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CONNECTOR THEORY

HlDEGORO NAKANO AND K A Z U M I N A K A N O

Connector theory is a generalization of topology and
uniformity. Each reflexive binary relation U of a space S
induces a mapping from S to 2s wherein JC E S —> x U =
{y: (x, y) E U} E 2 s. This mapping is called a connector. A
uniformity on 5 is a set of connectors which meets certain
conditions. The results in this paper include a necessary-suffic-
ient condition for a connector-set to induce a unique topology,
generalizations of continuous mappings and uniformly continu-
ous mappings and characterizations of the connector-sets which
correspond to a specific type of topology, for instance, a compact
topology, a pseudo-compact topology.

If 31 is a connector-set on 5, let Sί# denote the connector-set,
{I/: for each x E S, there is V(x)ESI such that xU = xV(x)}. The
following types of connector-sets are defined.

Cone: U ^ V and U E 91 => V E ?L

Net: U9 V E % Φ W g U Π V for some W G 9ί.

Filter: Cone and net.

Sharp: For each t/ E Sl#, there is V E Sί such that V^U.

Prenet: 2ί# is a net.

Topological: For each U G SI and for each x E 5, there is V E SI
such that xV2CxU.

Topology: Topological sharp filter.

Pretopology: Sί# is a topological net.

Uniform: For each U E SI, there is V E 21 such that VV~ι S ί/.

Uniformity: Uniform filter.

Totally bounded: For each C/Eδl, there are x, E 5, i =
1,2,3, " ,/n such that S C Ux,[/.
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Bounded: For each U E 2ϊ, there are JC, E S, i = 1,2,3, ,m and
a positive integer n such that S C Ux( [/n.

Absolutely bounded: For each £/ E 21 and for each X C S , there
are JC, EX (i = 1,2,3, ,m), and a positive integer n such that X C
UJC L/".

A prenet 21 induces a topology £F(2l) (in the usual sense) which will
be called an open- topology. The interior theorem states that 2ί is a
pretopology if and only if x is an interior point of xU for every
U E 21. A topology corresponds uniquely to an open-topology and
vice versa (The topology theorem). A topology £ induces a compact
open-topology if and only if 5£ is totally bounded. The compact
topology theorem states that compactness of 2Γ(Vί) for a uniformity It
implies that It is the strongest uniformity included in IF.

Suppose 21 is a connector-set on S and ® is a connector set on
R. Let xM E R denote the image of x E S by a mapping M. Each
U E 2) induces the connector MUM~] on 5 by x -» {z: (JCM, ZM) E
L/}. M is 2ί-continuous if every MUM~\ U E ® belongs to the sharp
filter hull of 21. M is uniformly 2ί-continuous if they belong to the
filter hull of 21. The continuity theorem states that the definition is
compatible with the continuity (in the usual sense) of M on the
topological space (S, ίΓ(2l)) if Si is a prenet. The kernel theorem is: It is
the strongest uniformity included in a topology Z and ® is a uniform
net, then iΓ-continuity implies uniform II-continuity. The strongest
uniformity included in a topology 5£ is bounded if and only if every
iΓ-continuous real-valued function is bounded (The pseudo-compact
theorem).

1. Connector systems. Let S be a space on which we
develop generalized structures of topology and uniformity. A mapping
U from S to 2s is called a connector on S if each x of S belongs to its
image xU. The inverse U~ι of U is a mapping: x E
S -^{y: x E yU}. Let [/ and V be connectors. We write U ^ V if
jet/ C xV for every JC of S. The connector [TV (the product of U and
V) is defined by JC E 5 -> U {y V: y E xί/}. ί/V is denoted by U2 if
U = V. An intersection of connectors {ί7λ: λ EΛ} is the connector
defined by JC E S -> Π {jc[/λ: λ E Λ} E 2 s and it is denoted by Π t/λ. A
non-empty set of connectors is called a connector system.

A connector system 2ί on 5 is called a cone if V E 21 whenever
L/ ̂  V and U E 2ί. Let 21" = {[/: V ^ ί7 for some V E 21}. 2Γ is a
cone, and 2Γ C 93 if 93 is a cone and 21 C 93.

(1.1) 21 is a cone if and only if %κ = 21.
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(1.3) 9Γ = 9l< (9Γ = (91T).
(1.4) 91 C 93 implies %< C 93<.

A connector system 9ϊ is called a net if for U, V G 9ί, there is
W G 91 such that W g t / n V . Let 9Γ denote the set of all finite
intersections of connectors of 9ί. Then 9Γ is a net.

(1.6) 9ίcSΓ.
(1.7) 9 l x x = 9ί x.
(1.8) 91C 93 implies 9lx C 93X.
(1.9) (U9I A ) X = (U91X)X.
(1.10) 91 is a net if and only if 9lx C 9l<.
(1.11) 9ίx< = r x .

Proof. It is obvious that 9ΪX < XC9Γ<. Thus, by (1.6), (1.4) and
(1.8), we obtain 91<X C (9IX)<X C 9ίx<. On the other hand, for each
t7G9l x <, there are C7fG9ί, i = 1,2,3, ,n such that
n{L7;: i = 1,2,3, n } ^ U. Let V( denote a connector: x G
S-*(*£/,) U(xl7). Then 17, ̂  V,, i = l,2,3, « and U =
n{Vf: ί = l,2,3, π}.

(1.12) Λ x < x < = 9ίx<.

Proof. Refer to (1.3), (1.7) and (1.11).

A connector system is called a filter if it is a cone and a net. Every
finite intersection of connectors of a filter belongs to the
filter. Therefore, a filter 91 is a connector system which satisfies the
following conditions.

