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CONNECTOR THEORY
HipEGORO NAKANO AND KazuMmi NAKANO

Connector theory is a generalization of topology and
uniformity. Each reflexive binary relation U of a space S
induces a mapping from S to 2° wherein x €S —>xU =
{y:(x,y)€ U}E2° This mapping is called a connector. A
uniformity on S is a set of connectors which meets certain
conditions. The results in this paper include a necessary-suffic-
ient condition for a connector-set to induce a unique topology,
generalizations of continuous mappings and uniformly continu-
ous mappings and characterizations of the connector-sets which
correspond to a specific type of topology, for instance, a compact
topology, a pseudo-compact topology.

If %A is a connector-set on S, let A* denote the connector-set,
{U: for each x €S, there is V(x) € such that xU = xV(x)}. The
following types of connector-sets are defined.

Cone: U=Vand UeUA=> Vel

Net: U, VeA=>W=UNYV for some W e .

Filter: Cone and net.

Sharp: For each U € A*, there is V € A such that V = U.
Prenet: UA” is a net.

Topological: For each U € A and for each x € S, there is V € ¥
such that xV2C xU.

Topology: Topological sharp filter.

Pretopology: U”* is a topological net.

Uniform: For each U € ¥, there is V € ¥ such that VV~'= U.
Uniformity: Uniform filter.

Totally bounded: For each U €U, there are x;, €S, i=
1,2,3,---,m such that S C U x;U.
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Bounded: For each U €, thereare x,€S,i=1,2,3,---,m and
a positive integer n such that S C Ux,U".

Absolutely bounded: For each U € U and for each X C S, there
are x, € X (i=1,2,3,---,m), and a positive integer n such that X C
U xU"

A prenet U induces a topology 7 () (in the usual sense) which will
be called an open-topology. The interior theorem states that 9 is a
pretopology if and only if x is an interior point of xU for every
UeA. A topology corresponds uniquely to an open-topology and
vice versa (The topology theorem). A topology < induces a compact
open-topology if and only if < is totally bounded. The compact
topology theorem states that compactness of 7 (1) for a uniformity U
implies that 1 is the strongest uniformity included in U”.

Suppose U is a connector-set on S and D is a connector set on
R. Let xM € R denote the image of x €S by a mapping M. Each
U €D induces the connector MUM™ on S by x —{z: (xM,zM) €
U}. M is UA-continuous if every MUM ™, U € D belongs to the sharp
filter hull of A. M is uniformly -continuous if they belong to the
filter hull of 2. The continuity theorem states that the definition is
compatible with the continuity (in the usual sense) of M on the
topological space (S, 7 (A)) if A is a prenet. The kernel theorem is: 1 is
the strongest uniformity included in a topology & and D is a uniform
net, then <-continuity implies uniform lI-continuity. The strongest
uniformity included in a topology < is bounded if and only if every
Z-continuous real-valued function is bounded (The pseudo-compact
theorem).

1. Connector systems. Let S be a space on which we
develop generalized structures of topology and uniformity. A mapping
U from S to 2° is called a connector on S if each x of S belongs to its
image xU. The inverse U™ of U is a mapping: x€E
S—{y:x€yU}. Let U and V be connectors. We write U=V if
xU CxV forevery x of S. The connector UV (the product of U and
V) is defined by x €S — U {yV:ye€xU}. UV is denoted by U’ if
U = V. An intersection of connectors {U,: A € A} is the connector
defined by x €S — N{xU,: A €A} €25 and it is denoted by N U,. A
non-empty set of connectors is called a connector system.

A connector system 2 on S is called a cone if V € whenever
U=sVand UEA. LetA~={U: V=U for some VEUA}. Aisa
cone, and A<C B if B is a cone and A C B.

(1.1) A is a cone if and only if A== 9.

(1.2) ACUA=.
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(1.3) A==A= (A== (A)).
(1.4) ACB implies A= C B~.
(1.5 (UAH)“= UAL

A connector system 2 is called a net if for U, V €%, there is
W e such that W=UNV. Let A* denote the set of all finite
intersections of connectors of A. Then A* is a net.

(1.6) AcCA~.

(1.7) W>=A".

(1.8) AC B implies A C B

(1.9 (VA =(UAD~

(1.10) 2 is a net if and only if A*C A=.

(1.11)  Aw==xY=>,

Proof. 1Tt is obvious that €A*<*C A*<. Thus, by (1.6), (1.4) and
(1.8), we obtain A*CA)*CA*<. On the other hand, for each
UeN*<, there are ued, i=123,--,n such  that
N{U:i=1,2,3,---n}=U. Let V, denote a connector: x¢&
S—(xU)U(xU). Then u=sv, i=123-"n and U=
N{V;:i=1,2,3,---n}.

(1.12) A*< <=9,

Proof. Refer to (1.3), (1.7) and (1.11).

A connector system is called a filter if itis a cone and a net. Every
finite intersection of connectors of a filter belongs to the
filter. Therefore, a filter ? is a connector system which satisfies the
following conditions.

() fUENAand U=V then VEU.

