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INVARIANT SUBSPACES OF COMPACT OPERATORS
ON TOPOLOGICAL VECTOR SPACES

ARTHUR D. GRAINGER

Let (//, r) be a topological vector space and let T be a compact
linear operator mapping H into H (i.e., T[V] is contained in a
r- compact set for some r- neighborhood V of the zero vector in
H). Sufficient conditions are given for (H,τ) so that T has a
non-trivial, closed invariant linear subspace. In particular, it is
shown that any complete, metrizable topological vector space
with a Schauder basis satisfies the conditions stated in this
paper. The proofs and conditions are stated within the
framework of nonstandard analysis.

Introduction. This paper considers the following problem:
given a compact operator T (Definition 2.11) on a topological vector
space (H, r), does there exist a closed nontrivial linear subspace F of H
such that T[F] CF? Aronszajn and Smith gave an affirmative answer to
the above question when H is a Banach space (see [1]). Also it is
easily shown that the Aronszajn and Smith result can be extended to
locally convex spaces. However, it appears that other methods must
be used for nonlocally convex spaces.

Sufficient conditions are given for a topological vector space so that
a compact linear operator defined on the space has at least one
nontrivial closed invariant linear subspace (Definitions 2.1 and 4.1,
Theorems 3.2, 4.2 and 4.7). In particular, it is shown that a Frechet
space with a Schauder basis satisfies the conditions given in this paper
(Theorem 5.6). The basic techniques are an outgrowth of Bernstein's
and Robinson's methods in [2], [3] and [4]; consequently, the proofs and
arguments of the main results are stated within the framework of
nonstandard analysis. It will be assumed that the reader is familiar
with Abraham Robinson's book on Nonstandard Analysis [11] or W. A.
J. Luxemburg's paper on Monad Theory [10].

1. Nonstandard topological vector spaces. Let us
briefly examine the basic concepts of nonstandard topological vector
space theory that are used in this paper. A more detailed discussion of
nonstandard topological vector spaces can be found in [6] and [7]. Let
C be the complex numbers, let H be a vector space over C and let BΓ be
the full set theoretical structure of H U C. Throughout this paper
(H, r) will denote a complex topological vector space H with topology
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r. Also we will assume that the nonstandard structure *BΓ of H U C is
a higher order ultrapower enlargement of Bτ (see [6], Chapter 1, §1).

The nonnegative integers, positive integers and the real numbers
are designated by N, N+ and R respectively. Moreover, the map x h* *JC
of H U C into *H U *C is the identity on N, R, C and H. As usual, the
extensions to *C of the algebraic operations +, and | | on C are
denoted by the same symbols. The same is true of the extension to *R
of the ordering < on R.

An element A E *C is called an infinitesimal if and only if | A | g δ
for each positive δ in R and finite if and only if | A | ̂  δ for some
positive δ E R. If A E *C is not finite then A is called infinite. An
element A E *C is called near-standard if there is an element in C,
denoted by °λ, such that A - °λ is an infinitesimal. It can be shown that
°λ exists and is unique if and only if A E *C is finite.

The extension to *H of vector addition, + , on H is again denoted
by the same symbol and the scalar multiplication operation on *C x *H
takes (A,z) to λz. For each JC in H, μτ(jc) is defined by

(1.1) μr(x)= n{*V\ VEΛC(JC)}

where ΛC(JC) is the filter of r-neighborhoods of x. Since Jίτ(x) =
{V + JC I V E ΛC(0)} it follows that

(1.2) μτ(x) = μΛ0) + X

for every JC in H. It is easy to see that μτ(0) + μτ(0) = μτ(0) and
Aμτ(0)Cμτ(0) for finite A in *C ([6], Proposition 1.6).

An element z of *H is called r-near standard if and only if
z E μτ(jc) for some JC in H which is equivalent to z - JC E μτ(0) for some
JC in H. The set of all r- near-standard points of *H will be denoted by
nsτ(*H). It is easily shown that nsτ(*H) is closed under addition and
multiplication by finite elements of *C. If r is Hausdorff then for each
z E nsτ(*H) there exists an unique point in //, denoted by °z, such that
z-°z(Ξ μτ(0). Note that H C nsτ(*H).

