THE CONVERSE TO THE SMITH THEOREM FOR Z_p -HOMOLOGY SPHERES

STEPHEN J. WILLSON

Let X be a finite CW complex with the Z_p homology of an n-sphere. Let Z_p act cellularly on X. The Smith theorem asserts that the fixed point set X^{Z_p} has the Z_p homology of an m-sphere for $-1 \le m \le n$. A converse to this Smith theorem is proved.

Suppose X is a finite CW complex, p is a prime, and $\alpha: X \to X$ is a homeomorphism of period p (i.e., α^p is the identity map). Let X^{Z_p} denote the set of points in X left fixed by α . The well-known Smith theorem states that, if X has the Z_p homology of a disk (respectively, an n-sphere), then X^{Z_p} has the Z_p homology of a disk (respectively, some m-sphere where $-1 \le m \le n$ and the (-1)-sphere is the empty set). The converse to this theorem for the case where X has the Z_p homology of a disk appears in a paper of Lowell Jones [2].

This current paper shows how to extend Jones' methods to obtain the converse for the case where X has the Z_p homology of an n-sphere. Specifically, we prove the following theorem:

THEOREM 1. Let p be a prime integer and n a positive integer. Let K be a connected finite CW complex satisfying $H_n(K; Z_p) = Z_p$ and for which, if $i \neq n$ and $i \neq 0$, $H_i(K; Z)$ is a finite group of order prime to p.

Then there exist a finite, simply connected, connected CW complex X containing K as a subcomplex and a cellular homeomorphism $\alpha: X \to X$ of period p so that

- $(1) \quad X^{Z_p} = K$
- (2) For some m > 0, $H_i(X; Z) = 0$ if $i \neq 0$, $i \neq n + 2m$.
- (3) If $H_n(K; Z) = Z \bigoplus A$ where A is a finite abelian group of order prime to p, then $H_{n+2m}(X; Z) = Z$.
- (4) If $H_n(K; Z) = Z_{p^s} \bigoplus A$ where A is a finite abelian group of order prime to p, and $s \ge 1$, then $H_{n+2m}(X; Z) = Z_{p^s}$.

Here Z denotes the ring of integers and Z_{p^s} denotes the cyclic group of order p^s . It is well-known that $H_n(K; Z)$ must satisfy the hypotheses of either (3) or (4) since $H_n(K; Z_p) = Z_p$.

The proof is similar to Jones' proof of [2; Theorem 1.1], but utilizes some further algebraic lemmas. The algebraic lemmas are given in §1, and their topological analogues are given in §2. The proof of the theorem appears in §3.

If p is not prime, the methods still apply and yield a CW complex X possessing a semi-free Z_p action α with fixed point set K. The cases (3) and (4) are, however, not exhaustive.

I wish to thank the referee for strengthening the original version of Theorem I.

1. Algebraic lemmas. Let $R = Z[Z_p]$, the integral group ring for the group Z_p with generator g. Elements of R will be written $\sum a_i g^i$ where $a_i \in Z$. All summations run over $i = 0, \dots, p-1$. The element g^0 is the identity, often written e. In some formulas we shall use the identifications $a_p = a_0$, $a_{p-1} = a_{-1}$, $a_{p+1} = a_1$. Denote by σ the element $\sigma = \sum g^i$. If A and B are left R modules and $f: A \to B$ is a homomorphism, denote by Ker f the kernel of f; by Coker f the cokernel of f: by Image f the image of f. A left f module f is said to be trivial provided f m = f for f and f and f is said to

LEMMA 1. Let $\epsilon: R \to Z_{p^s}$ be the augmentation map which takes $\sum b_i g^i$ to $\sum b_i \mod p^s$. View Z_{p^s} as a trivial left R module. There is an exact sequence of left R modules

$$R \bigoplus R \stackrel{\mu}{\rightarrow} R \stackrel{\epsilon}{\rightarrow} Z_{n^s} \rightarrow 0$$

and a homomorphism $\lambda: R \to \operatorname{Ker} \mu$ such that

- (1) λ is monic;
- (2) Coker $\lambda = Z_{p^s}$.