2 HUVeEAthen UNVEU

(1.13) A is a filter if and only if A = A* = A=,
(1.14) A is a filter if and only if A = A*~.
(1.15) A=< is a filter if and only if U is a net.

A*< is a filter and B D A=< if VB is a filter and B D A. Therefore, A~ is
called the filter hull of .
(1.16) A*<=29< if and only if A is a net.

A connector system U is called sharp if for each connector system,
{U(x)€ A: x € S}, there is V€A such that xV CxU(x) for every
x€S. Let A*={U:for each x €S, there is V(x)€ A such that
xU =xV(x)}. The connector system 2* is sharp.

(1.17) A is sharp if and only if A* C A=,

(1.18) A is sharp if and only if A*< ="~
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Proof. (1.3) and (1.4) > A* C A= if and only if A*<=A=.

(1.19) ACA*.

(1.20) A** =A*,

(1.21) AC B implies A* C B*.
(1.22) (UAH*=(UAD*.

A connector system is called a prenet if for U, V € U and for each
x € S, thereis W € A such that xW C xU N xV. Every netis a prenet.

(1.23) A”* is a net if and only if A is a prenet.

(1.24) Every sharp prenet is a net.

Proof. (1.10) and (1.23) > A*C A C A*< if A is a prenet. (1.4)
and (1.10) = A*<C A== A= if A is sharp. Hence, A is a net if A is a
sharp prenet.

(1.25) A< =A%,

Proof. Let{V(x): x €S} be a connector system of A<. There is
W(x)€e U for each V(x) such that W(x)=V(x). If W and U are
defined respectively, by W:x €S —>xW(x) and U: x €S —>xV(x),
then, W=U and WeEU*. Hence, U belongs to A*< if Ue
A=<*. Conversely let U be a connector of A*<. The connector U(x) is
defined, for each x €S, by U(x): yES—>yU((x)=xU if y =x and
yU(x) =S otherwise. Then, xU = xU(x) for every x € S, and every
U(x), (x €S), belongs to A~.

(1.26) A C A,

Proof. Each U eY*™ is a finite intersection of connectors
{W;:i=1,2,3,---,n} of A*. There are U; €A for each x € S, such
that xW, =xU, i=12,---.,n. xU=N{xW:i=1,2,3,---n}=
N{xU;:i=1,2,3,---,n} = x(NU;), hence U belongs to A**.

(1.27)  AP* =9,

Proof. Refer to (1.19), (1.8), (1.21), (1.26) and (1.20) in order.
(1.28) W** = A**,

Proof. Refer to (1.6), (1.26) and (1.7).
(1.29) *#F = Y##* = 9*,

Proof. Refer to (1.27) and (1.28).
(].30) ?Ix#< = E)IX#<><#<‘

Proof. W*=#<=90#<#< by (111), and A**<*<= =+ by
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(1.25). (1.29) and (1.13) = w**<=UY*<. Hence, A**<*< = Y*<,
(1.31) U is a sharp filter if and only if A = A**~.

Proof. An implication of (1.13) and (1.18) is the following. Aisa
sharp filter if and only if % = A* = A<= A*. Therefore, A = A*=<if A
is a sharp filter. Conversely, A = A**< implies A*C A*<=AC A%,
thus A =A*. A=A* and A = A< can be proved similarly.

A*< is a sharp filter and AW*<C B if B is a sharp filter and
ACB. Therefore, A**< is called the sharp filter hull of .

(1.32) A is a prenet if and only if A**< = Y*<.

Proof. U is a prenet if and only if A* is a net. A* is a net if and
only if A**<=A*<. The last relation implies A**<* = Y*<* = Y**< =
A*<. On the other hand, A**<* = A*< implies A*<C A**~CA**<* =
A*<, thus A**<=A*<. W**<* =Y**< by (1.25) and (1.27).

(1.33) A is a sharp prenet if and only if A**<=9~.

Proof. If A is a sharp prenet then, by (1.32) and (1.18), A*<=
A*< =A<, A<CA*< CA**<, thus, A**< = A~ implies A== A*~.
(1.34) Ww*<=A*if A is a filter.

Proof. Refer to (1.14), (1.25) and (1.31).

2. Base of filters. A connector system U is called stronger
than a connector system B (or B is weaker than ) if B C A*~.

(2.1) UAis a net. A is stronger than B if and only if B CA-.

(2.2) A is stronger and also weaker than B if and only if
%[X< — %X<‘

A connector system U is called finer than a connector system 8 if
BCA*<. (1.28), (1.19), (1.32) and (1.33) imply (2.3), (2.4), (2.5) and
(2.6) respectively.

(2.3) U is finer than B if and only if A** is stronger than B.

(2.4) A is finer than B if A is stronger than B.

(2.5) A is a prenet. A is finer than B if and only if B C A*~.

(2.6) If Ais a sharp prenet and finer than B then A is stronger than
B.

Let ¥ be a filter on S. A connector system A C ¥ is called a basis
of ¥ if for each U € ¥, there is V € U such that V = U.

(2.7) U is a basis of ¥ if and only if F=A~.

(2.8) The following two statements are equivalent.