For A C*ίf, the r-standard part of A, stτ(A), is defined by

(1.3) stτ(A) = {x GH\z Eμτ(jc) for some zEA}.

Consequently, stτ(A)CH for A C*H and it can be shown that

(1.4) stτ(*A) = A

for any A CH ([6], Proposition 1.2). Observe that stτ({z}) = {°z} for
each z E nsτ(*H) if T is Hausdorff.
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Another interesting concept, although not pertinent to the main
objective, is the notion of a finite point. The set of τ finite points,
finτ(*H), is defined by

(1.5) finτ(*H) = Π{aμτ(0)\a G *R is positive and infinite}.

It can be shown that z Gfinτ(*H) if and only if for VGΛCίO) there
exists an rcGN+ such that z €z*(nV) ([6], Corollary
1.15). Furthermore, nsτ(*H) Cfinτ(*H) and finτ(*ίf) is closed under
addition and multiplication by finite elements of *C (see [6], Proposition
1.16 or [7], Theorem 1.2).

Henson and Moore first explored the relationship between r-
bounded subsets of H and finτ(*H) by establishing the fact that A CH
is τ-bounded if and only if *A Cfinr(*ίf) ([7], Theorem 2.1). This idea
can be generalized still further.

PROPOSITION 1.6. // A C*/f is internal and A Cfinτ(*ίf) then
stτ(A) is T'bounded.

Proof. Let A C*H be internal (i.e., A G*0>(H)) and assume
A Cfinτ(*//). Let VGΛC(O) be closed and balanced and let
φ(ί?(ίf),R, V) designate the following sentence.

"If XE^(H) such that X C δV for some positive δ G R then
either X CSV for all positive δ G R or there exists a positive
δ0GR such that XCδV for δ o < δ and XjtδV for 0 < δ <

o

Since V is balanced it follows that φ(9>(H)9R, V) is true in BΓ and
consequently φ(*SP(H), *R, * V) is true in * £ Γ . Since A Cfinr(*H), we
have A Cλ*V for positive, infinite λ G *R. If A CA*V for each
positive A G *R then A C*V. If there exists a positive λ 0G*R such
that ACλ*V for Λ 0<λ and A£λ*V for 0 < λ < λ 0 then λ0 is
finite. Indeed, if λ0 were infinite then 2~1λ0 is infinite and 2~1λ0<λ0

which would imply Aft2~xk^V. But Λ Cfinτ(*H)C2Iλ0*V. In
either case there exists a positive δ G R such that A C
*(δV). Therefore, stτ(Λ) is abounded since stτ(Λ) Cstτ(*(δV)) = δV
by (1.4).

Finally, we need to consider the relationship between internal
linear subspaces of *H and linear subspaces of H. Let 9<ϊf{H) denote
the collection of all finite dimensional linear subspaces of H. We will
refer to elements of *2P9>(H) as *-finite dimensional subspaces of
*H. Also, let us symbolize °F = stτ(F) for F G *9Sf{H).
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PROPOSITION 1.7. // (H, r) is a metrizable topological vector space
and if F E *&y(H) then °F is a τ-closed linear subspace of H.

By definition of &!f(H\ there exists d: #SP(H)-»N such that
d(F)EN is the dimension of F for F 6 f y ( H ) . Therefore
*d: *#S?(H)-»*N and *d(F) is called the *-finite dimension of F for

PROPOSITION 1.8. Lei (fί, τ) be a Hausdorff topological vector
space and let F, F, E *9&>{H) swc/t tfiαί F CF,. // *d(F,) = *d(F) + 1
ί/ierc °F C°FX and any ίwo points of °F, are linearly dependent modulo
°F

The proofs of the above propositions may be found in [61, Chapter
I, §8.

2. Property 1. We now have the machinery needed to give
sufficient conditions for a compact operator on the complex topological
vector space (H, r) to have a nontrivial r- closed invariant linear
subspace.

Let ££{H) denote the vector space of all linear transformations of
H into H. We will refer to elements of *i?(fί) as internal linear
transformation of *H into *//.

DEFINITION 2.1. A topological vector space (H, τ) is said to satisfy
Property 1 if and only if there exist P E *^>(Jci) and Hη E *&&(H) such
that the following conditions hold.