(1) If U G 91 and U =i V then V G 91.
(2) If U, V G 9ί then U Π V G 91.
(1.13) 9Ϊ is a filter if and only if 91 = 9ίx = 9T.
(1.14) Sί is a filter if and only if 91 = 9ίx<.
(1.15) 9Γ is a filter if and only if Si is a net.

9lx< is a filter and 93 D 9ίx< if 93 is a filter and 93 D 91. Therefore, 9lx< is
called the filter hull of 9ί.

(1.16) 9IX< = ?Γ if and only if 91 is a net.

A connector system 91 is called sharp if for each connector system,
{l7(jc)G9ί: x G5}, there is V G 91 such that xVCxU(x) for every
xES. Let 9l# = {l7:for each x G S, there is V(JC)G9I such that
xU = xV(x)}. The connector system 9ί# is sharp.

(1.17) a is sharp if and only if 9l#c9ϊ< .
(1.18) a is sharp if and only if 9ί#< = 9Γ.
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Proof. (1.3) and (1.4) => SI# C SΓ if and only if Sl#< = ST.

(1.19) Sίc2I # .
(1.20) SΓ# = Si#.
(1.21) Sϊ C 93 implies SΓ C 23#.
(1.22) ( U H A ) # = (U «?)*..

A connector system is called a prenet if for [/, V ε 21 and for each
xE.S, there is W e SI such that JcWCxl/ΠxV. Every net is a prenet.

(1.23) Sϊ# is a net if and only if Si is a prenet.
(1.24) Every sharp prenet is a net.

Proof. (1.10) and (1.23) => SP C SΓX C SI#< if SI is a prenet. (1.4)
and (1.10) Φ SI#< C SI" = 2Γ if Si is sharp. Hence, Si is a net if SI is a
sharp prenet.

(1.25) SI#< = Sί<#.

Proof. Let {V(x): x G 5} be a connector system of ST. There is
W(JC)ESΪ for each V(JC) such that W(x)^ V(x). If W and 17 are
defined respectively, by W: x £ S ^>xW(x) and 17: x & S^-xV(x),
then, W ^ ί / and We Sί#. Hence, 1/ belongs to Sί#< if U e
Sί<#. Conversely let 1/ be a connector of Sί#<. The connector U(x) is
defined, for each x e S , by f/(x): y £ S -» yt/(jc) = JCL/ if y = x and
yU(x) = S otherwise. Then, xU = xU(x) for every x G S, and every
U(x), (x G 5), belongs to ST.

(1.26) Sl# xCSί x #.

Proof. Each U G Sί#x is a finite intersection of connectors
{Wr. i = 1,2,3, ,n} of Sί#. There are U, G Sί for each JC G 5, such
that xlV^xl/i, i = l,2, ,π. xU = Γ\{xW,: i = 1,2,3, - ,n} =
Π{JCI/,:I = 1,2,3, ,Π} = x(Π I/,), hence {/belongs to 3IX#.

(1.27) Sl#χ# = Sϊx#.

Proo/. Refer to (1.19), (1.8), (1.21), (1.26) and (1.20) in order.
(1.28) SΓ#X = SΓ#.

Proof. Refer to (1.6), (1.26) and (1.7).
(1.29) SΓ#X# = Sl#x#* = SΓ#.

Proof. Refer to (1.27) and (1.28).
(1.30) %**< = %**<**<.

Proof. %*"<*"< = %***<*< by (1.11), and S Γ # X < # < = S Γ # X # < by



CONNECTOR THEORY 199

(1.25). (1.29) and (1.13) Φ Sίx#x#« = SΓ*". Hence, SΓ#<X#" = SΓ#".
(1.31) Si is a sharp filter if and only if Sϊ = SΓ#".

Proof. An implication of (1.13) and (1.18) is the following. Sί is a
sharp filter if and only if Sί = SΓ = SΓ = ST. Therefore, SI = ?Γ# < if §1
is a sharp filter. Conversely, Si = SΓ*" implies Sίx c Sϊx#< = SI c SΓ,
thus Sί = Sίx. Sί = SF and Si = SI< can be proved similarly.

Sίx#< is a sharp filter and SI X # < C« if 33 is a sharp filter and
Sί C 93. Therefore, SΓ#" is called the sharp filter hull of Sί.

(1.32) SI is a prenet if and only if SΓ#< = SΓ".

Proof. Sί is a prenet if and only if SΓ is a net. SΓ is a net if and
only if SΓX" = SΓ". The last relation implies Sϊ#x<# = SΓ<# = SΓ#" =
SΓ". On the other hand, SΓX<# = SΓ" implies SΓ" C SΓX< C SΓX<# =
SΓ", thus SΓX" = SΓ". SΓX<# = SΓ#< by (1.25) and (1.27).

(1.33) Sί is a sharp prenet if and only if SΓ#< = Sί<.

Proof. If SI is a sharp prenet then, by (1.32) and (1.18), Slx#< =
Sί#< = ST. Sί" C SΓ" c SΓ*", thus, SΓ#< = SI" implies SI" = Sί#<.

(1.34) Six#< = SI* if SI is a filter.

Proof. Refer to (1.14), (1.25) and (1.31).

2. Base of filters. A connector system SI is called stronger
than a connector system 93 (or 93 is weaker than SI) if 93 C SIX<.

(2.1) SI is a net. SI is stronger than 93 if and only if 93CSΓ.
(2.2) SI is stronger and also weaker than 93 if and only if

%*< = $>«.

A connector system SI is called finer than a connector system 93 if
93cSI x # <. (1.28), (1.19), (1.32) and (1.33) imply (2.3), (2.4), (2.5) and
(2.6) respectively.