(1) U is a basis of .

(2) Ais a net, and U is stronger and weaker than .
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Proof. The statement (2) is, by (1.16) and (2.27), equivalent to
<=UY*<=F*<. These relations follow if F =A< and F = F*<, hence,
the statement (1) implies the statement (2). The converse is obvious.
(2.9) U is a basis of A= if A is a net.

Proof. Refer to (1.15) and (2.7).
(2.10) Every basis of a sharp filter is sharp.

Proof. 1f U is a basis of a sharp filter § then, since (1.31) and (2.7)
imply ¥=%" and A~=F respectively, A"~ =A*=F*=F =
%A<. Hence, by (1.18), U is sharp.

A connector system U is called a prebasis of a filter X if A* is a
basis of .

(2.11) A is a prebasis of ¥ if and only if A*~=F.

(2.12) A filter § is sharp if there is a prebasis.

(2.13) Every basis of § is a prebasis if ¥ is a sharp filter.

(2.14) Every prebasis is a prenet.

Proof. Refer to (1.23) and (2.8).
(2.15) B is a prebasis of A**< if and only if B is a prenet and
2[)(#< = %x#<.

Proof. An implication of (2.11) is the following. B is a prebasis
of W**< if and only if **<=B*<. (1.32) states that ‘B is a prenet if and
Only if %X#< — EB#<’ %[X#< —_ %#< $ %[X#< —_ %#< g %X#( and SBX#< g
Prox#< = YF#< = Y*#<_ Therefore, A*< = B*< if and only if B*<=
B*< and A**< = B**=<,

(2.16) & is a sharp filter. A connector system 2 C ¥ is a prebasis
of & if and only if % is a prenet and finer than 3.

The following two statements are equivalent if ¥ and & are filters.

(1) F is stronger than &.

2) §26.

An intersection of filters is a filter. Therefore, for each set of filters
{&.: A € A}, there exists the strongest filter among the filters weaker
than all ¥,, A € A. Likewise, there exists the weakest filter among the
filters stronger than all ¥, A €A. The two filters are respectively
denoted by A%, and v,.

(2.19) If ¥, is a basis of ¥, for each A € A then (U 2, )* is a basis

of v§,.

Proof. The following relations are implied respectively by (1.3),
(1.11), (1.5, .77 and (2.17). (UAY<“=(UAY<“=(UA)=
(UAD<=(UF)=vF. Hence, by (2.7),(UU,) is abasis of v,.

(220) (vE ) =(UZ)*~.
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(2.21) if A, is a prebasis of ¥, for each A € A, then (U, )" is a
prebasis of (v¥,)”.

Proof. {, =A<, AE€A and (vF¥,)*=(UF,)* by (2.11) and
(2.20). (1.22) and (1.27) = (UAZY*=(UA,)Y*. Therefore,

(V) = (VAT = (VAN = (U AN = (U A"
=(UA)*~

(2.22) (v&)*=(vED”.
(2.22) is a generalization of Theorem 5 in §28 of [1].

3. Topologies. A connector system U is called topological if
for each U € U and for each x € S, there is V € ¥ such that xV?C xU.

(3.1) If A is topological then A=, A* and A* are topological.

(3.2) If 9A,, A €A are all topological then U 9, is topological.

A topological sharp filter is called a topology; i.e., a topology I on
S is a connector system which satisfies the following conditions:

() fuvedthenUNVeESZI.

2 U=V and U€ 3 then VE I

(3) For each system {U(x) € 3: x €S}, there exists U € I such
that xU = xU(x) for every x € S.

(4) For each U € 3T and for each x € S, there exists V € I such
that xV*C xU.

The use of the word “topology” is not
conventional. Compatibility of the terminology is cleared in the fol-
lowing section. Topologies are filters, hence, a topology is stronger
than another if and only if the former includes the latter. A topology
hull of a connector system 2 is the weakest topology among the
topologies stronger than 2[. A topology hull is unique if it exists.

(3.3) A**< is the topology hull of A if A is topological.

Proof. Refer to (1.31) and (3.1).
(3.4) If one of A, A*, A= and A* has a topology hull, then all of
them have the same topology hull.

Proof. If 3 isatopology and 3 includes 9 then < includes all 9=,
A~ and A”* because I = IT>*<. If I includes one of A=, A* and A” then
3 includes 2, thus I includes the other two.

(3.5) A”* is the topology hull of A if A is a topological filter.

Proof. Refer to (1.34) and (3.3).
(3.6) A= is the topology hull of U if and only if A is topological
sharp prenet.
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Proof. Refer to (3.3) and (1.33).
(3.7) If A is a topological prenet, then A*< is the topology hull of

Proof. Refer to (3.3) and (1.32).
(3.8) Every basis of a topology 3 is a topological sharp prenet, .
and 3 is its topology hull.

Proof. 3T =9 W'~ =Y=F<=3¥<=F =9<. A basis of a
topology is topological, hence, 3 is the topology hull of .

(3.9) A topology 3 is the topology hull of every prebasis of J.

(3.10) If 3, is the topology hull of %, for each A € A then (v 3,)*
is the topology hull of U ¥,.