(1) The internal linear transformation P maps *H into Hη.
(2) For V E ΛC(0) there exists W E ΛC(0) such that P[* W] C * V.
(3) If x E H then P(x) - x E μτ (0).

We shall show that compact operators (Definition 2.11) on complex
spaces which satisfy property 1 have nontrivial closed invariant linear
subspaces.

Before discussing the proof of the above statement, let us first
examine the influence of property 1 on a r- continuous linear transfor-
mation Γ, i.e., a linear operator, defined on H. The idea is to define
T' = P*ΓP, where P satisfies the condition of Property 1, and show that
if F C H η is a *-finite dimensional subspace such that T'[F]CF then
Γ[°F]C°F. Thus we will have a means of generating invariant sub-
spaces for Γ.

Assume (//, r) satisfies Property 1 and let P E *£(H) and Hη E
*9*£f(H) be determined by Property 1. Also throughout this section, it
will be assumed that (JFί, r) is Hausdorff. We see immediately
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(2.2) /f = stτ(Hη) = 0Hη and JC=

for x EH. Also, Condition 2 of Definition 2.1 implies

(2.3) P[μτ(0)]Cμτ(0).

PROPOSITION 2.4. If z E nsτ(*H) then P(z) G ns τ(*ίί), °[P(z)] = °z
and z-P(z)e/x τ (0).

(See [6], Proposition II.2.)

Let T be a linear operator on H, i.e., TE^(H) and T is
continuous, and consider *Γ. It can be shown that

(2.5)

which implies

(2.6)

*T[μΛ0)]CμΛ0)

VT(z)] = Γ(°z)

for z Ens τ(*H) (see [11], Theorem 4.2.7 or [6], Propositions 1.4 and
II.3). By defining

(2.7) Γ' = P*ΓP

We obtain an internal linear transformation that maps *H into
Hη. Furthermore

(2.8) T[μΛ0)]Cμτ(0)

by (2.3) and (2.5). If a momentary abuse of language is permitted then
we can say that the next proposition shows how well Tf approximates T
on near-standard points.

PROPOSITION 2.9. Let T 6 <£(H) be τ-continuous. IfzE nsτ(*H)
then Γ'(z)Ensτ(*if) and °[Γ(z)] = T(°z).

(See [6], Proposition II.5.)

As promised, the following proposition gives a useful way of
generating invariant linear subspaces for r- continuous T

PROPOSITION 2.10. Let F e W ( H ) such that FCHV and let
T E £(H) be ^continuous. If Γ[F]CF then T[°F] C°F.
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Proof. If x E °F then z - x E μ ; (0) for some z EF which implies
°z=x. We infer T(x)= T(°z) = °[Γ(z)] by Proposition 2.9. There-
fore, T'[F]CF implies Γ ' (z)GF which implies Γ(JC)E

°F. Consequently Γ[°F]C°F.

We are particularly concerned with the relationship between T and
T' when T is compact. So let us now formally define compact
operators.

DEFINITION 2.11. Let (H, T) be a topological vector space. A
map T E 5£{H) is called a compact operator if and only if there exists a
V GJVT(0) such that T[V] is contained in a r-compact set.

Compact operators are continuous, a fact easily derived from the
boundedness of compact sets. Equivalently T E 5£{H) is compact if
and only if the r-closure of T[V] is compact for some V E Λfτ(O) since
(H,τ) is regular. Moreover, using Robinson's characterization of
compact sets, we arrive at still another equivalent form of Definition
2.11, i.e., TE^(H) is compact if and only if *Γ[*V] Cnsτ(*H) for
some VEΛC(O) (see [11], Theorem 4.1.13). The next proposition
shows that this idea is transferable to 7".

PROPOSITION 2.12. // TE<£(H) is compact then there exists a
WeJίτ(0) such that T'[*W]Cnsr(*H).

Proof. If T[V] is compact for some VEΛC(O) then

*Γ[*V]C*(Γ[V])Cnsτ(*/ί)

(see [11], Theorem 4.1.13 or [6], Proposition I.I). By Condition 2 of
Definition 2.1, there exists W<ΞJfτ(0) such that P[*W]C*V which
implies *TP[*W] Cnsτ(*H). Therefore,

T'[*W] = P[*TP[*W]] Cnsτ(*/J)

by Proposition 2.4.