Proof. Define μ , if $(a,b) \in R \oplus R$, by

$$\mu(a,b) = (e-g)a + p^{s-1}\sigma b$$

where

$$\sigma = e + g + g^2 + \cdots + g^{p-1} \in R.$$

Define $\lambda: R \to R \oplus R$, if $a \in R$, by

$$\lambda(a) = (p^{s-1} \sigma a, (g-e)a).$$

We now verify that these maps have the properties asserted above:

Claim 1. $\epsilon \mu = 0$. This follows since

$$\epsilon\mu(a,b) = \epsilon((e-g)a + p^{s-1}\sigma b) = a\epsilon(e-g) + p^{s-1}b\epsilon(\sigma)$$
$$= a\cdot 0 + p^{s-1}b\cdot p = 0,$$

using the left R module structure of Z_{p^s} .

Claim 2. Ker $\epsilon \in \text{Image } \mu$. If $\epsilon(\sum a_i g^i) = 0$, then $\sum a_i \equiv 0 \mod p^s$. Let

$$\sum b_i g^i = \sum a_i g^i - \left(\sum a_i\right) p^{-1} \sigma.$$

Then $\sum b_i = 0 \in \mathbb{Z}$, and it is easy to see that $\sum b_i g^i = (e - g)c$ for some $c \in \mathbb{R}$. Hence

$$\mu\left(c,\left(\sum a_i\right)p^{-s}e\right)=(e-g)c+\left(\sum a_i\right)p^{-1}\sigma=\sum a_ig^i.$$

Claim 3. Image $\lambda \subset \ker \mu$.

To see this, if $a \in R$, note

$$\mu\lambda(a) = (e-g)p^{s-1}\sigma a + p^{s-1}\sigma(g-e)a = 0.$$

Claim 4. λ is monic.

To see this, note $\ker \lambda = \ker(g - e) \cap \ker(p^{s-1}\sigma)$ where (g - e) denotes the homomorphism of multiplication by (g - e), and $p^{s-1}\sigma$ denotes multiplication by $p^{s-1}\sigma$. Then

$$\ker \lambda = \{a \sigma \colon a \in Z\} \cap \left\{ \sum a_i g^i \colon p^{s-1} \left(\sum a_i \right) = 0 \in Z \right\} = 0.$$

Claim 5. Coker $\lambda = Z_{p^s}$.

To see this, note

$$\operatorname{Ker} \mu = \left\{ \left(\sum a_{i}g^{i}, \sum b_{i}g^{i} \right) : (e - g) \sum a_{i}g^{i} + p^{s-1}\sigma \sum b_{i}g^{i} = 0 \right\}$$

$$= \left\{ \left(\sum a_{i}g^{i}, \sum b_{i}g^{i} \right) : a_{i} - a_{i-1} + p^{s-1} \left(\sum b_{i} \right) = 0 \text{ for all } i \right\}.$$

Summing these latter conditions over *i*, we obtain $\sum a_i - \sum a_i + p^s \sum b_j = 0$. Hence $\sum b_j = 0$ and $a_i = a_{i-1}$ for all *i*. Thus

Ker
$$\mu = \left\{ \left(a\sigma, \sum b_i g^i \right) : a \in \mathbb{Z}, \sum b_i = 0 \right\}.$$

Define γ : Ker $\mu \to Z_{p^s}$ by

$$\gamma \left(a\sigma, \sum b_i g^i \right) = a + p^{s-1} [pb_0 + (p-1)b_1 + (p-2)b_2 + \cdots + b_{p-1}] \mod p^s.$$

