Q;.

By (b) there exists z € P, such that x\V z = 1. By (a) there exists
y ¢ @, such that yz2 = 0. If x€Q;, then z¢Q,;, hence 2¢ P; and so
ye P;. If P is any prime ideal containing « then P D; for some j,
and so e @;. This implies y ¢ P; < P. Thus y < .

(d) If x¢ P, there exists y ¢ Q, such that ey < 2.

For each j such that x e P;, choose y;e P; — @,. If P is a prime
ideal containing z but not e, then P = P; for some j and so y;€ P.
This implies that x belongs to the filter generated by {¢} \V {y;: x € P;}.
The desired y will be the meet of a finite number of ¥;.

(e) If xeR,, there exists y ¢ @, such that zy Ze.

For each j such that x¢ R; choose y;€ P; — Q,. If P is a prime
ideal containing ¢ but not x, then P 2 R; for some j and since z ¢ R;,
y;€ P; & P. This implies that e belongs to the filter generated by
{x} V{y;:x¢ R;}. The desired y is the meet of a finite number of y,.

(f) If xe B, then for all ¢, either xe R, or z¢ Q..

Let y be the complement of x in A,. If xze@, then y¢ @, since
2V Yy = 1. Therefore y¢ R,, hence x,c R, since vy = ec R,.

(g) If for all 7, x€ P, or ¢ Q,, then z¢ B.

By (a), for each 7 such that x ¢ P,, there exists ¥, ¢ Q; such that
xzy; = 0. No prime ideal contains z and {y,;:ze P}. There exists a
finite join y of the y, such that z\Vy = 1 and clearly a2y = 0.

(h) If xze A, there exists y € B such that x = y(e V ).

Let T={j:xeP;}. If T=8S then x =0 and y=0. If T=¢
then * > ¢ and ¥ = 1 will do. Suppose T= S, T+ ¢. By (d), for
each 7¢ S — T, there exists ¥,¢ @, such that ey, <z. By (a), for
each je T there exists z;¢ Q; such that zz; = 0. No prime ideal
contains {y,:ieS — T} U {2;: 7€ T}. Therefore, there exist y, z such
that y Vz =1, ey <z, and 2z = 0. This implies x =2y = 2y Vey =
2(yVe). If jeT, theney <wxecP;e¢ P;sothatyeP;. IfieS— T.
then ze P, since ¢ P, and 22 = 0. Thus yze P, forall t€ S, and so
yz = 0. Hence y ¢ B.

(i) If xe B, there exists y ¢ B such that x =y Ve.

Let W={jeV:zecR)}. If W=V, then x =¢ and y =0. If
W = ¢ then by (f), x =1 and v = 1. Suppose W=V, W+ 4. By
(c), for each 1€ S — W there exists y; < « such that y,¢ Q, and y, ¢ P;
for all je W. By (e), for each je W, there exists z; ¢ Q; such that
xz; < e. No prime ideal contains {y;:1e¢ S — W}V {z;: 5€ W}. There-
fore, there exist y, zsuch that 1=y Vz 22<¢, y <2 and ye P; for
all jeW. If 1e V— W then 2¢ R, and ec R,, hence ze R, and so
yeR,. If ieS— V, then ye P, or y¢Q; since P, = Q,. Therefore
by (g), yeB. Finally yVe<ax =2xyVaez=<=yVe, and so x =y Ve.
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(h) and (i) yield the lemma since it is obvious that {b \/ e: b€ B} & B..

THEOREM 7.11. Let A be a bounded distributive lattice. Suppose
F(A) is a union of disjoint maximal chains with maximum number
of elements equal to n — 1, and for each 1, 0 <1 < n — 2, there exists
an element e; e N.Z.(A) — Uiz U F(A). If we set e, , =1, then
(As e, -, e, is a P-lattice.

Proof. Clearly 0 =¢,<e, < -+ <e,,<1. If n =2, then A is
a Boolean algebra by Nachbin’s theorem [8, p. 76], and the theorem
holds. Assume 7 > 2 and the theorem holds for » — 1. Let A, =
[e, 1. By 7.9, A, satisfies the hypothesis for n — 1. Therefore
(A e, -+, e, is a P-lattice. Let x be any member of A. By 7.10,
zVe = ViZi(e, \Vb)e, where b,c B. Again by 7.10, there exists
be B such that z = b(xz VVe,). Therefore x = be, V ViZ; bbe,. Clearly
€ —e; =¢; in A, for i > 1. It remains to show ¢,— 0 = 0. Suppose
ye, =0 and y # 0. There exists a maximal filter F containing ¥.
But A — Fe &#(A), and so ¢,c¢ F. Thus 0¢ F, a contradiction.

THEOREM 7.12. Let A be a bounded distributive lattice. Then
there exists a sequence ey, ---, e,_, such that {(Aje, -+, €, 5 @
P-lattice of order m if and only if

(i) FA(A) is a union of disjoint maximal chains with marimum
number of elements equal to n — 1, and

(i1) N.<i(4) — Ui U Fi(4) = ¢.
Proof. This follows from 7.6, 7.8, and 7.11.

THEOREM 7.13. Let A be a bounded distributive lattice. Then
there exists a sequence e, «--, e,_, such that {(A;e, -+, €, 18 @
P-lattice of order n if and only if conditions (i) and (ii) of Theorem
7.12 hold as well as

(iii) There exists an element cc A such that for all Pe P(A),
c€ P if and only if P is a maximal ideal.

Proof. By the equivalence of (i) and (iii) in Theorem 4.6, this is
a consequence of [11, 4.9].

A characterization of Post algebras A by properties of Z7(4) is
known [4]. However, we know no such characterization of P,-lattices.
We give an example of a P-algebra A such that Z7(A) consists of
disjoint maximal chains with at most 2 elements but A is not a
P,lattice. Let C = {0, ¢, 1} be a 3 element chain and let A be the
set of all functions f on an infinite set I to C such that {C: /(1) = ¢}
is finite. Since A is a P-subalgebra of a Post algebra of order 3,
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each chain of prime ideals of A has length at most 2, [7, Th.7.1]. If
0 =fo <f1 <L eve <f'n—1 =1 and Sk = {Z'fk(z) = 9}7 and if f = g;-llbifir
where b, are in the center of A, then {i: f(1) = e &S, U -+ US,_.
Therefore, A does not have a chain base.
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