3. Invariant subspaces. As stated earlier, we want to use
Property 1 (Definition 2.1) to produce a nontrivial, closed invariant
linear subspace for compact operator T on H. In the previous section,
we established some interesting relationships between operators and
Property 1; however, to give some motivation for defining Property 1,
let's examine the following outline of a nonstandard proof of the
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existence of a nontrivial, closed invariant linear subspace for a compact
operator T when we assume the underlying space (H,τ) is a Hubert
space (see [4]).

First a chain of closed invariant linear subspaces of T is generated
mainly by the use of an internal orthogonal projection P of *H onto Hω

where Hω is an internal, ω- dimensional subspace of *fί, ω E * N - N ,
with the property that any standard point x E H is infinitesimally close
to some point of Hω. Next, it is shown that some member of the chain
is nontrivial by using the compactness of T and the properties of *-finite
sequences of internal orthogonal projections on *H.

Although there is a heavy dependence on the existences of or-
thogonal projections on H, this dependence is not uniform in the two
main components of the above procedure. In the first part, i.e.,
generating the chain of closed invariant linear subspaces for Γ, the three
essential properties of projections that were needed are: (1) projections
are linear, (2) the norm of the projection of a point JC in H is dominated
by the norm of x, and (3) the projection of a point x E H is the nearest
point, in the subspace, to x. To establish, in analogous manner, a chain
of closed invariant linear subspaces for a compact operator T when the
underlying space (if, r) is a topological vector space, we need at least
one internal linear transformation P on *H that captures the effects of
the three properties stated above. Definition 2.1 gives the conditions
for such a transformation and, as we have seen earlier, this definition
does give us a means of generating invariant linear subspaces for T (see
Proposition 2.10).

In the second part, i.e., showing that some member of the chain is
nontrivial, only the compactness of T and the nearest point property of
projections are used. In other words, it is not necessary to have an
internal linear map of *H into F that captures the effects of a nearest
point for every internal linear subspace F of *H; rather, we need only
an internal function that maps *H into F and maintains the essence of a
nearest point for each *-finite dimensional subspace F of */f. Indeed,
it is possible to show that such functions exist for a significant class of
spaces.

In the following theorem, 3F[H] denotes the collection of all
functions mapping H into H.

THEOREM 3.1. // (H, τ) is a metrizable topological vector space
then there exists a function V: &£f(H)-+ &[H] that satisfies the follow-
ing conditions.

(1) IfFE 9&(H) then V(F): H -> F.
(2) For each VEJfT(0) and any non zero x EH there exists a

positive A E R such that V(F)(λx) E V for all F E
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(3) IfxEH such that x E°F for F G *9!f(H) then *V(F)(x)-
xG/xr(O).

(See [6], Theorem ILL)

Now the stage is set for the proof of the main result for metrizable
topological vector spaces. The plan of attack is straightforward. First
a suitable chain of invariant internal linear subspaces for T' = P*TP is
found. Using Propositions 1.7 and 2.10 we can easily obtain a chain of
closed invariant subspaces for the compact operator Γ. Next we must
insure that at least one member of the chain is non-trivial which
therefore precipitates the result.

THEOREM 3.2. Let (H,τ) be a complex metrizable topological
vector space that satisfies Property 1. // TE^(H) is a compact
operator then T has at least one nontriυial τ closed invariant linear
subspace of H.

Proof We will assume that H is infinite dimensional and the
compact operator T is not null on all of H. Also, PE*££(H),
Hη e * ^ ( H ) are determined by Property 1 and V: &<f(H)-+&[H] is
assumed to satisfy the conditions of Theorem 3.1.