(2.3) Sί is finer than 93 if and only if SIX# is stronger than 93.
(2.4) SI is finer than 93 if SI is stronger than 93.
(2.5) SI is a prenet. SI is finer than 93 if and only if 93 C SI#<.
(2.6) If SI is a sharp prenet and finer than 93 then SI is stronger than

93.
Let $ be a filter on 5. A connector system SI C $ is called a basis

of % if for each U E. ft, there is V e SI such that V ^ U.
(2.7) SI is a basis of ft if and only if ft = SΓ.
(2.8) The following two statements are equivalent.
(1) Sί is a basis of ft.
(2) SI is a net, and Sί is stronger and weaker than ft.
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Proof. The statement (2) is, by (1.16) and (2.27), equivalent to
%< = a κ < = ftx<. These relations follow if ft = 9Γ and ft = ftx<, hence,
the statement (1) implies the statement (2). The converse is obvious.

(2.9) SI is a basis of 5Γ if 91 is a net.

Proof. Refer to (1.15) and (2.7).
(2.10) Every basis of a sharp filter is sharp.

Proof. If 91 is a basis of a sharp filter ft then, since (1.31) and (2.7)
imply ft = ft# and 9Γ = ft respectively, ?ί#< = ?Γ# = ft# = ft =
9Γ. Hence, by (1.18), 91 is sharp.

A connector system 9ϊ is called a prebasis of a filter ft if 9ί# is a
basis of ft.

(2.11) 91 is a prebasis of ft if and only if 9l#< = ft.
(2.12) A filter ft is sharp if there is a prebasis.
(2.13) Every basis of ft is a prebasis if ft is a sharp filter.
(2.14) Every prebasis is a prenet.

Proof Refer to (1.23) and (2.8).
(2.15) 93 is a prebasis of 9Γ#< if and only if 93 is a prenet and

Proof An implication of (2.11) is the following. 93 is a prebasis
of 9Γ#< if and only if 9tx#< = 93#<. (1.32) states that 93 is a prenet if and
only if 93X#< = 93#<. 9ϊx#< = 93#< => 9ίx#< = 93#< C 93X#< and 93X#< C
53#<χ#< = ?Γ#<χ#< = 3ίχ#< τherefore, a x # < = 93#< if and only if 93X#< =

93#< and 9Γ#< = 93X#<.
(2.16) ft is a sharp filter. A connector system 9ί C ft is a prebasis

of ft if and only if SI is a prenet and finer than ft.
The following two statements are equivalent if ft and © are filters.
(1) ft is stronger than ©.
(2) ft 2®.

An intersection of filters is a filter. Therefore, for each set of filters
{ftλ: λ E A}, there exists the strongest filter among the filters weaker
than all ftλ, λ E Λ. Likewise, there exists the weakest filter among the
filters stronger than all ftλ, λ E Λ. The two filters are respectively
denoted by Λftλ and vftλ.

(2.19) If ?Iλ is a basis of ftλ for each λ E Λ then ( U 9Iλ)
x is a basis

of vftλ.

Proof. The following relations are implied respectively by (1.3),
(1.11), (1.5), (2.7) and (2.17). (U 9ίA)x< = ( U 9lA)x<< = ( U 9ί λ)

< x < =
(U9ID x < = (Uf t λ ) x < =vf t λ . Hence, by (2.7), (U9l λ ) x is a basis of vftλ.

(2.20)
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(2.21) if 91 λ is a prebasis of ^ λ for each AGΛ, then ( U 9Iλ)
x is a

prebasis of

Proof. . f o = 9 i r , AEΛ and (v^ λ ) # = (U &)**< by (2.11) and
(2.20). (1.22) and (1.27) φ ( U 9ίt)x# = ( U 9lλ)

x#. Therefore,

# = (U 9iΓ) x # < = ( U 91?)<x#< = ( U ?It)x#<< = ( U ?It) x # <

= (U?IA)X # < .

(2.22)
(2.22) is a generalization of Theorem 5 in §28 of [1].

3. Topologies. A connector system 91 is called topological if
for each U G 91 and for each JC G S, there is V G 9ί such that xV2 C xU.

(3.1) If 91 is topological then 9Γ, 91* and 91# are topological.
(3.2) If 9ϊλ, AGΛ are all topological then U 91 λ is topological.
A topological sharp filter is called a topology i.e., a topology X on

S is a connector system which satisfies the following conditions:
(1) If [/, V G X then LΓ Π V G T.
(2) If 1/ ̂  V and t/ G X then V G ί .
(3) For each system {[/(JC) G T: JC G S}, there exists U E. X such

that jcί/ = jcί/(jc) for every x G 5.
(4) For each [ / E ί and for each JC G 5, there exists V £ ί such

that xV2CxU.
The use of the word "topology" is not

conventional. Compatibility of the terminology is cleared in the fol-
lowing section. Topologies are filters, hence, a topology is stronger
than another if and only if the former includes the latter. A topology
hull of a connector system 91 is the weakest topology among the
topologies stronger than 91. A topology hull is unique if it exists.

(3.3) 9ίx#< is the topology hull of 91 if 91 is topological.

Proof. Refer to (1.31) and (3.1).
(3.4) If one of 91, 9Γ, 9Γ and 9Γ has a topology hull, then all of

them have the same topology hull.

Proof. If X is a topology and X includes 91 then Γ̂ includes all 91"%
9Γ and 9ί# because X = Xx#<. If X includes one of 9ί<, 9Γ and 91* then
X includes 91, thus X includes the other two.

(3.5) 9l# is the topology hull of 91 if 91 is a topological filter.

Proof. Refer to (1.34) and (3.3).
(3.6) 31< is the topology hull of 91 if and only if 91 is topological

sharp prenet.
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Proof. Refer to (3.3) and (1.33).
(3.7) If 31 is a topological prenet, then 9l#< is the topology hull of

9t.

Proof. Refer to (3.3) and (1.32).
(3.8) Every basis of a topology X is a topological sharp prenet,

and X is its topology hull.