Proof. (vZ,)* is the topology hull of UZ, by (3.2), (3.3) and
(2.20). If 3 is a topology which includes all %,, A € A then < includes
all 3,, A € A. Hence the both unions have the same topology hull.

A connector system U is called a pretopology if A* is a topological
net. Every topology is, by (3.1), a pretopology.

(3.11) Every pretopology is a prenet.

(3.12) Every topological prenet is a pretopology.

(3.13) If %A is a pretopology then A*< is the topology hull of A and
A is a prebasis of A*<.

Proof. (1.27) and (3.1) > 2**< is topological if A is a
pretopology. Then, A**< is the topology hull of A. A**<=A*< by
(3.11) and (1.32), hence, A*< is the topology hull of 2.

(3.14) If every U,, A EA is a pretopology then (U,)* is a
pretopology.

Proof. (1.27) and (1.22) > (UU,)*=(UAD**, and (3.1) and
(3.2) > (U ADH** is topological if A%, A € A are topological. (U A, )*
is a net because (U )Y*=(UNA,)Y*. Hence, (UU,)* is a
pretopology.

4. Open sets. The word ‘topology’ has been already used for
a connector system. To avoid confusion, a topology in usual sense is
called an open-topology. An open-topology 7 is a family of subsets of
S and

N X, €T, AeEA>UX EYT,

2 X, YET=>XNYET,

B 9 Sedg.

Each prenet 2 on S induces an open-topology in the following
way. A set X of S isan open set if for each x € X, there is U € U such
that xU C X. This open-topology is denoted by ().
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(4.1) %A and B are prenets. Then T(B)C T (A) if A is finer than
B, and T (A) = T(B) if A*< = B*<.

Proof. (2.5) states that BC A*< if a prenet U is finer than
B. Thus, for each U € B and for each x € S, there is V € ¥ such that
xV CxU. Hence, 7(B)C T A). If A*<=B*then A C B*<and BC
A*<, thus, T (A) = T (B).

“42) TA=9AY=5H)=TA".

A connector U is called UA-open if xU € T () for every x € S.

(4.3) If aconnector is A-open then the connector belongs to A*~.

A-Int X denotes the interior of a set X C S, relative to the
open-topology 7 (), i.e., A-Int X = U{Y €T (A): Y C X}.

(4.4) U-Int X =B-Int X for every X C S if and only if T(A) =
T (D).

INTERIOR THEOREM. The following statements are equivalent.

(1) A is a pretopology.

(2) UA-Int X={x;xUCX for some U E A} for every subset
XCS.

(3) If U€¥ then x belongs to the ¥A-interior of xU for every
x€eSs.

Proof. (1) > (2). Let XCS and let Y={xeS:xVCX for
some VEW*}. xV C X for some V €A* if and only if xU C X for
some U €A. Therefore, Y ={x € S: xU C X for some U € A}. We
show Y is the #{”-interior of X. If xV C X for some V € A*, then,
since A” is topological, there is W € ¥* such that yW C xV C X for
every y € xW. Therefore xW C Y for some W e N* if x €Y. This
implies Y € 7(¥*). If ZC X and Z € 7(A*) then Z C Y, hence, Y is
the A*-interior of X. A-Int X = A*-Int X by (4.2) and (4.4), thus A-Int
X={x€8:xUCX for some UEU. (2) obviously implies
3). B =>M): If A is a prenet then A* is a net. Therefore, it is
sufficient to show that A* is topological. If x €S and U € %* then,
since x € A-Int (xU), there exists Y € J(A) such that x EY C
xU. Foreach y €Y, there is U(y) € ¥ such that yU(y)C Y. Define
VbyyV=yU(y)if y € Y and yV = yU otherwise. Then V € %* and
xV?C xU. Hence %* is topological.

4.5) If 7(*B)C J(A) and B is a pretopology then U is finer than
B.

Proof. 1f U €D then, by the interior theorem, the connector
V:x —B-Int(xU) is a B-open connector. V is also A-open because
TEBCIX). VCU and Ve A*, hence U € Y*<,
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Basis THEOREM. I is a topology. Then, the set of all T-open
connectors is a basis of J.

Proof. A mapping V:x €S — 3I-Int(xU) is a connector if U €
3. Vis 3-openand V=U. (4.3)implies V&€ 3. Hence, the set of
all 3-open connectors is a basis of 3.

CompPARISON THEOREM. U and B are topologies. BC U if and
only if 7(B)C I ).

Proof. A is finer than B if and only if BCA. Hence, (4.1)
implies the one direction and (4.5) implies the other.

ToroLoGY THEOREM. J is an open topology on S. There is a
unique topology < such that 7 = 7(I).

Proof. Let A ={U;xU € J forevery x €S}. U is a connector
and x€S. Define V by yV=xU if yexU and yV=S
otherwise. Then, xV?’=xU and V  belongs to A if U
does. Therefore, ¥ is topological. 9 is a sharp net because 9 = A* =
A*. Let I =A=. Then T(3I)=F(A)and T is, by (3.6), the topology
hull of A. T =TF ) is clear by the definition of A, hence, T =
J(3). The comparison theorem implies the uniqueness.

