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INFINITE GAMES AND SPECIAL BAIRE
SPACE EXTENSIONS

M. R. KroM

Two known' characterizations of Baire spaces, one in
terms of open covers and one in terms of infinite games, are
proved directly to be equivalent. It is shown that any
topological space is a dense subspace of some a-favorable
space (a special kind of Baire space) and that any space which
is normal and regular (but not necessarily 7)) is a dense
subspace of some regular a-favorable space.

1. Baire space characterizations. For any topological space X
let G(X) be the infinite two person game in which players « and g
take turns choosing the terms of a countably infinite nested sequence
of nonempty open sets, in which @ chooses the first term of the
segence, and in which @ wins a play if and only if the intersection
of the sequence formed is nonempty [3, p. 115]. A stratery for a
game G(X) is a function f from the set z* of nonempty open sets
of X such that for Uet*, f(U)etr* and f(U)c U (a strategy is a
rule for determining a player’s next move in terms of just the pre-
ceding move). When B uses strategy f in G(X) his first move will
be f(X). A strategy is a winning strategy for a player in case it
produces a win for that player when played against any strategy
for the opponent. A topological space X is called a-favorable in
case @ has a winning strategy, g-favorable in case 8 has a winning
strategy, and indeterminate in case neither player has a winning
strategy in G(X). Our first theorem follows from properties of the
Banach-Mazur Game (11, Chapter 6] and is an immediate conseqence
of Theorem 2 in [7]. A Baire space is a topological space X such
that the intersection of countably many dense open subsets of X is
a dense subset of X [9, p. 268].

THEOREM 1. A topological space is [-favorable if and only if
it is not a Baire space.

Our direct demonstration of the equivalence of two characteriza-
tions of Bairespaces is presented in the form of an alternative proof
of McCoy’s Theorem 1 in [8]. (It is known that “countable” may
be omitted from the statement of this theorem, see [9] and [4].)
The proof also shows that whenever there is a point finite open
cover which is not locally finite on a dense set of points then there
is a countable one of the special form that we construct. For any

483



484 M. R. KROM

nonempty open set U of a topological space X and any strategy f
for G(X) the f-subsets of U consist of just f(U) if U—cl (f(U)) is
empty and the two open subsets f(U) and U—ecl (f(U)) otherwise.

THEOREM 2 (McCoy). A topological space X is a Baire space
if and only if every point finite open cover of X is locally finite
at a dense set of points.

Game-theoretic proof. First assume that X is not a Baire space.
Then, by Theorem 1, there is a winning strategy f for 8 in G(X).
Let @ be the set of nonnegative integers, let S, = {f(X)}, for ncw
let S, ., be the set of f-subsets of members of S,, and let S = U,co S..
Then S U {X} is a point finite countable open cover of X which is
not locally finite on any dense set of points. The open cover S U {X}
is point finite because any two sets in S with nonempty intersection
must be nested and any countable family of sets in S with nonempty
intersection would, together with f(X), form a play in G(X) in which
3 uses strategy f. Such a play would contradict the assumption
that f is a winning strategy for G. By construction S is not locally
finite at any point of the nonempty open set f(X).

Next assume that & = {U,|ie~} is a point finite open cover of
X which is not locally finite on any dense set of points, where 7 is
some ordinal and U, # U; for 7 = j. We describe a winning strategy
f for g in G(X). The set of points at which & is locally finite is
not dense in X. Let f(X) be any nonempty open set on which &
is not locally finite such that f(X) == X. For any nonempty open
Ve f(X)let f(V)=VnN U, where k is the least ordinal in 7 such that
¢+ VN U,# V. For nonempty U&Z f(X) let f(U)= U. The funec-
tion f is defined for all nonempty open sets because % is not locally
finite but is point finite at every point of f(X) and f is a winning
strategy for B because & is point finite. By Theorem 1, X is not
a Baire space.

2. Special Baire space extensions. We will use open filters to
form extensions in the same way as is done by R. A. McCoy [8, p.
201], but the game-theoretic characterization of Baire spaces shows
that a more restricted class of filters will suffice and that the
resulting extensions are a special kind of Baire space. For any
topological space X, any set F of open filters on X, and any open
Uin X, let U*=UU{F eF|Uec.#}. Let X, be the disjoint
union of X and F with topology generated by the base {U*| U is
open in X}. Hereafter we will denote this base for the topology of
Xr by Z (X, F). A space X is always a dense subspace of X, and
in [8] it is shown that if F includes all free open ultrafilters on X
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then X, is a Baire space. The stronger statement is true that if F
includes all free open ultrafilters then X, is a-favorable; any strategy
for a in G(X,) is a winning strategy in this case because there are
no winning plays for B (there are no countably infinite nested
sequences of nonempty open sets with empty intersection).