Then γ is surjective. Moreover, $\gamma \lambda = 0$, which may be seen as tollows:

$$\gamma\lambda\left(\sum a_{i}g^{i}\right) = \gamma\left(p^{s-1}\left(\sum a_{i}\right)\sigma, \sum (a_{i-1}-a_{i})g^{i}\right)$$

$$= p^{s-1}\left(\sum a_{i}\right) + p^{s-1}[p(a_{p-1}-a_{0}) + (p-1)(a_{0}-a_{1}) + \dots + (a_{p-2}-a_{p-1})]$$

$$= p^{s-1}\left[\sum a_{i} + a_{0}(-p+p-1) + a_{1}(-(p-1)+p-2) + \dots + a_{p-2}(1-2) + a_{p-1}(p-1)\right]$$

$$= p^{s-1}pa_{p-1} \equiv 0 \mod p^{s}.$$

Thus to prove Claim 5 there remains to show only that Ker $\gamma \subset$ Image λ . But if $\gamma(a\sigma, \sum b_i g^i) = 0$, then

(1)
$$a + p^{s-1}[pb_0 + (p-1)b_1 + \cdots + b_{p-1}] \equiv 0 \mod p^s.$$

For arbitrary $c_0 \in \mathbb{Z}$, define $c_{i+1} = c_i - b_{i+1}$ for $i = 0, 1, \dots, p-2$. Then $b_0 = c_{p-1} - c_0$ since $\sum b_i = 0$, and

$$\lambda \left(\sum c_{i}g^{i} \right) = \left(p^{s-1} \left(\sum c_{i} \right) \sigma, \sum (c_{i-1} - c_{i})g^{i} \right)$$

$$= \left(p^{s-1} [c_{0} + (c_{0} - b_{1}) + (c_{0} - b_{1} - b_{2}) + \cdots + (c_{0} - b_{1} - \cdots - b_{p-1})] \sigma, \sum b_{i}g^{i} \right)$$

$$= \left(p^{s-1} [p c_{0} - (p-1)b_{1} - (p-2)b_{2} - \cdots - b_{p-1}] \sigma, \sum b_{i}g^{i} \right).$$

By (1) we may choose c_0 so

$$p^{s}c_{0} = a + p^{s-1}[(p-1)b_{1} + (p-2)b_{2} + \cdots + b_{p-1}].$$

But then $\lambda(\sum c_i g^i) = (a\sigma, \sum b_i g^i)$.

LEMMA 2. Let $\epsilon: R \to Z$ be the augmentation map. There is a map $\lambda: R \to R$ so

$$0 \to Z \to R \stackrel{\wedge}{\to} R \stackrel{\epsilon}{\to} Z \to 0$$
 is exact.

Proof. Let $\lambda(a) = (e - g)a$ for $a \in R$. Then $\epsilon \lambda = 0$ and ker $\epsilon =$ Image λ easily. Moreover

$$\operatorname{Ker} \lambda = \left\{ \sum a_{i}g^{i} : \sum (a_{i} - a_{i-1})g^{i} = 0 \right\}$$

$$= \left\{ \sum a_{i}g^{i} : a_{0} = a_{1} = a_{2} = \dots = a_{p-1} \right\}$$

$$= \left\{ b\sigma : b \in Z \right\} \cong Z.$$

LEMMA 3. If q is an integer prime to p, and $\epsilon: R \to Z_q$ is the augmentation map, then there is an exact sequence

$$0 \to R \to R \xrightarrow{\epsilon} Z_a \to 0.$$

Proof. This is Lowell Jones' Lemma 1.1 [2; p. 53].

2. Topological lemmas. The major steps in the proof of Theorem I consist of applications of the following lemmas, which may be regarded as topological analogues of the lemmas of §1.

We shall let R be $Z[Z_p]$. Unless otherwise indicated, all homology groups have integer coefficients. Note that if X is a CW complex and $\alpha: X \to X$ is a homeomorphism of period p, then $H_i(X; Z)$ inherits the structure of a left R-module.