5. Uniformities. A connector system ¥ is called uniform if
for each U €%, there is V€ such that VV'= U. If U is uniform,
then for each U €, there are V, W € such that WW'=V and
VV'=U W'=YV implies W=V thus W*=VV'= U

(5.1) Every uniform system is topological.

(5.2) If A is uniform, then A= and A are uniform.

(5.3) If A,, A €A are uniform then U9, is uniform.

A uniformity is a filter which is uniform. ([1], [2]). If U is the
weakest among the uniformities stronger than U, then 11 is called the
uniformity hull of 9.

(5.4) The filter hull %< is the uniformity hull of % if U is uniform.

(5.5) Uisauniformity. Then, a basis B of U is a uniform net and
1 is the uniformity hull of 8.

(5.6) If A is a uniform net then A< is the uniformity hull and A is a
basis of A~.

Proof. Refer to (1.16), (5.4) and (2.7).
(5.7) If U, is the uniformity hull of ,, A €A, then vll, is the
uniformity-hull of U ¥,.
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Proof. (5.3)and (5.4) = vl, is a uniformity. If U is a uniformity
and U includes all A,, A €A then U includes all U,, A €A and
U =U*. Hence, U includes (UU,)*<=vl,.

A is a connector system. If there is a uniformity which is the
strongest among the uniformities weaker than % then the uniformity is
called the uniformity kernel of %A. A uniformity kernel is unique if it
exists.

(5.8) Every filter has a uniformity kernel.

Proof. Every filter includes the uniformity which contains the
only connector, x €S — S (for every-x €S). Let {lI: 1 C &} denote
the collection of uniformities weaker than a filter %. (5.7) >
vil: UC ¥} is  a  uniformity. (2.17) states v{l: UCF}=
(U{I: UCEFPD“CF*<=x. Therefore, the uniformity is included in ¥
and the strongest among {lI: I C §}.

The topology hull of a uniformity 1l is 1I* because 1l is a topological
filter. 7 (1) is a uniform topology (called the induced topology in [1]
and [2]). Therefore, a topology 3 corresponds to a uniform topology if
and only if there is a uniformity U such that 3 = 11*,

(5.9) < isatopology. There is a uniformity Ul such that T =1*
if and only if 3 is the topology hull of its uniformity kernel.

Proof. Since a topology is a filter, a topology 3 has the uniform
kernel 8. If 3 = 1" for some uniformity 11 then UC B C I. Hence
I ="

(5.10) 3, A € A are topologies and 1I,, A € A are uniformities. If
I, =11 for each A €A, then there is a uniformity 11 such that
(v’ =11"

Proof. (v1,)*=(vII))*=(vZ,)* by (2.22). vll, is a uniformity
by (5.7).

6. Mappings. Let R be a space and let U be a connector on
R. M is a mapping from a space S to R. xM and (xM)U denote the
image of x by M and the image of xM € R by U respectively. Define
a connector on S by corresponding x of S to the set {yeS: yM &
(xM)U}. This connector is denoted by MUM™'. x(MUM™) is the
image of x by MUM™'. The following formulas are found in [2].

6.) M(UNVM'=MUM'NMVM™".

(6.2) U=V implies MUM'=MVM™'.

6.3) MUM™)Y'=MU "M

6.4) (MUM™) (MVM™)=MUVM™'".
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Each connector system 2 on R can be used to construct a connector
system on S by a transfer of each U € D to the connector MUM ™' on
S. M®M™ denotes the connector system {MUM™": U € ©}. The
following propositions are proved by referring to (6.1), (6.2), (6.3) and
(6.4).

6.5 MD>MI'CMDIM ") and MDM)*=(MDM™)~.
6.6) MD*M'C(MDIM™")* and MD*M ) =(MDM™")*.
6.7) MM '=(MDM™)".

(6.8) If ®is a net, then MDM™' is a net.

(6.9) If D is a prenet, then MDM ™' is a prenet.

Proof. Refer to (6.6), (1.23) and (6.8).

(6.10) If D is topological then M DM is topological.
(6.11) If D is uniform then M DM ™" is uniform.

(6.12) If D is a pretopology then MDM ™' is a pretopology.

Proof. (M2*M™)* is a topological net by (6.8), (6.10), (1.23) and
(3.1), if D is a pretopology. Hence, by (6.6), (M2 M™")* is a topologi-
cal net.

(6.13) D and € are connector systems on R. M ®M ™' is stronger
than MECM ' if D is stronger than €.

(6.14) MM is finer than MEM ' if D is finer than €.

YM ™' denotes the inverse image of a set Y C R by a mapping M.

(6.15) Disapreneton R and 7 (D) is the open-topology induced
by . J(M®M™") is the open-topology on S induced by
M®M™'. Then, {YM . YETD)NCITMDM™").

6.16) {YM: YET(D)}=IFTMDM™") if D is a pretopology.