One point of significance in the stronger conclusion is that the
class of a-favorable spaces is closed under topological products while
the larger class of Baire spaces is not. Also from Theorem 1 above,
it is easy to see that for any a-favorable space X and any Baire
space Y the topological product Xx Y is a Baire space (H. E. White
observed that this is true for weakly a-favorable spaces X [14], cf.
also the theorems on pages 3 and 9 of [1] and Theorem 2, page 158
of [10]). However, assuming the continuum hypothesis (or Martin’s
Axiom [13]), there is a Baire space X such that X x X is not a Baire
space [10]. For such a Baire space X the game G(X) is in-
determinate.

The inclusion of all free open ultrafilters in F to form the
Baire space extension is generally extravagant. From Theorem 1
above it follows that if F' is any family of open filters on X then
X, is a Baire space if and only if for any winning strategy f for
G in G(X) there is an & ¢ F such that &% contains the terms of
some play in which f is used by B (see the proof of Theorem 3
below for further details). In particular if X is quasi-regular (each
nonempty open set includes the closure of a nonempty open set
[1], p. 1) we need only use open filters in F' that are generated by
filter bases consisting of the terms of plays in which a uses quasi-
regularity with each move. For example, let @ be the space of
rational numbers with the usual topology and let F(R) be a set of
free open filters on @ consisting of one filter &, for each irrational
real number » and such that

{er[T— <z <r+
n+ 1 n+1

} €7,

for all new. Then Q.5 is a regular Baire space extension of @.
But if F' is the set of all free open ultrafilters on @ then the Baire
space extension @, is not regular. In particular there is a filter
& %e F such that

fveqo<e< %il}e/f@

for all n e w and the closure of any open set in @, which contains
the point #° is not disjoint from the one point closed set {0}. A
regular filter on a topological space is a filter # of open sets such
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that for any Ue . &, there exists Ve.# suchthat Vc U [9, p. 268
and 4, p. 329]. By Zorn’s lemma, any set 5% of nonempty open sets
in a topological space is included in a maximal free regular filter if
57 has the finite intersection property, empty intersection, and for
any Me 57 there is an Ne 5~ such that Nc M. In particular the
set of terms of a winning play for 8 in a game G(X) in which «
uses quasi-regularity with each move is included in a maximal free
regular filter. A regular filter .# on a topological space X is a
regular end in case for any two open subsets U, V of X such that
UnNnV=g9g,if WNU=#¢ for all We & then X — Ve [12, p.
337]. It is known that if X is a regular space and F is the set of
all regular ends on X then X, is regular [12, Theorem 4.6]. In a
similar way, and still being quite extravagant in our use of filters,
we make the following progress on the question from page 202 of
[8] of whether every regular space is a dense subspace of some
regular Baire space. We use the terminology “normal” and “regular”
also for spaces which are not T, [6, pages 112 and 113, cf. also 2,
p. 118 and 5, p. 97].

THEOREM 3. Ewvery topological space which is mnormal and
regular is a dense subspace of some regular a-favorable space.

Proof. Let X be a normal space and let F be the set of all
maximal free regular filters on X. Since X is normal it is quasi-
regular. Then any strategy f for « in G(X;) for which f is into
(X, F) and for which f uses the quasi-regularity of X with each
move is a winning strategy for «. In particular for a winning
strategy f for a in G(X;) choose for each nonempty open W in X,
a value f(W)= V* where for some U*e Z (X, F), U*CcW, Vc U
in X, V+# ¢, and V is open in X. The successive moves by « in a
play of G(X;) in which a uses the strategy f would be a nested
sequence {V?},c, of nonempty open sets V*e <Z(X, F) such that
ViucV,in X. If we assume B8 wins the play then Nieo Vi= ¢
and a maximal free regular filter that includes {V;|¢ecw} would be
a point in every term of the play contradicting the assumption that
the play is a win for g.

To show that X, is regular we first prove that a quasi-regularity
relationship between open sets of X is inherited by the corresponding
open sets in X,. Let U and V be open sets of X such that Vc U
and we will show that V*c U* in X,. If e XNV* then ze Vc
Uin X and e U*>D U as required. Suppose, for proof by con-
tradiction, that xe FNV* and 2 ¢ U*. Then for any set W in the
filter z, WNV = ¢and W& U. Since X is normal there is a sequence
{R}).co of open sets of X such that Vc R,c U in X and B,,,C R,
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in X for tew. Since x is a regular filter there is a sequence { W}ico
such that W,cx and W,.,c W, in X for 1cw. The set 5# =
z U{R;N W,|1cw} is strictly larger than x, has the finite intersection
property, has empty intersection, and for any Me 57 there is N¢
&7 such that Nc M. This contradicts the assumption that z is a
maximal free regular filter and concludes our demonstration that
V*c U* in X,. For any zec U*c (X, F) there is V open in X
such that V< U in X and x e V* (this uses the defining property of
regular filter if z is a filter which contains U and it uses regularity
of X if xe U). Since we have shown that in this case also V*C
U* we may conclude that X, is regular.
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