Define T = P*TP and let W G ΛC(0) such that

Γ'[*W]Cnsτ(*/f)

(see Proposition 2.12). If T(y)^0 for yEH then there exists a
positive λ G R such that

for each F G *&ίf(H) by Condition 2 of Theorem 3.1. Consequently,
if we set x0 = λy then

(3.3) T'(xo)&μr(O)

by Proposition 2.9 and

(3.4) Γ'(*V(F)Uo))Gnsτ(*/ί)

for any F
Let Tη denote the restriction of T' to /Jη. As in [2] and [4], we

observe that in a finite-dimensional complex vector space E of dimen-
sion m, say, any linear operator possesses a finite chain of invariant
subspaces
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{O} = FoCF IC C F m = E

where d(Fj) = j for / = 0, , m (recall from §1 that d is the dimension
function defined on 3^^f{H)), Therefore there exists a ^-finite chain of
*-finite dimensional subspaces

(3.5) {0} =

such that

(3.6) Γ,[FjCF t for ι E { 0 , •••,«>}

(3.7) *d(FL) = *d(F^)+l for ι E { l , , ω }

where ω = *d(Hη).
Let Qt = *V(FJ for i E{0, ,α>} and consider the expression

(3.8) rt = *p(T'(Xo)-T'QAxo),O)9 i = 0,1, - ,ω

where p is a translation-invariant metric on H that generates r. Note
that ro = *ρ(T'(xo),O) is not an infinitesimal by (3.3) since Fo =
{0}. Therefore, δ < r0 for some positive δ E R. Since JC0 e H = °Hη =
°Fω implies x o - Q . W e / i T ( O ) (see (2.2), (3,5) and Condition 3 of
Theorem 3.1) and T'[μτ(0)] Cμ,τ(0) implies

Γ'(xo ~ QωUo)) e /χτ(0),

it follows that rω is an infinitesimal. Consequently, rω < |δ < r0 which
implies

(3.9) rv<\8^rv.x

for some i/ e {1, , ω} since {r0, , rω) is *-finite.
Consider °Fp_i and °FW the r- standard parts of Fv_i and Fv (see

(1.3)). Propositions 1.7, 2.10 and expressions (3.5), (3.6) imply °FΪ,_, and
°F,, are r- closed invariant linear subspaces of T since Tη = Γ' on
/fη. Now 0F,,_i cannot coincide with H, in particular it cannot include
x0. For if it did, then τv-λ would be an infinitesimal (see (3.8) and
Condition 3 of Theorem 3.1) contrary to (3.9).

On the other hand, °FV cannot reduce to {0}. Indeed, if °FV = {0}
then o[Γ'Q,(jc0)] = 0 by (3.4) and (3.6) which would imply T'QΛxo)^
μτ(0). We would then have
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^ *p(T'(Xo) - [T'(xo) ~ ΓQv(xo)],O)

Therefore, δ < r0 and r0- rv < |δ would imply |δ < rv contrary to (3.9).
Finally from expressions (3.5), (3.7) and Proposition 1.8, we infer

that either °fv1 or °FV is nontrivial.

4. Property 2. So far, we still have not shown that compact
operators on arbitrary complex topological vector spaces satisfying
Property 1 have nontrivial, closed invariant linear subspaces. We will
fulfill this obligation in this section. We will do it by the usual
mathematical ploy of defining other conditions, collectively called
Property 2, that are more convenient. We then establish the result
using these conditions and finally we show that spaces satisfying
Property 1 also satisfy the new conditions, Property 2.

In this section, (H,τ) is an arbitrary complex topological vector
space.

Define M[r] as follows: p £M[τ] if and only if p is a translation-
invariant pseudo- metric on H such that for gp: H -> R defined by
gP0c) = p(x,0), x G H , we have gp(λx)^gp(x) for |λ |S % l and gp is
continuous at 0 e H. Clearly, gp is subadditive and therefore continu-
ous on all of JFf. Furthermore, it can be shown that

{S(p;δ) |peΛf[τ], 0 < δ G R }

forms a filter basis for ^T(0) where

(see [9], Theorem 6.7).

For ρEM[τ] let τp denote the topology on H generated by
p. Obviously, p ^Jί[τ] implies τpCτ and (H, rp) is a complex topolog-
ical vector space.

DEFINITION 4.1. A topological vector space (H, r) is said to satisfy
Property 2 if and only if there exists i C J [ τ ] such that the following
conditions are fulfilled.

(1) The collection {S(p δ) | p G sd, 0 < δ G R} is a filter basis for
ΛC(0).

