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SEMI-GROUPS AND COLLECTIVELY COMPACT SETS
OF LINEAR OPERATORS

J. D. DEPREE AND H. S. KLEIN

A set of linear operators from one Banach space to
another is collectively compact if and only if the union of
the images of the unit ball has compact closure. Semi-groups
S={T@):t = 0} of bounded linear operators on a complex
Banach space into itself and in which every operator T(t),
t > 0 is compact are considered. Since T(t, + t.) = T(t) T(t,)
for each operator in the semi-group, it would be expected
that the theory of collectively compact sets of linear operators
could be profitably applied to semi-groups.

1. Introduction. Let X be a complex Banach space with unit
ball X, and let [X, X] denote the space of all bounded linear
operators on X equipped with the uniform operator topology. The
semi-group definitions and terminology used are those of Hille and
Phillips [6]. Let S be a semi-group of vector-valued functions
T:[0, ) —[X, X]. It is assumed that T(¢) is strongly continuous
for t = 0. If lim,., || T(t)x — T(t,)x|| = 0 for each ¢, =0, xe X and
if there is a constant M such that the || T(t)|| £ M for each ¢t = 0,
then S = {7(¢): t = 0} is called an equicontinuous semi-group of class
C,. The infinitesimal generator A of the semi-group S is defined by

Az = lim L[T(s)e — a]
S—0 S

whenever the limit exists. The domain D(A) of A is a dense
subset of X consisting of just those elements & for which this
limit exists. A is a closed linear operator having resolvents R(\)
which, for each complex number A with the real part of )\ greater
than zero, are given by the absolutely summable Riemann-Stieltjes
integral

(1) ROe = S“ e T()adt, we X .
0
It follows from (1) that

(2) 1RO || < rg), re(n) > 0.

In particular, sets of the type {R(\): re(\) = @ > 0} are equicontinuous
subsets of [X, X].
Results yielding the collective compactness of the resolvents of
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A have recently been obtained independently by N. E. Joshi and M. V.
Deshpande.

2. Semi-groups of compact operators. First, note that (1)
states that the resolvents of A are Laplace transforms of the semi-
group S. Consequently, there are many other important integral
expressions involving the elements of the semi-group and the re-
solvents. In order to take advantage of these, we prove the follow-
ing lemma, in which |[v| denotes the total variation of a complex
measure v.

LEMMA 2.1. Let 2 be a topological space and _# a collection
of complex-valued Borel measures on 2. Suppose there exists a
constant a for which |v| 2 < «a for each ve _# Let 57 : 2 — [X, X]
be an operator-valued function defined on 2 which is strongly
measurable with respect to each ve M [6, page T4] and suppose
% = {K(w):we 2} is a bounded subset of [X, X]. For each ve #

and xve X, let Fy(x) =S K(w)xdv, where the integral exists in the
2
Bochner sense smceg [Kw)x||d|v]| < = [6, page 80]. Let & =
2

{(Foove #Z}. Whenever 97(57°*) is collectively compact, F (F *)
18 also collectively compact.

Proof. Assume that 2% is collectively compact. Let B =
{K(w)x:we Q, ||z|| <1} and let C denote the balanced convex hull
of B. Both B and C are totally bounded subsets of X. It suffices
to show that F.(x)caC for any F,c. &% and z with ||z < 1. Let
€ >0 and choose {K(w)x, ---, K(w,)x,}, an ¢&/a-net for B. For
1=1,---,n, let Q, = {w:| K(w)r — K(w,)z,|| < ¢/a} and let 2=
2,\Uiz1 2, be a decomposition of the 2, into pairwise disjoint sets.
Then

'

=3 g | Kw)e — K(w,)a, || d | o] (w)

= i

S@E)v[(@=e.

Fi(w) — 3, Kw)ao(2)

Since 3r,|v(2)| = a, S, K(w)rp(2;) is an element of aC. It
follows that F,(x)e aC and so .& is also collectively compact.

Now assume that .27°* is collectively compact. Let V be any
neighborhood of 0 in the norm topology of X. There exists an
€>0 such that U= {x:||z||< e & V. Since . * is collectively
compact, [2, Theorem 2.11, part (c)] implies that there exists a weak
neighborhood W of the origin with 2 (WnX)<S (1/a)U. For

F,e # andze WN X, lIFv(x)Hég [ Kw)z|ld|v| = (/) [v](Q) =

Q
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e&. So F(WNX)< V. Again using [2, Theorem 2.1, part (c)], we
see that & * is also collectively compact.