Proof. ? = r φ 9lx#< = 91<X#< = Xxφ< = X = 9Γ. A basis of a
topology is topological, hence, X is the topology hull of 91.

(3.9) A topology X is the topology hull of every prebasis of X.
(3.10) If Xk is the topology hull of 9Iλ for each λ E Λ then (v3~λ)

#

is the topology hull of U 9Iλ.

Proof. (vXλ)* is the topology hull of U Xλ by (3.2), (3.3) and
(2.20). If X is a topology which includes all 9Iλ, λ E Λ then X includes
all Xλ, λ E Λ. Hence the both unions have the same topology hull.

A connector system 91 is called a pretopology if 9ί# is a topological
net. Every topology is, by (3.1), a pretopology.

(3.11) Every pretopology is a prenet.
(3.12) Every topological prenet is a pretopology.
(3.13) If 91 is a pretopology then 9l#< is the topology hull of 91 and

91 is a prebasis of 9t#<.

Proo/. (1.27) and (3.1) Φ 9tx#< is topological if 9ϊ is a
pretopology. Then, 9Γ#< is the topology hull of 91. 9ίx#< = 9ί#< by
(3.11) and (1.32), hence, 9ί#< is the topology hull of 91.

(3.14) If every 9ίλ, AEΛ is a pretopology then (U9ί λ ) x is a
pretopology.

Proof. (1.27) and (1.22) Φ ( U 9ίλ)
x # = (U 9ίt!)#x#, and (3.1) and

(3.2) Φ ( U 9ί ?)# x # is topological if 91*, λ E Λ are topological. (U 9Iλ )
x #

is a net because (U 9Iλ)
x # = (U 9I λ)

x # x. Hence, (U9ί λ ) x is a
pretopology.

4. Open sets. The word 'topology' has been already used for
a connector system. To avoid confusion, a topology in usual sense is
called an open-topology. An open-topology SΓ is a family of subsets of
5 and

(1) XλG^λGA^> U X λ G f ,
(2) xjeJΦxnrEJ,
(3) 0, sezr.
Each prenet 91 on S induces an open-topology in the following

way. A set X of S is an open set if for each x E X , there is U E 91 such
that xU C X. This open-topology is denoted by
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(4.1) 21 and 23 are prenets. Then ^(23) C °Γ{%) if 91 is finer than
35, and &(%) = ̂ "(33) if 2I#< = 23#

3#<

Proof. (2.5) states that 23 CSΓ* if a prenet Si is finer than
33. Thus, for each U ε 33 and for each jr E 5, ίhere is V E Sί such ίhaί
xVCxtΛ Hence, 5^(23) C 3~{%). If %φ< = 23#< then SI C 23#< and 23 C
Sί#<, thus, ^(Sί) = ^(23).

(4.2) 3~m = £"(«<) = &(%*) = g-{%*).
A connector U is called %-open if jcί/ E 5"(Sl) for every J C £ S .

(4.3) If a connector is Sl-open then the connector belongs to ?ί#<.
Sl-Int X denotes the interior of a set XcS, relative to the

open-topology "̂(21), i.e., Λ-Int X= U{yE^(?ί ) : YCX}.
(4.4) Sί-Int X = 33-Int X for every X C 5 if and only if SΓ{A) =

INTERIOR THEOREM. The following statements are equivalent.
(1) % is a pretopology.
(2) δί-Int X = {x;xUCX for some ί / e i } for every subset

X C S .
(3) If Ue% then x belongs to the 2ί-interior of xU for every

x BS.

Proof. (1) => (2). Let X C 5 and let Y~{xeS:xVCX for
some V E 2l#}. ϊ V ς X for some V E ?ί# if and only if xU C X for
some t/ E SI. Therefore, Y = {JC E 5: xU C X for some 17 e ?ί}. We
show Y is the W- interior of X. If JC V C X for some V E W#, then,
since 3ί# is topological, there is WEST such that yWCxVCX for
every y E xW. Therefore xWCY for some W ε I* if x E Y. This
implies Y £ ^(Sϊ#) If Z C X and Z E &($*) then Z C Y, hence, Y is
the ^'-interior of X. 9l-Int X = ?ί#-Int X by (4.2) and (4.4), thus ?ί-Int
X = { x E S : x t / C X for some C/E31}. (2) obviously implies
(3). (3) Φ (1): If Si is a prenet then %* is a net. Therefore, it is
sufficient to show that Sl# is topological. If x E S and ί7 E ?ί# then,
since x E 2ί-Int (act/), there exists Y E 5 (̂2ί) such that x&YC
xU. For each y E Y, there is (/(y) E 21 such that yU(y) C Y. Define
V by yV = yt/(y) if y ε Y and yV = yt/ otherwise. Then V E ?ϊ# and
xV2CxU. Hence Sί* is topological.

(4.5) If 5̂ (23) C ̂ (Sl) and 23 is a pretopology then 91 is finer than
23.

Proof. If 17 ε 23 then, by the interior theorem, the connector
V: JC -» 23-Int(xl7) is a 23-open connector. V is also Sί-open because
5 2 3 C ̂ (?ί). V C (/ and V E SI#<, hence 17 ε 2ί#<.
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BASIS THEOREM. X is a topology. Then, the set of all ίΓ-open
connectors is a basis of X.

Proof. A mapping V: x G S -> X-Int(xU) is a connector if U E
X, V is T-open and V % U. (4.3) implies V E X. Hence, the set of
all ^Γ-open connectors is a basis of X.

COMPARISON THEOREM. 91 and 33 are topologies. 33c9l if and
only if ^(93) C

Proof. 91 is finer than 33 if and only if 33c9ί. Hence, (4.1)
implies the one direction and (4.5) implies the other.

TOPOLOGY THEOREM. Si is an open topology on S. There is a
unique topology X such that & = SΓ(X).

