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A NOTE ON DIFFERENTIAL EQUATIONS WITH
ALL SOLUTIONS OF INTEGRABLE-SQUARE

PHILIP W. WALKER

It is shown that if all solutions to /(y) = λwy and l+(y) =

λwy satisfy I \y \2w < oo for some complex number λ then so

do all solutions for every complex number λ. The result is
derived from' a corresponding one for first order vector-matrix
systems.

We shall be concerned with solutions to

(1) /(y) = 0 on (fl,ft),

(2) Γ(y) = 0 on (a,b)

(3) l(y) = λwy on (a,b), and

(4) Γ(y) = \wy on (a,b)

which satisfy

ίb

J a

ί
(5) \y\2w<cc.

J a

In these expressions (α, b) is an interval of the real line (α = - oo and/or
b = oo is allowed), w is a weight, i.e., a positive valued continuous
function on (α,b), λ is a complex number, / is an mth order linear
differential operator given by

(6)
Jc=O

Λm-k)

where each ak is an m - k times continuously diίferentiable complex
valued function defined on (a, b), ao(t)^ 0 for all t E (α, b), and /+ is the
formal adjoint of / so that

(7) \(m-k)

In an earlier paper, [11], we defined w to be a compactifying weight
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for / provided that every function which is a solution either of (1) or of
(2) satisfies (5). If follows from Theorem 2-1 of [11] that if w is a
compactifying weight for / then every function which is a solution
either of (3) or of (4) satisfies (5) for every complex number λ.

The deficiency index problem (see for example [2] and [8]) for
formally self-adjoint equations (where / = /+) is concerned with finding
the dimension of the linear manifold of solutions to (3) which satisfy
(5). One of the results of this theory ([3], [4], [5], [6], [7], [10], and [12]) is
that if this dimension is m (the order of /) for some complex number λ
and m > 1 then it is m for every complex number λ.

While much of the theory for the self-adjoint case breaks down
when 1/ Γ we wish to show that this result carries over.

THEOREM 1. Let each of kλ and λ2 be a complex number (λy real,
even A, = 0 is allowed). Let m > 1 . // every function which is a
solution of either (3) or (4) satisfies (5) when A = A, then every function
which is a solution of either (3) or (4) satisfies (5) when A = λ2.

This follows as a corollary to an analogous theorem (Theorem 2
below) for first order vector-matrix equations.

We consider the equations,

(8) Jy' = [AΛ + B]y a.e. on (a, b), and

(9) Jy' = [λA +JB*]y a.ef on (a, b)

where / is a skew-symmetric (J* = - /, * denoting conjugate transpose)
m x m matrix, each of A and B is a complex m x m matrix valued
function which is Lebesque integrable over each compact subinterval of
(α, b), A is a complex number, and A(t) is nonnegative definate a.e. on
(a9b).

It was shown in [13] that, given / J, A, and B may be chosen so that
every solution of (3) satisfies (5) if and only if every solution of (8)
satisfies

y*Ay
J a

(10) y*Ay<oo,

and every solution of (4) satisfies (5) if and only if every solution of (9)
satisfies (10). For the choice of / and A used in [13] it is also the case
that trace J'XA = 0 when m > 1.

Thus Theorem 1 above follows from Theorem 2 below.

THEOREM 2. Let each of /, A, and B satisfy the conditions
imposed above. Let m>\. Let each of λj and λ2 be a complex

number (A, real, even A; = 0 is allowed). Let |tr/" !Λ |<oo.
J a
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// every vector function which is a solution of either (8) or (9)
satisfies (10) when λ = λj then every vector function which is a solution
of either (8) or (9) satisfies (10) when λ = λ2.

Proof. Let y(λ) and Z(λ) be fundamental matrices for (8) and (9)
respectively. (We will write Y(t, λ) and Z(f, λ) to denote the value of
these functions at t E(α, b).) Let U be defined by

(11) Y(λ2)=Y(λi)U on (a9b).

Multiplying on the left by /, differentiating, and using (8) we have,

(λ2A + B)Y(λ2) = (λ,Λ + B)Y(\ι)U

+ JF(λ,)t/' a.e. on (a,b).

From (11) we have,

l/' = (λ 2-λ,)AF(λ,)l7 a.e. on (a,b).

Multiplying on the left by Z*(λ,) we have

(12) Z*(λ1)/F(λ1)l/' = (λ2-λ1)Z*(λ1)ΛF(λ,)ί7 a.e. on (α,fo).

We first note that

(13)

where || || is any matrix norm. In order that (13) hold it is sufficient that

(14) \b \z1{t,kx)A{t)y}{Uλx)\dt<™

J

whenever z, a column of Z and y} is a column of Y. By the
Cauchy-Schwartz inequality we have a.e. on (α, b) (writing z for z, (ί, λ,)
and ^ for jy(ί,λ,)) that

(15) I

From

we have that
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(16) (z*Az)ίn'(y*Ay)m^l(z*Az + y*Ay).

From (15), (16) and the hypothesis that every solution of (8) or (9)
satisfies (10) when λ = λf we see that 14 holds.

Next we establish that

(17) (Z^λO/FU,))-1

is bounded on (a,b). Let a G(α,b) then by Theorem 4 of [13] it
follows that

Z*(f,λ,)Jr(ί,λ,)

= Z*(α,λ,)jy(α,λ,) + ( λ I - λ

for all t G(ayb). Thus from (13) we see that

(18) Z*(ί,λ,)Jr(ί,λ,)

has a limit as t —> α and as ί —> b. In order to show that (17) (which is
continuous) is bounded it is then sufficient to show that the limits of (18)
at a and at b are nonsingular. From Abel's formula for (8) and (9)
(recall that J* = -J,A* = A, and tr PQ = tr QP for matrices P and Q)
we have that

det(Z*(ί,λ,)jy(ί,λ,))

= det(Z*(α,λ,)jy(α,λ,))

•exp Γ tΓtfJ-'λjΛ + / - ' £ * ) * + /-'λ.A +J]B)
J a

= det((Z*(α,λ,)jT(α,λ l))expί'(λ 1-λ,)tr/- 1Λ.

Since by hypothesis \tτJ ιA\<*> the limits of (18) must be
nonsingular. a

It now follows that (12) is equivalent to an equation of the form

(19) U' = MU a.e. on

where j ||Af(ί)||Λ <°°. It is well known (see, e.g. Theorem 5.4.2 of
J a

[9]) that all solutions of (19) are bounded.
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Returning to (11) we see that every solution of (8) when λ = λ2 is a
bounded multiple of a solution of (8) when λ = λ,.

The argument to show that every solution of (9) satisfies (10) when
λ = λ2 is similar.

Theorem 2 is a generalization of a result of Atkinson (Theorem
9.11.2 of [1]) for the case where B* = B.

Theorem 1 is also valid for the quasidifferential expressions consi-
dered in [13] where no smoothness conditions on the coefficients of / are
required.
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