The following is essentially a result of P. Lax [6, page 304].
Rephrased in the terminology of collectively compact sets of operators,
it becomes quite transparent.

THEOREM 2.2. Suppose that some T(t,), t, > 0, is a compact
operator. Then 2 = {T(t):t =t} is a totally bounded, collectively
compact subset of [X, X]. Consequently, T(t) is contimuous in the
uniform operator topology for t = t,.

Proof. Since T(t) = T(t — t,)T(t,) = T(t)T(t — t,) for t =4, it
follows that 52" = T(t).s” = < T({,). T(t,) is a compact operator
and the collection & is equicontinuous. By Lemmas 2.1 and 2.3 of
[2], both 2" and 2£°* are collectively compact. [2, Corollary 2.6]
implies that 9% is a totally bounded subset of [X, X]. Since T'(¢)
is continuous in the strong operator topology, 7T(¢) is continuous in
the uniform operator topology for ¢ = &,.

COROLLARY 2.3. Suppose every T(t), t >0, s a compact operator.
Let & = {R(\): re(\) = 1} be the collection of the resolvents of the
mfinitesimal generator A corresponding to the half-plane {\e
C:re(\) = 1}. Then & 1is a totally bounded, collectively compact
set of operators.

It should be noted that for any « > 0, the following arguments
can be applied to {R(\):re(\) = a}. One particular half-plane is
chosen simply to keep the notation as uncomplicated as possible.

Proof. It will suffice to show that for each & > 0, there exists
a totally bounded, collectively compact set of operators .2 such
that for any R(\) e &, there exists a Ke 2% with [|RQ\) — K|| Z e.

For this ¢, choose 6 > 0 with gae"dt < ¢/M, where M is such that
T || < M for t > 0. Letx be any complex number with re(A) = 1
a?d ze X. Since ng.)x = S:o e~ *T(t)xdt, HR(k)x — Sj e‘“T(t)xdt“ =
SO e | Tz || dt < So e 'dtM||z|| < ¢e]lx]l. Consequently, g!R(x) —
Sje““T(t)dt <e Now % = {Sj e HT(E)de: re(h) = 1} is a totally
bounded, coilectively compact set of operators. To see this, note
that sup {SB e~ | dt: re(\) = 1} =<1 and that both {T(¢):t = d} and
{T*(t):t = o} are collectively compact. Lemma 2.1 implies that both
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2% and 9¢°* are collectively compact. As before, [2, Corollary 2.6]
implies that %" is a totally bounded subset of [X, X].

The following lemma will be useful in the next section. Since
a quotable reference cannot be found, a brief proof is included.

LEMMA 2.4. Let &7 be an equicontinuous semi-group of class
Co. Then R(\) converges to zero im the stromg operator topology as
[N]— o0, re(N) = 1. Whenever {R(\): re(\) = 1} 1s a totally bounded
subset of [X, X], the R(\) converge to zero in the uniform operator
topology as |N|— oo, re(\) = 1.

Proof. The second assertion follows immediately from the first.

Let 2 e D(A), the domain of the infinitesimal generator A. Since
R(\)(Nn — A)xr = x, we have the identity

ROe = %[x + R\ Az] .

By (2) of § 1, {R(\)Ax: re(\) = 1} is a bounded subset of X. It follows
that || R(\)x||—0 as |A|— oo, re(N) =1, for each xe D(A). Since
‘D(A) is dense in X, the Banach-Steinhaus theorem implies that this
type of convergence holds for each xe¢ X. We see that the first
assertion of this lemma holds also.

3. Semi-groups with compact resolvents. Suppose that the
domain of the infinitesimal generator of a semi-group can be given
a topology 7 such that the topological space (D(A4), ) is a Banach
space and the natural injection 7: (D(4), ) — X is a compact operator.
In such cases, it might be possible to prove that certain sets of the
resolvents of A are equicontinuous subsets of [X, (D(4), v)], i.e.,
collectively compact subsets of [X, X]. A specific example is the
case in which X is some L* space and A is the negative of a
uniformly strongly elliptic differential operator defined on a Sobolev
space H = (D(A), ). The so-called “a priori inequalities” [4,
Theorems 18.2 and 19.2, pages 69 and 77] imply that, after a
suitable translation, {R(\): re(\) = 1} is an equicontinuous subset of
[L?, H]. Since the injection 4: H— L? is a compact operator [4,
Theorem 11.2, page 31], {R(\): re(\) = 1} is a collectively compact
subset of [L?, L?]. The obvious question is what are the implications
of such assumptions for a general semi-group .54

We first consider the case in which A has one compact resolvent.
Of course, the first resolvent equation,
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R(M) - R(Xz) = (7\42 - XL)RO\Q)RO\%) ’

then implies that all resolvents of A are compact operators.