(2) If p G si then (H,τp) satisfies Property 1.
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THEOREM 4.2. Let (H> τ) be a complex topological vector space
that satisfies Property 2. // τ is not the chaotic topology and if
T E ££{H) is a compact operator then T has at least one nontrivial,
τ-closed invariant linear subspace of H.

Proof Let TELΪ£{H) such that T[V] is r-compact for some
V<ΞJfτ(0). It can be assumed that W H since τ^{H,φ}. Let
si CM[τ] fulfill the conditions of Definition 4.1. Thus, S(p; δo)CV
for some p E si and some positive δ 0 ER. Consequently, (H,τp) is a
complex topological vector space such that τp C r, V E ̂ Tp(0) and (H, τp)
satisfies Property 1.

Let M = {JC E H I p(jc,O) = 0}. If J C E M and λ GC then

p(λjc,O) = p([λnι]nx,0) ^ p(njc,0) = 0

for π E N and | λ | < n. Consequently, M is a proper τp-closed linear
subspace of H.

If δ E R is positive then by the τp- continuity of Γ, there exists a
positive ί ,GR such that

T[M]CT[S(p;δϊ)]CS(p;δ);

therefore, Γ[M]CM. So if M^{0} then M is a nontrivial, τ-closed
invariant linear subspace of T since τp is weaker than r.

If M = {0} then (H,τp) is a complex metrizable topological vector
space that satisfies Property 1. By Theorem 3.2 there exists a nontri-
vial τp-closed, and thus r-closed, linear subspace F CH such that
T[F]CF.

Next, we show that Property 1 implies Property 2. The basic idea
is to start with an arbitrary balanced neighborhood of zero and use
Condition 2 of Definition 2.1 to obtain a sequence of balanced neighbor-
hoods of zero that generates a pseudo-metric linear topology satisfying
Property 1.

THEOREM 4.3. If a topological vector space (H,τ) satisfies Prop-
erty 1 then (H, r) satisfies Property 2.

Proof Let P E *i?(/ί), Hη E *&ίf(H) be determined by Property
1 and let V E Jfτ(W be balanced. By Condition 2 of Definition 2.1 there
exists W E JV (O) such that P[*W]C*V. Also, there exists a balanced
V2EJfτ(0) such that
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which implies P[* V2] C* V. Therefore define

(4.4) {Vn};=1C^τ(0)

inductively as follows: Vx = V, for n E N+ let Vn+ι E JV (O) be a balanced
neighborhood such that

(4.5) VΛ + 1+Vn + 1+Vn + 1CVn

and

(4.6) P[*Vn+1]C*Vn.

Consequently, there exists an unique topology τv on H such that (H, τ v )
is a topological vector space and {Vn};», is a filter basis for ^T y(0) (see
[8], Theorem 2.3.1).

Conditions 1 and 2 of Definition 2.1 are satisfied by the definitions
of P, Hη and {Vn}:=1. Also τv is weaker than r by (4.4) which implies
μτ(0)CμTv(0) ([6], Chapter I, §2). Thus, P(JC)-JC E μτ(0) implies
P(JC) - x E μTv(0) for JC E JFί. Therefore, (ff, τv) satisfies Property 1.

Using (4.4) and (4.5) it can be shown that some p EM[r] generates
τ v (see [9], Theorem 6.7 or [8], Theorem 2.6.1). Therefore, if we define

sέ = {p E Jί [T] I p generates rv for balanced V E ΛC(0)}

then sd fulfills the conditions of Definition 4.1; that is, (//, r) satisfies
Property 2.

THEOREM 4.7. Lei (//, r) be a complex topological vector space
that satisfies Property 1. If τ is not the chaotic topology and if
T E ££{H) is a compact operator then T has at least one nontrivial
r-closed invariant linear subspace of H.

Proof. Theorems 4.3 and 4.2.

5. Metrizable topological vector spaces with
Schauder basis. In this section we examine the conditions needed
for a metrizable topological vector space with a Schauder basis to
satisfy Property 1. In particular we will show that a Frechet space (i.e.,
a complete, metrizable topological vector space) with a Schauder basis
satisfies Property 1.