LEMMA A. Suppose X is a connected, simply connected, finite CW complex with a cellular Z_p action given by $\alpha: X \to X$ such that $X^{Z_p} = K$. Suppose $H_i(X; Z) = 0$ for 0 < i < m. Assume $H_m(X; Z)$ contains a finite subgroup A of order prime to p such that A is a trivial left R-submodule of $H_m(X)$. Then there exists a connected, simply connected, finite CW complex Y containing X as a subcomplex and possessing a cellular Z_p action extending α such that

- $(1) \quad Y^{Z_p} = K$
- (2) $H_i(Y; Z) = 0$ for 0 < i < m.
- (3) $H_m(Y; Z) = H_m(X; Z)/A$ as an R-module.
- (4) The inclusion induces an isomorphism of $H_i(X; Z)$ onto $H_i(Y; Z)$ for i > m.

Proof. This is essentially the proof of Theorem 1.1 in [2]. We note that it suffices by induction to assume $A = Z_q$ where q is prime to p. Obtain, by the Hurewicz theorem, a map $k: S^m \to X$ which realizes a generator of $Z_q \subset H_m(X; Z)$. We shall attach p cells of dimension (m+1) to X along the maps $k, \alpha k, \alpha^2 k, \cdots, \alpha^{p-1} k: S^m \to X$. Call the resulting CW complex Y_1 ; clearly we obtain a cellular Z_p action on Y_1 by extending α to permute the points in the added cells. Then

 $H_i(Y_1; Z) = H_i(X; Z)$ for $i \neq m, m + 1$, and the long exact sequence of the pair (Y_1, X) yields the exact sequence of R modules

$$0 \to H_{m+1}(X) \to H_{m+1}(Y_1) \to R \xrightarrow{\epsilon} H_m(X) \to H_m(Y_1) \to 0.$$

Since Z_q is a trivial R module, the map denoted ϵ may be identified with the augmentation map from R onto Z_q . It follows that $H_m(Y_1) = H_m(X)/Z_q$ and

$$0 \to H_{m+1}(X) \to H_{m+1}(Y_1) \to \text{Ker } \epsilon \to 0$$
 is exact.

By Lemma 3, Ker $\epsilon \cong R$ and hence is projective. Thus $H_{m+1}(Y_1) = H_{m+1}(X) \bigoplus R$. The Hurewicz map $h: \pi_{m+1}(Y_1) \to H_{m+1}(Y_1)$ is surjective (see Hu [1; p. 167] or G. W. Whitehead [3]). Hence we may represent the element $e \in R \subset H_{m+1}(Y_1)$ by a map $j: S^{m+1} \to Y_1$. As before, attach p cells of dimension (m+2) to Y_1 along the maps $j, \alpha j, \dot{\alpha}^2 j, \dots, \alpha^{p-1} j$ to obtain a CW complex Y; we may extend the map α over Y. Then $H_i(Y) = H_i(Y_1)$ for $i \neq m+2, m+1$, and

$$0 \rightarrow H_{m+2}(Y_1) \rightarrow H_{m+2}(Y) \rightarrow R \rightarrow H_{m+1}(Y_1) \rightarrow H_{m+1}(Y) \rightarrow 0$$

is exact. By construction the map of R into $H_{m+1}(Y_1)$ is an isomorphism onto the summand isomorphic to R. Hence

$$H_{m+2}(Y) = H_{m+2}(Y_1) = H_{m+2}(X), \ H_{m+1}(Y) = H_{m+1}(X).$$

The complex Y satisfies the conclusions of the lemma.