Proof. Let 91 = {[/; xU E 3~ for every x GS}. U is a connector
and x <=S. Define V by yV = xU if y E x t / and yV = S
otherwise. Then, xV2 = xU and V belongs to 9X if U
does. Therefore, 91 is topological. 9ί is a sharp net because 91 = 9ίx =
9ί#. Let X = 9Γ. Then SΓ(X) = ̂ (91) and X is, by (3.6), the topology
hull of 9ί. ^ = SΓ(9ί) is clear by the definition of 91, hence, SΓ =

The comparison theorem implies the uniqueness.

5. Uniformities. A connector system 91 is called uniform if
for each U E 91, there is V E 91 such that VV"1 ^ £/. If 91 is uniform,
then for each U E 9ί, there are V, W E 91 such that WWX ^ V and
VV-1 ^ [/. W 1 g V implies W ̂  V~\ thus W2 g VV1 g tΛ

(5.1) Every uniform system is topological.
(5.2) If 9ϊ is uniform, then ?l< and 9ίx are uniform.
(5.3) If 9Iλ, A E Λ are uniform then U 9ίA is uniform.
A uniformity is a filter which is uniform. ([1], [2]). If It is the

weakest among the uniformities stronger than 91, then U is called the
uniformity hull of 91.

(5.4) The filter hull 9IX< is the uniformity hull of 9ί if 9ί is uniform.
(5.5) U is a uniformity. Then, a basis 93 of U is a uniform net and

II is the uniformity hull of 33.
(5.6) If 91 is a uniform net then 9^ is the uniformity hull and 91 is a

basis of 9Γ.

Proof Refer to (1.16), (5.4) and (2.7).
(5.7) If ltλ is the uniformity hull of 9lλ, A €Λ, then vllλ is the

uniformity-hull of U 9tλ.
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Proof. (5.3) and (5.4) Φ vltλ is a uniformity. If 11 is a uniformity
and 11 includes all ?Iλ, λ G Λ then 11 includes all Uλ, A E Λ and
U = 1IX<. Hence, II includes ( U l l λ ) x < = vilA.

?ί is a connector system. If there is a uniformity which is the
strongest among the uniformities weaker than 91 then the uniformity is
called the uniformity kernel of Sί. A uniformity kernel is unique if it
exists.

(5.8) Every filter has a uniformity kernel.

Proof Every filter includes the uniformity which contains the
only connector, JC G S -» S (for every-x £S). Let {II: II C ft} denote
the collection of uniformities weaker than a filter ft. (5.7) φ
v{U: 11C ft} is a uniformity. (2.17) states v{il: 11C ft} =

( U {11: U C ft})x< C ftx< = ft. Therefore, the uniformity is included in ft
and the strongest among {11: l l c f t } .

The topology hull of a uniformity U is 1I# because 11 is a topological
filter. J"(U#) is a uniform topology (called the induced topology in [1]
and [2]). Therefore, a topology X corresponds to a uniform topology if
and only if there is a uniformity 11 such that X = U#.

(5.9) X is a topology. There is a uniformity U such that X = 1I#

if and only if X is the topology hull of its uniformity kernel.

Proof Since a topology is a filter, a topology X has the uniform
kernel 93. If X = U# for some uniformity 11 then II C 93 C X. Hence
X = 9?#.

(5.10) ^Γλ, λ G Λ are topologies and ltλ, λ G Λ are uniformities. If
Xλ = ΠJ for each ΛGΛ, then there is a uniformity II such that

Proof (vllλ)
# = (vltt)# = (vT λ)# by (2.22). vilλ is a uniformity

by (5.7).

6. Mappings. Let R be a space and let U be a connector on
R. M is a mapping from a space 5 to R. xM and (xM)U denote the
image of x by M and the image of xM G /? by U respectively. Define
a connector on S by corresponding x of 5 to the set {y G 5: yM G
(JCM)L/}. This connector is denoted by MUM~\ x(MUM~ι) is the
image of x by MUM1. The following formulas are found in [2].

(6.1) M(U Π V)M'' = Mf/M'1 Π MVM'].
(6.2) ί/ ^ V implies Ml/M 1 ^ AίVM'1.
(6.3) (MUM-ιyι = M(U-χ)M~x.
(6.4) (MUM~]) (MVM~]) ^ MUVM~\
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Each connector system 2> on R can be used to construct a connector
system on S by a transfer of each U G X to the connector MUM'1 on
S. M^M~λ denotes the connector system {MUM~]: U 6 S } . The
following propositions are proved by referring to (6.1), (6.2), (6.3) and
(6.4).

(6.5) M^M~ι C WSM-y and (M^M'T = (M3)M"'Γ-
(6.6) M^*M~X C (MSAf"1)' and (MD # M-') # = (MXM"')#.
(6.7) MDXM-' = ( M S M ' T .
(6.8) If Φ is a net, then Λf D M ' 1 is a net.
(6.9) If Ί> is a prenet, then MΊ^M'1 is a prenet.

Proof. Refer to (6.6), (1.23) and (6.8).
(6.10) If 2) is topological then MΊ)M~ι is topological.
(6.11) If Ί> is uniform then MQM~l is uniform.
(6.12) If Ί) is a pretopology then MΊ)M~] is a pretopology.

Proof. (MΊ>ΦM~Y is a topological net by (6.8), (6.10), (1.23) and
(3.1), if 2 is a pretopology. Hence, by (6.6), (MΊ^M~])# is a topologi-
cal net.

(6.13) Ί) and (5 are connector systems on R. MΊ)M~] is stronger
than M(£M~] if 2) is stronger than (£.