In this section, (if, T) is assumed to be a metrizable complex
topological vector space.
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If {λj} is a sequence in H then 3"\x] H] will denote the filter, on H,
generated by {{*,},=„ | n E N+}

DEFINITION 5.1. Let (//, r) be a metrizable complex topological
vector spaces. A sequence {e jcί f of distinct nonzero elements is a
Schauder basis for (//, r) if and only if for each x G H there exists an
unique sequence {£}CC such that ^Γ[Σ{=i £,£,; H] converges to x with
respect to r.

Assume that a sequence {βi}CH is a Schauder basis for
(H,τ). Let

(5.2) jE = sp({έ?,}) and Jζ = sp(e,, ,^ )

for j EN+, i.e., £ and £ ; are the smallest linear subspaces of H that
contain {$} and {̂ i, •••,£/} respectively. Clearly, £ = U7=iJB/ and
{E, | jEN + }C^y(t f) . Furthermore it is easily seen that H = E =
Ux

j=ιE] from which we conclude (H,τ) is separable. We will call
{Ej \j EN+} the sequence of coordinate spaces generated by {et}.

If, for each i E N+, we define π t : H -> C by TΓ,- (X ) = $ f o r x E / ί and
{£}, the unique complex sequence determined for x by {ej, then it can
be shown that π, is a linear functional on H that maps e, to 1 and e} to 0
for / E N+ and / ̂  ί.

For each j E N+ define P}: H-^E} by

(5.3)

for x E /ί. Consequently, P/ E ££{H), i.e., P; is a linear transformation
and Py(y) = y for y E Er We will call {P y | jEN+} the sequence of
projections generated by {ej.

PROPOSITION 5.4. Let {ej be a Schauder basis for (H, r) and let
{P, \j EN+} be the sequence of projections generated by {ej. // there
exists a filter basis $ CJίT(0) such that P][V]CV for VG$ and
P} E{Pj |j EN+} then (H,r) satisfies Property 1.

(See [6], Proposition III.l.)

Let p be a translation-invariant metric on H that generates r. We
will call {£,} a monotone Schauder basis (with respect to p) if and only if
the sequence {p(Pj(x),0)\j EN+} is monotonely increasing for each
x E //, that is, if i, / E N+ and i ^ / then p(P{ {x), 0) ̂  p(P; (x), 0) for each
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PROPOSITION 5.5. // (//, T) has a monotone Schauder basis then
(H,τ) satisfies Property 1.

Proof. Let p be a translation-invariant metric on H that generates
r and let {et} be a monotone Schauder basis for (H,τ) with respect to
p. If x EH then p(Py (JC),O)^P(JC,O) for each j GN+by the continuity
of p. Therefore, if 8 ER is positive then xES(p δ) implies
p(Py(jc),O)^p(jc,O)^δ for j E N + . Consequently P/[5(p; δ)]C
S(p; 8) for each P} E{Pj \j GNJ. We conclude that (H,τ) satisfies
Property 1 from Proposition 5.4.

In the following theorem, a Frechet space is a complete metrizable
topological vector space.

THEOREM 5.6. Let (H, r) be a Frechet space. If (//, τ) has a
Schauder basis then (H, r) satisfies Property 1.

Proof. Let {et} be a Schauder basis for (//,r) and let {P; | j eN+}
be the sequence of projections generated by {e,}. Also, let p be a
translation-invariant metric on H that generates r. Define H—>R as
follows:

for x,y EH. Since (JFf,T) is complete, it can be shown that p0 is a
translation-invariant metric on H that generates r (see [13], Theorem
11.4.1). Furthermore, {et} is a monotone Schauder basis with respect
to p0. Therefore, (H, τ) satisfies Property 1 by Proposition 5.5.

COROLLARY 5.7. // (H,τ) is a complex Frechet space with a
Schauder basis and if T E ϊ£{H) is a compact operator then T has at
least one nontrivial closed invariant linear subspace of H.

Proof. Theorems 5.6 and 3.2.

EXAMPLE 5.8. Let £fq(C) be the collection of all complex sequ-
ences and let (£•) symbolize an element of ¥q(C), i.e., ξ,EC for
j EN+. The set ¥q(C) is a complex vector space under the usual
pointwise definition of addition and scalar multiplication.