LEMMA B. Suppose X is a connected, simply connected, finite CW complex with a cellular Z_p action given by $\alpha: X \to X$ such that $X^{Z_p} = K$. Suppose $H_i(X) = 0$ if 0 < i < m. Assume $H_m(X)$, $H_{m+1}(X)$, and $H_{m+2}(X)$ all are trivial as R modules, and that $H_m(X) = Z$, $H_{m+1}(X; Z_p) = 0$, $H_{m+2}(X; Z_p) = 0$. Then there exists a connected, simply connected, finite CW complex Y which contains X as a subcomplex and possesses a cellular Z_p action extending α such that

- $(1) \quad Y^{Z_p} = K$
- (2) $H_i(Y; Z) = 0$ for $0 < i \le m + 1$
- (3) $H_{m+2}(Y; Z) = Z$ as a trivial R module
- (4) The inclusion induces isomorphisms from $H_i(X; Z)$ onto $H_i(Y; Z)$ for i > m + 2.

Proof. Obtain by the Hurewicz theorem a map $k: S^m \to X$ which represents the generator of $H_m(X)$. Attach p cells of dimension

(m+1) along the maps $k, \alpha k, \dots, \alpha^{p-1}k$ to obtain a CW complex Y_1 ; and extend the map α over Y_1 via the obvious permutation of points on the added cells. Then $H_i(Y_1) = H_i(X)$ for $i \neq m, m+1$; and

$$0 \rightarrow H_{m+1}(X) \rightarrow H_{m+1}(Y_1) \rightarrow R \xrightarrow{\epsilon} H_m(X) \rightarrow H_m(Y_1) \rightarrow 0$$

is exact. By construction, ϵ may be regarded as the augmentation map from R onto Z. Hence $H_m(Y_1) = 0$ and

$$0 \rightarrow H_{m+1}(X) \rightarrow H_{m+1}(Y_1) \rightarrow \text{Ker } \epsilon \rightarrow 0$$

is exact. Since $H_{m+1}(X; Z_p) = 0$ and $H_{m+1}(X)$ is a trivial R module, by Lemma A we may obtain a complex $Y_2 \supset Y_1$ with an action extending α so $H_i(Y_2) = 0$ for 0 < i < m+1, $H_{m+1}(Y_2) = \text{Ker } \epsilon$, and $H_i(Y_2) = H_i(Y_1) = H_i(X)$ by the inclusion map for i > m+1. Let λ be the homomorphism of Lemma 2. By the Hurewicz theorem we represent $\lambda(e) \in H_{m+1}(Y_2)$ by a map $j: S^{m+1} \to Y_2$. Adjoin cells to Y_2 along the maps $j, \alpha j, \dots, \alpha^{p-1} j$ to obtain a complex Y_3 with action α . Then $H_i(Y_3) = H_i(Y_2)$ for $i \neq m+2, m+1$, and

$$0 \to H_{m+1}(Y_2) \to H_{m+2}(Y_3) \to R \xrightarrow{\lambda} H_{m+1}(Y_2) \to H_{m+1}(Y_3) \to 0$$

is exact. Since Image $\lambda = \text{Ker } \epsilon$, $H_{m+1}(Y_3) = 0$ and

$$0 \rightarrow H_{m+2}(Y_2) \rightarrow H_{m+2}(Y_3) \rightarrow \text{Ker } \lambda \rightarrow 0$$

is exact. Since $H_{m+2}(Y_2) = H_{m+2}(X)$ is a trivial R module and $H_{m+2}(X; Z_p) = 0$, we may apply Lemma A to the subgroup $H_{m+2}(Y_2) \subset H_{m+2}(Y_3)$ to obtain a complex $Y \supset Y_3$ so $H_i(Y) = 0$ for i < m+2 and $H_{m+2}(Y) = \text{Ker } \lambda = Z$. This Y satisfies the conclusions of the lemma.