Proof. If X€J(MDM™') and x € X, then there is U(x)ED
such that x(MU (x)M ") C X. According to the interior theorem, since
D is a pretopology, y = xM belongs to D-Int(yU(x)) € J(2), and
D-Int (yU(x)) C yU(x). Let Y = U {D-Int (yUx)):y = xM,
x€X}. Then YET(D)and X C YM™' C U {(yUx)M':y =
xM, x € X} C X. Hence, X = YM™'.

A is a connector system on S and ® is a connector system on R. A
mapping M from S to R is called A-continuous w.r.t. D if 9 is finer
than MM ™'. Thisis a generalization of continuity. Neither connec-
tor system needs to be a topology.

(6.17) M is A-continuous w.r.t. 2 if and only if for each U €D
and for each x €S, there are V., €, i=1,2,3,---,n such that
N{xVi:i=1,23,---,n}Cx(MUM™).

(6.18) Ais a prenet. M is A-continuous w.r.t. D if and only if
for each U € D and for each x € S, there is V € A such that (xV)M C
(xU)M.
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ConTINUITY THEOREM. U and ® are connector systems on S and
R respectively. Aisa prenetand D is a pretopology. M is a mapping
from S to R. M is A-continuous w.r.t. D if and only if {YM™": Y €
TORCIT ).

Proof. M®M™ is a pretopology if D is a pretopology. (4.1) and
(4.5) > a prenet U is finer than a pretopology M O®M ™' if and only if
TMOIM)YC T A). Hence, by (6.16), A is finer than M DM ' if and
only if {YM: YETD)}ICIT.

Comment on the continuity theorem: An implication of the theorem
is a compatibility of continuous mappings and continuous functions
from a topological space (S,J9(¥)) to a topological space
(R, 7(®)). The theorem states that if A is a prenet and D is a
pretopology, then a continuous mapping is topologically continuous and
vice versa.

A is a connector system on S and D is a connector system on
R. A mapping M from S to R is called uniformly ¥-continuous w.r.t.
D if A is stronger than MDM™'. A is stronger, then A is finer,
therefore, M is A-continuous if M is uniformly ?A-continuous. (2.6)
implies the converse if U is a sharp prenet.

(6.19) M is uniformly %-continuous w.r.t. ® if and only if for
each Ue®, there are V,€, i=1,2,3,---,n, such that NV, =
MUM™.

(6.20) A is a sharp prenet. M is -continuous w.r.t. D if and
only if M is uniformly -continuous w.r.t. .

KERNEL THEOREM. I is a topology on S, U is the uniformity
kernel of 3" and ® is a uniform net on R. If a mapping M from S to R
is $-continuous w.r.t. ®, then M is uniformly ll-continuous w.r.t. D.

Proof. The continunity of M implies M®PM'C 3. MDM'isa
uniform net by (6.8) and (6.11), if ® is a uniform net. Then, M DM )<
is the uniformity hull of M®M™', and MOIM'C(MDPM)"ClUC
Z. Hence, M is uniformly U-continuous w.r.t. ®.

Comment on the kernel theorem: A uniform net is a pretopology
by (3.12) and (5.1), and a topology is a prenet. Therefore, by the
continuity theorem, the kernel theorem can be applied to a continuous
function from a topological space (S, 7(3)) to a topological space
(R, T (D)). (5.6) states that D= is the uniformity hull of a uniform net
D. Since T (D)=9(D), J(D) is a topology induced by a
uniformity. The kernel theorem presents an answer to the following
question in a generalized form. If S is a topological space and R is a
uniform-topelogical space, then what is a uniformity on S, for which
every continuous function from S to R is uniformly continuous?
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7. Mappings. LetR,, A € A be a system of spaces and let D,
be a connector system on R, for each A € A. If a topology hull ¥ of
U{M,D,M;'": A € A} exists, then 3 is called the weak topology on S by
{M,: A €A}, wrt. {D,: A €EA}. T is the weakest topology among
those for which M,, A € A are continuous.

(7.1) T is the weak topology by {M,: A €A}, wrt. {D,: A E
A} I D, CE, CD for every A €A, then I is the weak topology
by those mappings w.r.t. {&,: A € A}.

Proof. Refer to (1.5), (1.9), (1.22), (6.5), (6.6) and (6.7).

(7.2) If ®©,, A €A are all topological or all of them are pre-
topologies, then there exists a weak topology by every system of
mappings, w.r.t. those connector systems.

Proof. Refer to (6.10), (6.12), (3.3) and (3.13).

WEAK TopoLoGy THEOREM. < is a topology on S. D, is a
connector system on R, and M, is a 3-continuous mapping, w.r.t. ®,
from S to R,, for each A EA. T is the weak topology on S by those
mappings, w.r.t. the given connector systems if for each U € 3 and for
each x €S, there is A EA and V €72, such that x(M,VM;") C xU.

Proof. The hypotheses are: M, ®,M;'C 3 for every A € A and

TC(UMDM™.
(UM\(DMI)*“C(UMDMIy* C & =1

Hence, 3 is the topology hull of UM, 2D,M;".