LEMMA 3.1. Suppose A has one compact resolvent. Let 2 be a
compact subset of {\:re(N) > 0}. Then {R(\):ne R} s collectively
compact.

Proof. Since R(\) is a holomorphic function in the right half-
plane, {R(\):ve 2} is a totally bounded subset of [X, X]. Each
element in this collection is a compact operator. So [2, Corollary 2.7]
implies that {R(\): M e 2} is collectively compact.

The following is a partial converse of Theorem 2.2.

PROPOSITION 3.2. Suppose A has compact resolvents. Let t, > 0.
If T(t) is continuous in the uniform operator topology for t € [t, ),
then T(t,) is a compact operator.

Proof. Since the resolvents are Laplace transforms of {T(f):t =
0}, we may use the formula based upon fractional integration of
order two [6, page 220] which states that

8 1 14400 eZs
S (s — ) T(@M)dt = 2__§ L RO, 5> 0.
0

T Ji—ieo N2

For ¢ > 0, choose N such that

e 7 Loy iia v <.

1—ico 144N [)\,2 |
Then

I} @ = oz - L[ Zroga] <.

By Lemmas 3.1 and 2.1, the integral of (e**/\)R(\) over the finite
segment of the vertical line is a compact operator. It follows that
for each s = 0, ) (s — t)I(t)dt is a compact operator.

Consider the ofunction

F(s) = S (s — )T(t)dt, s = 0 .

Each value of F is a compact operator. Elementary calculations
show that F' is differentiable in the uniform operator topology. Con-
sequently, each
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F(s) = go T@)dt, s = 0,

is the limit in the uniform operator topology of a sequence of com-
pact operators. Hence, each F'(s), s = 0, is a compact operator. In
taking derivatives again, we see that for 4 > 0,

“% §ﬁ°“ T(t)dt — T(t,)|| < sup {|| T(t, + @) — T [: 0= ¢ < B} .

If T(,+ «) is continuous in the uniform operator topology for
a = 0, then

. .1 (totn
T(t,) = uniform — lim " S T(t)dt .
to

h—0t

It follows that T(¢,) is a compact operator.
See [6, page 537] for a discussion of the following example.

ExampLE 8.3. Consider the semi-group .&“ of left translations on
the space Cy[0, 1] consisting of continuous functions z(u) vanishing
at 1, where the norm ||z || = sup {{z(u)]: 0 < u < 1}. Let [T(t)x](u) =
2(u +t), for 0 <u <max{0,1— ¢}, and 0 for max{0,1 — ¢t} Su =1.
The infinitesimal generator of & is the operator of differentiation
d/(du) with domain

d

D(@_) = (o2’ e G0, 1]} -

The compact resolvents are given by

[ROV2] (1) = g "o ta(u + t)dt, ve C.

For ¢t =1, T(¢) is the compact operator 0 while for ¢, s <1,
| T(t) — T(s)|| = 2. This can easily be seen by evaluating 7(t) —
T(s) at a function x € Cy[0, 1] with ||z | <1 and 2(f) =1, 2(s) = —1.
So T(t) is continuous in the uniform operator topology only for
t=>1.

Choose a monotonically increasing sequence of positive functions
{v.} & C,[0, 1] such that lim, y.(u) =1 for each w <1. For t <1,
{T(t)y.} is a sequence of functions having no subsequence which can
converge uniformly. So 7T(¢), ¢ < 1, is not a compact operator.

For N =0 + ir, let z,(u) = e y,(u) in the definition of R(\).
We see that

[R02,10) = | eyt .
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Since ||«,|| = 1 for each n,
1RO | = sup | [RO)=,J0)| = | edt .

