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A NOTE ON DIFFERENTIAL EQUATIONS WITH
ALL SOLUTIONS OF INTEGRABLE-SQUARE

PHIiLIP W. WALKER

It is shown that if all solutions to /(y) = Awy and [ (y) =
b
Awy satisfy f |y P'w < for some complex number A then so

do all solutions for every complex number A. The result is
derived from a corresponding one for first order vector-matrix
systems.

We shall be concerned with solutions to

(N [(y)=0 on (a,b),

2 [*(y)=0 on (a,b)

3) I(y)=Awy on (a,b), and
4 [*(y)=Awy on (a,b)

which satisfy

()] Lb |y |'w <.

In these expressions (a, b) is an interval of the real line (a = — o and/or
b == is allowed), w is a weight, i.e., a positive valued continuous
function on (a,b), A is a complex number, [ is an mth order linear
differential operator given by

m

(6) I(y)=2 ay™™

k=0

where each a, is an m — k times continuously differentiable complex
valued function defined on (a, b), a,(t) #0forall t €E(a,b),and [ is the
formal adjoint of [ so that

) )= 2 (- )" @),

In an earlier paper, [11], we defined w to be a compactifying weight
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for | provided that every function which is a solution either of (1) or of
(2) satisfies (5). If follows from Theorem 2-1 of [11] that if w is a
compactifying weight for /| then every function which is a solution
either of (3) or of (4) satisfies (5) for every complex number A.

The deficiency index problem (see for example [2] and [8]) for
formally self-adjoint equations (where | = [") is concerned with finding
the dimension of the linear manifold of solutions to (3) which satisfy
(5). One of the results of this theory ([3], [4], [5], [6], [7], [10], and [12]) is
that if this dimension is m (the order of /) for some complex number A
and m >1 then it is m for every complex number A.

While much of the theory for the self-adjoint case breaks down
when [ # [* we wish to show that this result carries over.

THEOREM 1. Let each of A, and A, be a complex number (A; real,
even A\; =0 is allowed). Let m >1. If every function which is a
solution of either (3) or (4) satisfies (5) when A = A, then every function
which is a solution of either (3) or (4) satisfies (5) when A = A,.

This follows as a corollary to an analogous theorem (Theorem 2
below) for first order vector-matrix equations.

We consider the equations,

8 Jy’=[AA +Bl]y ae. on (ab), and
9) Jy'=[AA +B*]y ae, on (ab)
where J is a skew-symmetric (J* = — J, * denoting conjugate transpose)

m X m matrix, each of A and B is a complex m X m matrix valued
function which is Lebesque integrable over each compact subinterval of
(a,b), A is a complex number, and A (¢) is nonnegative definate a.e. on
(a,b).

It was shown in [13] that, given [; J, A, and B may be chosen so that
every solution of (3) satisfies (5) if and only if every solution of (8)
satisfies

b
(10) J y*Ay < oo,

and every solution of (4) satisfies (5) if and only if every solution of (9)
satisfies (10). For the choice of J and A used in [13] it is also the case
that trace J-'A =0 when m > 1.

Thus Theorem 1 above follows from Theorem 2 below.

THEOREM 2. Let each of J, A, and B satisfy the conditions
imposed above. Let m >1. Let each of A, and A, be a complex

b
number (A; real, even A; =0 is allowed). Let f [trJ'A | <o,
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If every vector function which is a solution of either (8) or (9)
satisfies (10) when A = A, then every vector function which is a solution
of either (8) or (9) satisfies (10) when A = A,.

Proof. Let Y(X) and Z()\) be fundamental matrices for (8) and (9)
respectively. (We will write Y(¢,A) and Z(t, A) to denote the value of
these functions at t €(a,b).) Let U be defined by
(11 Y(A)=YWA)U on (a,b).

Multiplying on the left by J, differentiating, and using (8) we have,

(MA+B)YY(A)=(AMA+B)YY(A)U
+JY(A)U' ae. on (a,b).

From (11) we have,

JYA)U' =(A,—A)AY(A)U ae. on (a,b).
Multiplying on the left by Z*(A,) we have
(12) Z*(ADIJYA)U' = (A, — A )Z*(A\)AY(A)U a.e. on (a,b).

We first note that
(13) fab IZ*t, X)) Y (t, 1)t <o
where || - || is any matrix norm. In order that (13) hold it is sufficient that
(14) f: |25t A) A () y (8, 1) |dE <o

whenever z; a column of Z and y, is a column of Y. By the
Cauchy-Schwartz inequality we have a.e. on (a, b) (writing z for z;(¢,A)
and y for y;(¢,A,)) that

(15) |z*Ay | =(z*Az)"(yAy)"”.

From
0=((z*Az)"—(y*Ay)")’

we have that
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(16) (z*Az)"? - (y*Ay)?=i(z*Az + y*Ay).
From (15), (16) and the hypothesis that every solution of (8) or (9)
satisfies (10) when A = A, we see that 14 holds.
Next we establish that

(7 (Z*A)JY (M)

is bounded on (a,b). Let a €E(a,b) then by Theorem 4 of [13] it
follows that

ZXt, A )JY (L)

=Z*a,A)JY(a, )+ (A, —X.)f Z*(s,A\)A(s)Y(s,A))ds

for all t €E(a,b). Thus from (13) we see that
(18) Z*(tL,A)JY (L))

has a limit as t - a and as t > b. In order to show that (17) (which is
continuous) is bounded it is then sufficient to show that the limits of (18)
at a and at b are nonsingular. From Abel’s formula for (8) and (9)
(recall that J*= —J, A*= A, and tr PQ = tr QP for matrices P and Q)
we have that

det (Z*(t,A)JY (L))

= det (Z*(a, A)JY (e, A1)

-expf tr((J"'AMA +J'B¥*+J '\ A +J'B)

=det((Z*(a,A)jY(a, A})) expfl A —A)trJ'A.

b
Since by hypothesis f [trJ'A| < the limits of (18) must be
nonsingular. ‘
It now follows that (12) is equivalent to an equation of the form

(19) U =MU ae. on (a,b)

b
where f [M(t)||dt <. Itis well known (see, e.g. Theorem 5.4.2 of
[9]) that all solutions of (19) are bounded.
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Returning to (11) we see that every solution of (8) when A = A,isa
bounded multiple of a solution of (8) when A = A,.

The argument to show that every solution of (9) satisfies (10) when
A = A, is similar.

Theorem 2 is a generalization of a result of Atkinson (Theorem
9.11.2 of [1]) for the case where B* = B.

Theorem 1 is also valid for the quasidifferential expressions consi-
dered in [13] where no smoothness conditions on the coefficients of / are
required.
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