If there exists a uniformity hull of U M, ®,M7’, then the uniformity
hull is ca]led the weak uniformity by those mappings, w.r.t. the given
connector systems. A weak uniformity is the weakest uniformity
among those for which each M, is uniformly continuous w.r.t. ,.

(7.3) U is a weak uniformity w.r.t. {2,: A €A}. If D, CE, C
D3 for each A €A, then 1l is the weak uniformity by the same
mappings, w.r.t. {€,: A €A}

WEAK UNIFORMITY THEOREM. D), is a unifrom connector system
on R, and MA is a mapping from S to R, for each A € A. Then there
exists a weak uniformity U by {M,: A € A}, w.r.t. {D,: A €A}, and the
topology hull of U is the weak topology by those mappings, w.r.t. the
given connector systems.
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Proof. Let 8= UM, D,M;" and let I =LB*<. B is uniform and
I is the uniformity hull by (6.11), (5.3) and (5.4). 1I**< is the topology
hull of B by (3.3) and (3.4), as well as that of lI. Hence the topology
hull of U is the weak topology by {M,: A € A}.

Let M,, A € A be mapping from S to R and let U be a connector on
R. Let N M,UM;' denote the connector, x €S — N {(yU)M;":y =
xM,, A €A}

(7.4) U and V are connectors on R and W is the product of
N M,UM;"' and N M,VM;'. Then W= NMUVM;"

(7.5 {NMUM;" UeD}Cc{NnMUM;": UeE2D}.

(7.6) {NM,UM;" UeD}={NMUM;" UecD}.

(7.7) If Distopological then { N M,UM;": U € D}is topological.

(7.8) If D is uniform then {N M,UM;': U € ®} is uniform.

A is a connector system on S and 2 is a connector system on R. A
system of mappings M,, A € A from S to R is called -equi-continuous
w.r.t. D if Ais finer than { N M,UM;'": U € D}, i.e., the latter is included
in 2**<.  The mappings are called uniformly 9-equi-continuous if A is
stronger than {N M,UM;': U € ®}, i.e., the latter is included in
A*<.  The uniformly equi-continuity implies uniform continuity of each
mapping in the system. If there exists a topology hull of {N
M, UM;': U € D} then the topology hull is called the equi-topology by
{M,: X EA}.

(7.9) 2 and € are connector systemson R and 2 C € C D*<. If
3 is an equi-topology by a system of mappings to R, w.r.t. ® then 3 is
the equi-topology by the same mappings, w.r.t. €.

(7.100 {N M, UM;": U € D}Y*< is the equi-topology by {M,: A €
A}, w.r.t. D if D is topological.

Proof. Refer to (7.7) and (3.3).

If there exists a uniformity hull of { N M,UM;": U € 2} then the
uniformity hull is called the equi-uniformity by {M,: A € A}, w.r.t. D,
i.e., it is the weakest uniformity for which the mappings are uniformly
equi-continuous.

(7.11) 2 and € are connector systems on R and 2CCC
<. If llis an equi-uniformity by a system of mappings w.r.t. 2, then
11 is the equi-uniformity by the same mappings w.r.t. €.

(7.12) If D is uniform then {N M,UM;'": U € D}*< is the equi-
uniformity by {M,: A €A}, w.ort. D and the equi-topology is the
topology hull of the equi-uniformity.

Proof. Refer to (7.8), (5.4), (3.5) and (7.10).
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8. Uniformalizable topologies. The set of all real num-
bers is denoted by (—,»). For each positive ¢, let U(e) denote the
connector on (—=,) such that xU(e)={y:|x —y|<e€} for every
x €(—»,o). Then the connector system {U(e): 0 <e} is a uniform
net. This is the only connector system, in this paper, we deal with for
the real numbers. U[a, b] denotes the connector system 1I(— o, «) if
each connector is restricted on a closed interval [a.b].

f is a function from a space S to (—o,). We write a =f=b if
the image of f is bounded by a and b. A topology 3 on S is called
completely regular if for each U € 3 and for each x € S, there is a
J-continuous function f from S to [0, 1], w.r.t. 1[0, 1] such that xf =1
and yf =0 if y does not belong to xU.

The above definition is obviously compatible with the definition of
a completely regular topology on the topological space (S, 7 (3)).

(8.1) If ¥ is completely regular then I is a weak topology by a
system of functions.

Proof. Refer to the weak topology theorem in §7.

(8.2) A weak topology by functions, w.r.t. 1I( — «, =) is completely
regular.

UNIFORMALIZATION THEOREM. A topology is the topology hull of a
uniformity if and only if it is completely regular.

Proof. If 3 is completely regular then 3 is a weak topology and
by the weak uniformity theorem in §7, 3 is the topology hull of the
weak uniformity by the same functions which induce the weak
topology. Conversely, if 3 is the topology hull of a uniformity 11 then,
since 3 = 11*, for each U € 3 and for each x € S, there is V € 1l such
that xU = xV. Theorem 5 in §31 of [1] and Theorem 19.1 of [2] state
that there is a uniformly continuous function f such that 0=f =1,
xf=1and yf=0if y does not belong to xV.