It follows immediately from the definition of R(\) that the reverse
1

inequality holds also. Consequently, || R(\) || = S ¢ °*dt. In particular,
0

lim,. .|| B(c + iz)|] # 0. This serves to distinguish this differential
operator from the class of infinitesimal generators which we consider
next.

LEMMA 3.4. Suppose & 1s a semi-group such that the set of
resolvents {R(\): re(\) = 1} corresponding to the vertical line re(\) =
1 is collectively compact. Then {R(\):re(\) = 1} s also collectively
compact.

Proof. For each ze X, R(\)x is a holomorphic and bounded
function of A, re(A) > 1/2. So R(\)x admits Poisson’s integral re-
presentation [6, page 229]

.y ag—1¢(" R(1 + iR)x
R(o + it)x = p- S-w G 1r (e — 5] ag

for 0 >1, zeX. Since {R( + ¢8): —c0 < B < oo} is collectively
compact and the integral of the Poisson kernel over —« < g8 <
is identically one, Lemma 2.1 implies that {R(\): re(\) > 1} is collec-
tively compact. Taking the union of this set and {R(\): re(\) = 1},
one obtains the desired result.

For xe X and x*e X*,
(o*, R(o + it)z) = r (et (o*, T(t)x))dt »
0

This is this Fourier transform of the absolutely summable function
e t(x*, T(t)x), t = 0. The convergence of

| B(e + i7) || = sup {| <x*, B(o + i)z [ || 2||, [2*[| = 1}

to 0 as |o| and | 7| approach infinity can be viewed as a “uniform”
Riemann-Lebesgue lemma.

THEOREM 3.5. If & = {R(\): re(\) = 1} s collectively compact,
then || R(\)|| converges to 0 as |N| approaches oo, re(x) = 1.

Proof. Throughout the following proof, we assume that re(\) = 1.



62 J. D. DEPREE AND H. S. KLEIN

Let € > 0 be given and choose real 8 so large that 14+ g =
MJe, where M is the constant in §1 which bounds the operator
norms of elements of &% By (2),

M - M _
red)+ 8- 1+8 "

IR+ Bl =

In view of Lemma 2.4, & is an equicontinuous collection with R(\)
converging to zero as |\|— o pointwise on the relatively compact
set Z# (X)). Therefore, ||RMF||—0 as |N|— o uniformly for
Fe . Choose N such that |\| = N implies that

IROBO + Bl = ¢/8 -
The first resolvent equation states that
R\ — R+ B) =N+ 88— NERMNEMX+ B).
So, for |A| = N,
HRM | = [|BRMVBRM + Bl + IR+ B) || = 2¢ -

Note that we have used the fact that & contains those re-
solvents R(\) with re(\) arbitrarily large in an essential way.

COROLLARY 3.6. Let &7 be any semi-group whose infinitesimal
generator A has compact resolvents, i.e., each R(\), re(\) > 0, s a
compact operator. Then F = {R(\): re(\) =1} is collectively com-
vact if and only if || R(\)||—0 as |A]— co, re(n) = 1.

Proof. The assumption that || R(\)||— 0 as [N]|— o0, re(A) = 1,
simply implies that R(\) can be extended to a continuous function
on the compactification of the half-plane {\: re(\) = 1}. Consequently,
if A has compact resolvents, .# 1is a totally bounded set of com-
pact operators. [2, Corollary 2.7] implies that & is collectively
compact.

The converse is simply Theorem 3.5.

The behavior of the holomorphic function R(\) on the vertical
line re(\) =1 is of fundamental importance. For example, if d(\)
denotes the distance of the complex number )\ from the spectrum of
A, then [3, page 566]

. 1
dl+it) 2 —rnuv——.
| R+ 7)||
We see that the spectrum of A must be bounded on the right by
the curve
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In particular, it follows from Theorem 3.5 and Lemma 3.4 that
when {R(\): re(\) = 1} is collectively compact, the spectrum of A4 is
severely restricted.

The usual methods of inverting Fourier transforms can be
typified by the use of (C,1) means. In [5, page 350], it is shown
that for each ¢ > 0

o) =1— 0T, —o0 < T < oo .

T(t) = lim L S’” (1 — M)eﬂ“f“R(l + i)dr .
2w J-w w

wooo 7T

However, the measures involved no longer satisfy the requirements
of Lemma 2.1. As this situation is typical, we are not able to
prove that if {R(\):7e(\) =1} is collectively compact, then each
T(t)e .~ t > 0, is a compact operator.
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