(6.14) MΊ}M~ι is finer than Λf(Sitf"1 if 2 is finer than (g.
VM"1 denotes the inverse image of a set V C R by a mapping M.
(6.15) 2 is a prenet on R and 5"(Φ) is the open-topology induced

by Ί}. 2Γ(MΊ}M~]) is the open-topology on S induced by
. Then, {VM1: Y <Ξ 2Γ(^)}CZΓ(MΊ>M-1).

(6.16) {yjlf-f: y G ZΓ(D)} = ^ ( M Φ A f ' f ) if X is a pretopology.

Proo/. If X e ^ i M X M " 1 ) and JC G X, then there is U(x)(=Ί}
such that x(MU(x)M~]) C X. According to the interior theorem, since
3> is a pretopology, y = xM belongs to 2-Int(yi7(jc))G 5"(3>), and
Φ-Int (yl/(jc)) C y/7(x). Let Y = U {2-Int (yt/(jr)): y = JCM,
J C G X } . Then Y G ̂ ( 2 ) and X C yM"1 C U {(yU(x))M~ι: y =
JCM, x G X } C X. Hence, X = y M 1 .

91 is a connector system on S and 2) is a connector system on R. A
mapping Λί from S to i? is called ?\-continuous w.r.t. 2) if ?ϊ is finer
than M^M" 1 . This is a generalization of continuity. Neither connec-
tor system needs to be a topology.

(6.17) M is ?(-continuous w.r.t. 2) if and only if for each [ / E Ϊ
and for each x G S, there are V/E91, i = 1,2,3, ,n such that
n{jcVr. / = l,2,3, ,n}Cjc(MC/M-!).

(6.18) 91 is a prenet. M is ?I-continuous w.r.t. 3) if and only if
for each U G 2) and for each JC G S, there is V G 9ί such that (JCV)M C
(jci7)M.
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CONTINUITY THEOREM. 21 and 2) are connector systems on 5 and
R respectively. 21 is a prenet and ® is a pretopology. M is a mapping
from StojR. M is 2l-continuous w.r.t. Ί) if and only if {YM~ι: YE.

Proof. MQM~l is a pretopology if ® is a pretopology. (4.1) and
(4.5) Φ a prenet SI is finer than a pretopology MQM~] if and only if
^(MSΛf-1) C ̂ (21). Hence, by (6.16), « is finer than Aί®Af"1 if and
only if {YM~ι: Y G ̂ (®)}C ^(2ί).

Comment on the continuity theorem: An implication of the theorem
is a compatibility of continuous mappings and continuous functions
from a topological space (S, if (21)) to a topological space
(!?, 5"(®)). The theorem states that if 2ί is a prenet and © is a
pretopology, then a continuous mapping is topologically continuous and
vice versa.

21 is a connector system on S and © is a connector system on
R. A mapping M from S to i? is called uniformly ^-continuous w.r.t.
® if 21 is stronger than M©Aί" !. 2ί is stronger, then 21 is finer,
therefore, M is 2l-continuous if M is uniformly 21-continuous. (2.6)
implies the converse if 21 is a sharp prenet.

(6.19) M is uniformly 21-continuous w.r.t. 2) if and only if for
each l / e ® , there are V , e » , / = 1,2,3, ,n, such that Π V, g
Afί/Af"1.

(6.20) 21 is a sharp prenet. Λί is 2ί-continuous w.r.t. 3) if and
only if M is uniformly 21-continuous w.r.t. 2).

KERNEL THEOREM. £ is a topology on 5, It is the uniformity
kernel of 3" and © is a uniform net on R. If a mapping M from 5 to R
is ^-continuous w.r.t. 2), then M is uniformly It-continuous w.r.t. 2).

Proo/. The continunity of M implies M S M " ' C ί M2)M"' is a
uniform net by (6.8) and (6.11), if Φ is a uniform net. Then, (M^MΎ
is the uniformity hull of M®M'\ and M Φ M 1 C ί M Φ M ' Γ C U C
ί l Hence, M is uniformly It-continuous w.r.t. 2).

Comment on the kernel theorem: A uniform net is a pretopology
by (3.12) and (5.1), and a topology is a prenet. Therefore, by the
continuity theorem, the kernel theorem can be applied to a continuous
function from a topological space (S, 3~(T)) to a topological space
(/?, ̂ (®)). (5.6) states that 3T is the uniformity hull of a uniform net
2). Since ^(2)) = ̂ "(2)<), 5Γ(Φ) is a topology induced by a
uniformity. The kernel theorem presents an answer to the following
question in a generalized form. If S is a topological space and R is a
uniform-topological space, then what is a uniformity on S, for which
every continuous function from S to R is uniformly continuous?
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7. Mappings. Let Rλ, A E Λ be a system of spaces and let ®λ

be a connector system on Rχ for each λ E Λ. If a topology hull 2" of
U {Mχ SAM;': λ E Λ} exists, then T is called the weak topology on S by

{Mλ: λ E Λ}, w.r.t. {2)λ: λ E Λ}. 3" is the weakest topology among
those for which Mλ, λ E Λ are continuous.

(7.1) £ is the weak topology by {Mλ: λ EΛ}, w.r.t. { S λ : λ G
Λ}. If S λ C β λ C 2>ί#< for every λ EΛ, then 3~ is the weak topology
by those mappings w.r.t. {(£λ: λ E Λ}.

Proof. Refer to (1.5), (1.9), (1.22), (6.5), (6.6) and (6.7).
(7.2) If 2)A, A E Λ are all topological or all of them are pre-

topologies, then there exists a weak topology by every system of
mappings, w.r.t. those connector systems.

Proof. Refer to (6.10), (6.12), (3.3) and (3.13).

WEAK TOPOLOGY THEOREM. 3" is a topology on 5. 3>A is a
connector system on Rλ and Mλ is a 3~-continuous mapping, w.r.t. Φ λ

from S to Rλ, for each λ E Λ. 3~ is the weak topology on S by those
mappings, w.r.t. the given connector systems if for each U E T and for
each JC E S, there is λ E Λ and V E 2)λ such that x(MχVM\x) QxU.