LEMMA C. Suppose X is a connected, simply connected, finite CW complex with a cellular Z_p action given by $\alpha: X \to X$ such that $X^{Z_p} = K$. Suppose $H_i(X) = 0$ if 0 < i < m. Assume $H_m(X)$, $H_{m+1}(X)$, and $H_{m+2}(X)$ are all trivial as R modules and $H_m(X) = Z_p$ for some $s \ge 1$; and both $H_{m+1}(X)$ and $H_{m+2}(X)$ are finite groups of order prime to p. Then $H_{m+2}(X; Z_p) = 0$. Then there exists a connected, simply connected, finite CW complex Y containing X and with a cellular Z_p action extending α such that

- $(1) \quad Y^{Z_p} = K$
- (2) $H_i(Y; Z) = 0$ for $0 < i \le m + 1$

- (3) $H_{m+2}(Y; Z) = Z_{p^s}$ as a trivial R module
- (4) The inclusion induces isomorphisms from $H_i(X)$ onto $H_i(Y)$ for i > m + 2.

Proof. Obtain by the Hurewicz theorem a map $k: S^m \to X$ representing a generator for $Z_{p^*} = H_m(X)$. Attach p cells of dimension (m+1) along the maps $k, \alpha k, \dots, \alpha^{p-1} k$ to obtain a complex Y_1 with action α extending the previous α . Then $H_i(Y_1) = H_i(X)$ for $i \neq m$, m+1, and

$$0 \rightarrow H_{m+1}(X) \rightarrow H_{m+1}(Y_1) \rightarrow R \xrightarrow{\epsilon} H_m(X) \rightarrow H_m(Y_1) \rightarrow 0$$

is exact. By construction, the map ϵ may be identified with the augmentation map of Lemma 1. Then $H_m(Y_1) = 0$ and

$$0 \rightarrow H_{m+1}(X) \rightarrow H_{m+1}(Y_1) \rightarrow \operatorname{Ker} \epsilon \rightarrow 0.$$

Apply Lemma A to the subgroup $H_{m+1}(X)$ of $H_{m+1}(Y_1)$ to obtain a complex $Y_2 \supset Y_1$ so that $H_i(Y_2) = 0$ for 0 < i < m+1; $H_{m+1}(Y_2) = \text{Ker } \epsilon$; $H_i(Y_2) = H_i(X)$ for i > m+1.

Let $\mu: R \oplus R \to \operatorname{Ker} \epsilon$ be the homomorphism in Lemma 1. By the Hurewicz theorem we may represent $\mu(e,0)$ by a map $j: S^{m+1} \to Y_2$ and we may represent $\mu(0,e)$ by a map $l: S^{m+1} \to Y_2$. Adjoin p cells of dimension (m+2) via $j, \alpha j, \dots, \alpha^{p-1} j$ and also p cells via $l, \alpha l, \dots, \alpha^{p-1} l$; call the resulting complex Y_3 and extend α over Y_3 in the obvious fashion. Then $H_i(Y_3) = H_i(Y_2)$ for $i \neq m+1, m+2$; and

$$0 \to H_{m+2}(Y_2) \to H_{m+2}(Y_3) \to R \oplus R \xrightarrow{\mu} H_{m+1}(Y_2) \to H_{m+1}(Y_3) \to 0$$

is exact. Since Image $\mu = \text{Ker } \epsilon$, $H_{m+1}(Y_3) = 0$; and

$$0 \to H_{m+2}(Y_2) \to H_{m+2}(Y_3) \to \operatorname{Ker} \mu \to 0$$

is exact. Apply Lemma A to the complex Y_3 and the subgroup $H_{m+2}(Y_2) \subset H_{m+2}(Y_3)$; this is possible since $H_{m+2}(X; Z_p) = 0$ and $H_{m+2}(X)$ is a trivial R module. We obtain a complex Y_4 so $H_i(Y_4) = 0$ for 0 < i < m+1, $H_{m+2}(Y_4) = \text{Ker } \mu$, $H_i(Y_4) = H_i(X)$ for i > m+2. Let λ be the homomorphism of Lemma 1, and represent $\lambda(e)$ by a map $r: S^{m+2} \to Y_4$. Attach p cells of dimension (m+3) to Y_4 along $r, \alpha r, \cdots, \alpha^{p-1} r$ to obtain a complex Y. Then $H_i(Y) = H_i(Y_4)$ for $i \neq m+2$, m+3 and