Let {pj} be a sequence of real numbers satisfying the inequalities
0 < p} ^ 1 for each j E N+ and define

16
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Since the identities | λ + β \p S | λ \p + | β \p and | λβ \p g max
( l , | λ | ) | /3 | p are valid for all A,β E C a n d O < p ^ 1, it follows that /(/?,)
is a vector subspace of 5fyr(C). Also, we can define a translation-
invariant metric p(Pj) on £{pι) as follows:

for x = (£), y = (£•) E €(j>j). We will let τ(py) denote the topology on
€{Pι) generated by p(p, ).

S. Simons made an extensive study of (^(P/),τ(p/)) in
[12]. Among the facts he established are the following.

(5.9) (€(Pj),τ(Pi)) is a Frέchet space.

(5.10) (£(Pj),τ(Pj)) is locally convex if and only if

(5.11) (£(Pj),τ(Pj)) is locally bounded if and only if
liminf p, >0 .

(See [12], Lemma 1, Theorems 5 and 6.)

If, for j E N+, we define βj = (ξk) such that £ = 1 and ξk=0 for
fcEN+ and k^j then {ej is a Schauder basis for (t(Pj),τ(pj)) by
definition of p(p, ). Therefore, (^(p,), τ(p, )) satisfies Property 1 by (5.9)
and Theorem 5.6. Furthermore, if py -»0 as / -»°o then /(p ;) ^ ^ ! since
Xo = (j~qι)f££(Pi)i where q j =p7 1 , and Xo^^1. Consequently, from
(5.10) and (5.11) we can infer that if {p}} converges to 0 then (^(p;), τ(p;))
is neither locally convex nor locally bounded. In particular, the space

), TO" 1 )) is not locally convex and not locally bounded.

EXAMPLE 5.12. Let A = [<2ι7] and B = [feι7] be two infinite matrices
of real numbers such that 0 < αl7 and 0 < b/; ^ 1 for i, j EN+. Define
£{A, B) in the following manner. If x = (£•) is a sequence of complex
numbers then x E £(A,B) if and only if

for each ΐ E N+. Using the same arguments of Example 5.8, it can be
shown that €{A,B) is a complex vector space.

If we define
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for i =

for each positive integer n, then there exists an unique topology τ(A, B)
on €(A> B) such that {£{A, B), τ(A, B)) is a topological vector space and
{Wnγn=λ is a filter basis for the#τCA, B)-neighborhoods of zero. Indeed,
it can be shown that (<f(A,B), τ(A,B)) is a Frechet space having {e}}
(see Example 5.8) as a Schauder basis ([6], Propositions IV.2 and
IV.3). Consequently, (<?(A,£), τ(Λ,J8)) satisfies Property 1 by
Theorem 5.6.

Note that the spaces (<?(/?/), τ(py)) of Example 5.8 form a subcollec-
tion of the spaces (ί(A,B), τ(A, JB)), i.e., let ai} = 1 for all i ,/6N + and
let bn = Pi for each i E N+. However, it is possible to define a subclass
of the spaces (€(A, B), τ(A,!ϊ)) that is neither locally convex nor
locally bounded and different from the collection {£(p}), τ(p,)).

We will say that [A: B: {<?,}] satisfies p.3, where A =[α 0 ] and
B = [bi}] are infinite matrices of real numbers and {#} is a sequence of
real numbers, if and only if

(5.13) ati = 1 and 0 < qi+ι <qt<l for all /, j G N+,

(5.14) q2i<bi,i+ι^bij<q2i-ι for all /,j'6N+.

Now if [A: B: {q,}] satisfies p.3, then (€(A, B), τ(A,B)) is not locally
convex, not locally bounded and is distinct from (€(pj), r(pj)) for any
sequence {p,}C(0,1] ([6], Propositions IV.4, IV.5 and IV.6).

In particular, if we let (/[/"'], r[i~1]) symbolize the (€(A,B),
τ(A,B)) space where axι = 1 and bxϊ = Γ1 for ί,j EN + then ^(i"1), of
Example 5.8, is a proper subset of €[i'x] and τ[i~ι] induces a weaker
topology on €(i~ι) than rίi"1).
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