Proof. The hypotheses are: MxQxM~x

l C £ for every λ E Λ and

( U Mλ ΦλMΛ')# < C ( U Mλ ̂ χM~χ]rΦ< C ;TX # < = JT.

Hence, X is the topology hull of U M λ ϊ λ M ; ' .

If there exists a uniformity hull of U Mλ 3)λΛί Λ\ then the uniformity
hull is cajled the weak uniformity by those mappings, w.r.t. the given
connector systems. A weak uniformity is the weakest uniformity
among those for which each Mλ is uniformly continuous w.r.t. 3)λ

(7.3) I! is a weak uniformity w.r.t. { ϊ λ :AGΛ}. If 3>λ C ©A C
2 ^ for each λ E Λ, then II is the weak uniformity by the same
mappings, w.r.t. {(2A: λ E Λ}.

WEAK UNIFORMITY THEOREM. ® A is a unifrom connector system
on Rλ and Mλ is a mapping from S to /?λ for each λ E Λ. Then there
exists a weak uniformity U by {Mλ: A E Λ}, w.r.t. {®λ: A E Λ}, and the
topology hull of II is the weak topology by those mappings, w.r.t. the
given connector systems.
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Proof. Let 93 = U Mλ 35λMϊ and let U = « x < . 93 is uniform and
II is the uniformity hull by (6.11), (5.3) and (5.4). IΓ # < is the topology
hull of 93 by (3.3) and (3.4), as well as that of II. Hence the topology
hull of It is the weak topology by {Mλ:AEΛ}.

Let MΛ, A E Λ be mapping from S to R and let U be a connector on
R. Let Π MλUM'λ

ι denote the connector, JC E 5 -> Π {(yl/)M 1: y =
jcMλ, λ E Λ}.

(7.4) U and V are connectors on R and W is the product of
ΠMλUM'λ

ι and nMxVM~x

l. Then W ^ Π
(7.5) {ΠMλUM-λ

]: U ε ^ C j n MλUMλ

(7.6) { Π MλUM~χ

ι: U E 3)x} = { Π MxUM~x

l: U E ^ } x .
(7.7) If 2) is topological then {Π MXUM\~]: U E Φ} is topological.
(7.8) If 2) is uniform then {Π MλUM~λ

ι: U E 3)} is uniform.
91 is a connector system on S and X is a connector system on R. A

system of mappings Mλ, λ E Λ from S to R is called ^\-equi-continuous
w.r.t. Ί) if ?ί is finer than { Π MKUM\X: U E 3)}, i.e., the latter is included
in ?Γ#<. The mappings are called uniformly ?l-equi-continuous if 91 is
stronger than {Π MλUM~λ

{: U EΊϊ}, i.e., the latter is included in
?ίx<. The uniformly equi-continuity implies uniform continuity of each
mapping in the system. If there exists a topology hull of {Π
MλUM~λ

ι: U E 3>} then the topology hull is called the equi-topology by
{Mλ:λ(Ξ A}.

(7.9) 2) and Q are connector systems o n J ? a n d ? C @ C 3>x<. If
3" is an equi-topology by a system of mappings to /?, w.r.t. 3> then X is
the equi-topology by the same mappings, w.r.t. β.

(7.10) {Π MλUM~λ

u. U E 3)}x#< is the equi-topology by {Mλ: λ <Ξ
Λ}, w.r.t. 2) if 2) is topological.

Proof Refer to (7.7) and (3.3).
If there exists a uniformity hull of {Π MλUM~λ

x: U E 3>} then the
uniformity hull is called the equi-uniformity by {Mλ: λ EΛ}, w.r.t. 2s,
i.e., it is the weakest uniformity for which the mappings are uniformly
equi-continuous.

(7.11) 3> and (S are connector systems on R and 2) C (5 C
3>x<. If lϊ is an equi-uniformity by a system of mappings w.r.t. 2), then
II is the equi-uniformity by the same mappings w.r.t. (5.

(7.12) If 3> is uniform then {nMλUM\ι: U E ^} x < is the equi-
uniformity by {MA: A E Λ}, w.r.t. 3> and the equi-topology is the
topology hull of the equi-uniformity.

Proof Refer to (7.8), (5.4), (3.5) and (7.10).
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8. Uniformalizable topologies. The set of all real num-
bers is denoted by (-00,00). For each positive e, let U(e) denote the
connector on (-00,00) such that xU(e) = {y: \x - y\<e} for every
JC E(-00,00). Then the connector system {U(e): 0<e} is a uniform
net. This is the only connector system, in this paper, we deal with for
the real numbers. ll[α, b] denotes the connector system U( —00,00) if
each connector is restricted on a closed interval [a.b].

/ is a function from a space S to ( - 00, oc). We write a ^ / ̂ b if
the image of / is bounded by a and b. A topology X on 5 is called
completely regular if for each ί / G f and for each x E 5, there is a
^-continuous function / from 5 to [0,1], w.r.t. 1I[O,1] such that xf = 1
and yf = 0 if y does not belong to xU.

The above definition is obviously compatible with the definition of
a completely regular topology on the topological space (5, SΓ(X)).

(8.1) If X is completely regular then X is a weak topology by a
system of functions.

Proof. Refer to the weak topology theorem in §7.

(8.2) A weak topology by functions, w.r.t. lϊ( - 00,00) is completely
regular.

UNIFORMALIZATION THEOREM. A topology is the topology hull of a
uniformity if and only if it is completely regular.