$$0 \rightarrow H_{m+3}(Y_4) \rightarrow H_{m+3}(Y) \rightarrow R \xrightarrow{\lambda} H_{m+2}(Y_4) \rightarrow H_{m+2}(Y) \rightarrow 0$$

is exact. By Lemma 1, λ is monic, so $H_{m+3}(Y_4) = H_{m+3}(Y)$; and $H_{m+2}(Y) = \operatorname{Coker} \lambda = Z_{p^s}$. The complex Y satisfies the conclusions of the lemma.

3. Proof of Theorem I. We must first deal with $\pi_1(K)$. Assume that n > 1. Choose a finite generating set b_1, \dots, b_q for $\pi_1(K)$ by Van Kampen's theorem. We may kill b_1 by adjunction of 2-cells along $b_1, \alpha b_1, \dots, \alpha^{p-1}b_1$, yielding a CW complex W. Since the image of b_1 in $H_1(K; Z)$ has order prime to p, we find $H_2(W; Z) =$ $H_2(K; Z) \oplus R$, and we may proceed as in Lemma A to remove the R 3-cells. Leal summand by adjunction of similarly b_2, b_3, \dots, b_q . In this manner we obtain a simply-connected finite CW complex X_1 with cellular action $\alpha: X_1 \to X_1$ of period p so $H_i(X_1; Z) =$ $H_i(K; Z)$ for i > 1, and $X_{\perp}^{Z_p} = K$. Apply Lemma A to the group $H_2(X_1; Z)$. Continuing inductively in this manner, we obtain a simplyconnected, finite CW complex X_n such that $H_i(X_n) = H_i(K)$ for i > n; $H_i(X_n) = 0$ for i < n; $H_n(X_n) = Z$ if Case (3) of Theorem I is pertinent; and $H_n(X_n) = Z_{p^s}$ if Case (4) of Theorem I is pertinent. Now we apply repeatedly Lemma B for Case (3) and Lemma C for Case (4). After finitely many steps, the process terminates since $H_i(K) = 0$ for sufficiently large i.

If n=1, we modify the above proof slightly. We fit $kill\ H_1(K;Z)$ except for the summand Z or Z_{p^s} by Lemma A. Call the resulting complex W_1 , and choose a finite generating set b_1, \dots, b_q for $\pi_1(W_1)$. We may assume that the image of b_1 in $H_1(W_1)$ is a generator of $H_1(W_1)=Z$ or Z_{p^s} . If the image of b_i is represented by $m_i \in Z$ for $j=2,\dots,q$, then $b_ib_1^{-m_i}$ has image 0 in $H_1(W_1)$, and the elements $b_1,b_2b_1^{-m_2},\dots,b_qb_1^{-m_q}$ generate $\pi_1(W_1)$. Kill $b_2b_1^{-m_2},\dots,b_qb_1^{-m_q}$ as in the case where n>1; we obtain a complex W_2 for which $\pi_1(W_2)=Z$ or Z_{p^s} , and $H_1(W_2;Z)=H_1(K;Z)$ for $i\geq 2$. Apply Lemma B or C to W_2 . The remainder of the proof follows as for the case n>1.

REFERENCES

Received May 1, 1974.

^{1.} Sze-Tsen Hu, Homotopy Theory, Academic Press, New York, 1959.

^{2.} Lowell Jones, The converse to the fixed point theorem of P. A. Smith: I, Ann. of Math., 94 (1971), 52-68.

^{3.} G. W. Whitehead, On spaces with vanishing low-dimensional homotopy groups, Proc. Nat. Acad. Sci., U.S.A., 34 (1948), 207-211.