9. Bounded connectors. A connector U on a space S is
called bounded if there are x, €S, i=1,2,3,---,n such that S =
U{xU:i=1,2,3,---,n}. A connector U is called absolutely bounded
if for each nonempty set X C S, there are x, € X, i =1,2,3,---,n such
that XC U{xU:i=1,2,3,---,n}. If U=V and U is bounded or
absolutely bounded, then V is bounded or absolutely bounded respec-
tively.

A connector system 9 on S is called totally bounded if every
connector in % is bounded. This is a generalization of totally bounded
uniformities.
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(9.1) If a connector system 2 is uniform and totally bounded then
every connector in Y is absolutely bounded.

Proof. For each U € ¥, since 9 is uniform, there is V € ¥ such
that V7'V = U. Let X be a nonempty subset of S. There are x, € S,
i=1,2,3,---,n such that X is included in the union of x;V, i=
1,2,3,---,n and X Nx;V is nonempty for every i =1,2,3,---.n. If
yEXNXV,i=1,2,3,---,n, then, xVCyV'VCyU thus X is in-
cluded in the union of yU, i =1,2,3,---,n and each y, belongs to
X. Hence, U is absolutely bounded.

A topology 3 on S is called compact if the open-topology 7 () is
compact (in usual sense), i.e., every open covering of S has a finite
subcovering.

(9.2) A topology I is compact if and only if I is totally bounded.

Proof. The basis theorem in §4 states that there is an open
connector V € 3 for each U € ¥, such that V=U. If ¥ is compact
then, since all xV are 3-open, V is bounded. Hence, I is totally
bounded if I is compact. Conversly, suppose S = U{X,: A € A} for
some X, € 7(3). A €A. Correspond each x €S to one of these X,
which contains X, which contains x and define a connector U. Then U
is J-open and U JI*=73. U is bounded if I is totally
bounded. Therefore, there are x, €S, i =1,2,3,---,n such that S is
the union of x;U, i =1,2,3,---,n, which is a finite union of some X,.
A EA.

Comment on (9.2). (9.2) is a generalization of a theorem on
uniform spaces. The open-topology 7 (3) in (9.2) is not necessarily a
uniform topology. In fact, the theorem is a characterization of the
compact topologies because each open-topology is induced by a
topology.

Compact ToroLoGY THEOREM. If the topology hull 11* of a unifor-
mity 1l is compact then 1l is the uniformity kernel of 117,

Proof. First, we prove that a real valued ll-continuous function
on S is uniformly continuous if 11* is compact. By the definition of
continuity, for each positive € and x € S, there is U €1l such that
|xf—yf|<e/2 if yExU. There is V&€ U such that V’= U, and
|xf —yf|<e/2 if y ExV? By corresponding xV to x, we obtain a
connector W € 11, Since 11* is totally bounded by. (9.2), there are
x;, €S, i=1,2,3,---,n such that S is included in the union of x W,
i=1,2,3,---,n. By the definition of W, there are corresponding V, €
U, i=1,2,3,---,n such that xW=xV, and |xf-yf|<e/2 if
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y € x;Vi Let V=nNV. Then |xf—yf|<e whenever
y € xV. Hence, f is uniformly ll-continuous. Let & be the unifor-
mity kernel of 11*. 11” is totally bounded and R C 11*, thus 2 is totally
bounded. Every uniformly 2-continuous function is 1I-continuous,
thus it is uniformly 1l-continuous. Therefore, 3 C 11 by Theorem 6 in
§33 of [1]. 11 C XV always holds because 2 is the strongest uniformity
included in 11*. Hence, 1l is the uniformity kernel of 117

10. Semi-bounded connectors. A connector U on a
space S is called semi-bounded if there is a positive integer n such that
U" is bounded. U" is defined by induction, ie., U"=U""U. A
connector U is called absolutely semi-bounded if for each nonempty set
X CS, there are x;, € X, i =1,2,3,---,m and a positive integer n such
that X C U{x;U":i=1,2,3,---.m}. If U=V and U is semi-bounded
or absolutely semi-bounded, then V is semi-bounded or absolutely
semi-bounded respectively.

A connector system  is called bounded if every connector in % is
semi-bounded.

(10.1) A uniformity 1l is bounded if and only if every uniformly
11-continuous function is bounded.

Proof. Refer to Theorem 2 in §32 of [1].

A connector system 9 is called absolutely bounded if every
connector in Y is absolutely semi-bounded.

(10.2) A uniformity 1l is absolutely bounded if and only if 1 is
totally bounded.

Proof. Refer to Theorem 2 in §33 of [1].

A topology I on a space S is called pseudo-compact if every
J-continuous function (real-valued) is bounded.

Pseupo-CoMPACT ToroLOGY THEOREM. A topology 3 is pseudo-
compact if and only if the uniformity kernel 11 of I is bounded.

Proof. If 1l is bounded then, since every J-continuous function is
uniformly ll-continuous by the kernel theorem in §6, I is pseudo-
compact. On the other hand, every uniformly 11-continuous function
is J-continuous because lIC 3. Hence, every uniformly 1I-
continuous function is bounded if ¥ is pseudo-compact. By (10.1), 11
is bounded.
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