Proof. If X is completely regular then X is a weak topology and
by the weak uniformity theorem in §7, X is the topology hull of the
weak uniformity by the same functions which induce the weak
topology. Conversely, if X is the topology hull of a uniformity II then,
since X = Π#, for each U E X and for each x E S, there is V E II such
that xU = xV. Theorem 5 in §31 of [1] and Theorem 19.1 of [2] state
that there is a uniformly continuous function / such that 0 ^ / ^ l ,
xf = 1 and yf = 0 if y does not belong to JC V.

9. Bounded connectors. A connector U on a space S is
called bounded if there are x, E 5, i = 1,2,3, ,n such that S =
U{XiU: i = 1,2,3, ,n}. A connector U is called absolutely bounded
if for each nonempty set X C 5, there are x, E X, i = 1,2,3, ,n such
that XC U{XiU: i = 1,2,3, ••-,«}. If (7 ̂  V and 1/ is bounded or
absolutely bounded, then V is bounded or absolutely bounded respec-
tively.

A connector system ?l on S is called totally bounded if every
connector in 91 is bounded. This is a generalization of totally bounded
uniformities.
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(9.1) If a connector system ?l is uniform and totally bounded then
every connector in 9ί is absolutely bounded.

Proof. For each U E s?ί, since ?l is uniform, there is V E s?l such
that V~ι V ^ 17. Let X be a nonempty subset of S. There are JC, E 5,
/ = 1,2,3, ,n such that X is included in the union of JC,V, / =
1,2,3, - - ,n and X O J C V is nonempty for every / = 1,2,3, ,n. If
y, eXΠXiV, i = 1,2,3, ,n, then, JC,V C y,V-'V C y,l/ thus X is in-
cluded in the union of y, t/, / = 1,2,3, ,n and each y, belongs to
X. Hence, II is absolutely bounded.

A topology X on 5 is called compact if the open-topology 3~(T) is
compact (in usual sense), i.e., every open covering of S has a finite
subcovering.

(9.2) A topology X is compact if and only if 3* is totally bounded.

Proof. The basis theorem in §4 states that there is an open
connector VEX for each U E X, such that V ^ U. If T is compact
then, since all xV are -Γ-open, V is bounded. Hence, X is totally
bounded if X is compact. Conversly, suppose S = U{Xλ: λ E Λ} for
some Xλ E SΓ(X), A E Λ. Correspond each x E S to one of these Xλ

which contains XA which contains JC and define a connector U. Then f7
is T-open and U E X#< = X. U is bounded if T is totally
bounded. Therefore, there are xt E 5, / = 1,2,3, -,n such that S is
the union of JC/t/, / = 1,2,3, ,/i, which is a finite union of some XA,
λ EΛ.

Comment on (9.2). (9.2) is a generalization of a theorem on
uniform spaces. The open-topology SΓ{X) in (9.2) is not necessarily a
uniform topology. In fact, the theorem is a characterization of the
compact topologies because each open-topology is induced by a
topology.

COMPACT TOPOLOGY THEOREM. If the topology hull W of a unifor-
mity It is compact then It is the uniformity kernel of W.

Proof. First, we prove that a real valued Π- continuous function
on S is uniformly continuous if W is compact. By the definition of
continuity, for each positive e and JC E 5, there is U E II such that
I JC/ — y/1 < β /2 if yExU. There is V E U such that V 2^[/, and
I*/-y/l < e/2 if yEjcV2. By corresponding xV to JC, we obtain a
connector W E ll#. Since lt# is totally bounded by. (9.2), there are
JC, E 5, i* = 1,2,3, •••,*! such that S is included in the union of xtW,
i = 1,2,3, ,n. By the definition of W, there are corresponding V, E
It, i = 1,2,3, ,n such that xtW = xyn and | J C / - yf\ < e/2 if
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y G JC, V]. Let V = Π V,. Then | jcf - yf| < e whenever
y EJCV. Hence, / is uniformly Π-continuous. Let S3 be the unifor-
mity kernel of Π#. ll# is totally bounded and S3 C 1Γ, thus S3 is totally
bounded. Every uniformly S3-continuous function is Π-continuous,
thus it is uniformly 11-continuous. Therefore, W C Π by Theorem 6 in
§33 of [1]. 11 C S3 always holds because S3 is the strongest uniformity
included in 1I#. Hence, 11 is the uniformity kernel of 1I#.

10. Semi-bounded connectors. A connector 1/ on a
space S is called semi-bounded if there is a positive integer n such that
Un is bounded. Un is defined by induction, i.e., Un = Un'ιU. A
connector U is called absolutely semi-bounded if for each nonempty set
X C S, there are JC, G X, i = 1,2,3, ,m and a positive integer n such
thatXC U{jctT/n: i = 1,2,3, * ,m}. If [/^ V and U is semi-bounded
or absolutely semi-bounded, then V is semi-bounded or absolutely
semi-bounded respectively.

A connector system ?l is called bounded if every connector in s?( is
semi-bounded.

(10.1) A uniformity 11 is bounded if and only if every uniformly
ll-continuous function is bounded.

Proof. Refer to Theorem 2 in §32 of [1J.

A connector system s?l is called absolutely bounded if every
connector in SΛ is absolutely semi-bounded.

(10.2) A uniformity H is absolutely bounded if and only if 11 is
totally bounded.

Proof. Refer to Theorem 2 in §33 of [1].

A topology X on a space S is called pseudo-compact if every
T-continuous function (real-valued) is bounded.

PSEUDO-COMPACT TOPOLOGY THEOREM. A topology 3" is pseudo-
compact if and only if the uniformity kernel II of 3" is bounded.

Proof. If 11 is bounded then, since every X-continuous function is
uniformly 11-continuous by the kernel theorem in §6, 3" is pseudo-
compact. On the other hand, every uniformly ll-continuous function
is X-continuous because 11C X. Hence, every uniformly ll-
continuous function is bounded if -Γ is pseudo-compact. By (10.1), 11
is bounded.
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