
PACIFIC JOURNAL OF MATHEMATICS
Vol. 57, No. 2, 1975

POLYNOMIAL CONSTRAINTS FOR FINITENESS OF
SEMISIMPLE RINGS

MOHAN S. PUTCHA AND ADIL YAQUB

Suppose R is an associative ring with Jacobson radical
J. Suppose that for each sequence xίf , xn in R there exists
a polynomial p homogeneous (of bounded degree) in each xt

and a monomial w in the %'s, in which some xt is missing,
such that p = w. Then R\J is finite. It is also shown that
if the above polynomial p is a monomial, then R\J is finite
and J is nil of bounded index.

In a recent paper, the authors proved the following theorem:
Suppose R is an associative ring with Jacobson radical / . Suppose
further, that, for all xu , xn in R, there exists a word w(xu ,
xn), depending on xu •••,#», in which at least one α?< (i varies) is
missing, and such that

( 1 ) »i ' * . = w(xu •••, xn) .

Then J is a nil ring of bounded index and R/J is finite. In the pre-
sent paper, we consider the structure of an associative ring R which
satisfies, instead of the identity (1) above, an identity of the form

( 2 ) P(%ι, ••-,&*) = w(%ι, , O

In particular, we take a closer look at the structure of R in those
cases where (i) p(xu ••-,$») is any fixed word involving each of the
variables xlf • ••,<&. at least once, or (ii) p(xl9 - *,xn) is a variable
polynomial in xl9 , xn with integer coefficients such that each xt is
of the same degree in each term of p(xl9 •••,»»), and where these
degrees are bounded. We show, for example, that if p(xl9 •••,»»)
is as in (i) above, then the Jacobson radical J of R is nil of bounded
index and R/J is finite. Moreover, we show that, if p(xlf •••, xn) is
as in (ii) above, then R/J is still finite. We conclude by giving some
examples of the rings under consideration.

In establishing the results of this paper, we use the structure
theory of rings, starting with the division ring case, then the primitive
ring case, followed by the semisimple ring case

l Main results* Throughout R will denote an associative ring,
Z will denote the ring of integers, and n will denote a fixed positive
integer > 1 . We now introduce the following.

DEFINITION 1. Let Z[xl9 •••,#*] be the ring of polynomials in n
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noncommuting indeterminates xu , xn over Z. Let Ψl be the subset
of Z[xu , xn] consisting of polynomials pfa •••,«») such that each
Xt appears in every term in p(xu • ••,#*)• By a word w(xl9 * 9xn)
we mean a product in which each factor is xif for some i. Let
l S f « . An associative ring R is called an X-ring if, for all au ,
an in i?, there exists a polynomial p(xu , xn) in X and a word
w(a?i, •••,»») with some %(;/ varies) missing from w ^ , •••, a?n), such
that

, Q v Pfaif •••,«») = w(α!, , α j , some as missing from

A division ring (respectively, primitive ring, semisimple ring) which
is also an X-rind is called an X-division ring (respectively, X-primitive
ring, X-semisimple ring).

The following lemma is immediate from the definition of an
X-ring.

LEMMA 1. (a) If Xλ £ X2, then any Xx-ring is also an X2-ring.
(b) Any subrίng and any homomorphic image of an X-ring is also
an X-ring.

In preparation for the proofs of the main results, we first establish
the following lemmas.

LEMMA 2. Suppose that X £ 3^ and D is an X-division ring.
Then D is of prime characteristic.

Proof. Suppose that the characteristic of the X-division ring
D is zero. Then D contains the rationale. Suppose that qlf •••, qn

are the first n primes. Then, by hypothesis,

(4) p{qu , qn) = w{ql9 , qn) ,

where each term in the polynomial p(xu •••,#«) involves every xif

while some xs is missing from the word w(xu •••,»„). Thus, qs

divides the left side of (4) but q$ does not divide the r ight side of
(4), a contradiction. This contradiction proves the lemma.

LEMMA 3. Let E be a Ψl-primitive ring. Then R is a complete
matrix ring Dq over a division ring D of prime characteristic.

Proof. Let R be a ^-primitive ring. Then, by Jacobson's
Density Theorem [3; p. 33], either (i) R~a complete matrix ring
Dq over a division ring D, or (ii) for every positive integer I, there
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exists a subring S of R such that S maps homomorphically onto Dt

for some division ring D. We now show that (ii) never holds. For,
suppose (ii) is true. Then, by taking I = n in (ii) and by using
Lemma l(b), we readily obtain

( 5 )

Now, let

( 6 )

Dn is a

α, =

O

O
• l

where at is a diagonal n x n matrix over D with an entry of 0 in
the (i, i) position and with entries of 1 elsewhere on the main diagonal.
By hypothesis, there exists a polynomial p(xx, •• ,xί>) and a word
w(xu " ,xn) such that

( 7 )

'p(alf , an) = ^(αx, . . . , α j ; each α* appears in every

term in p(a19 •••, αw); some a5 is missing from w(a19

Keeping in mind (6), and comparing the entries in the (j, j) positions
of the two matrices in the equation in (7), we obtain 0 = 1, a contra-
diction. This contradiction shows that (ii) above never holds, and
hence (i) above holds always. We have thus shown that

( 8 )
(The ground 5^-primitive ring R is a complete matrix

(ring Dq over a division ring Ό.

Moreover, D, as a subring of R( = Dq), is a ^-division ring (see
Lemma l(b)), and hence, by Lemma 2, D is of prime characteristic.
This proves the lemma.

LEMMA 4. The direct sum of n rings Rt each of which has a
unit-element is not a 71-ring.

Proof. Suppose that

(9 ) R s Rt + + Rn> each Bi has a unit-element .

Let

α< = (1, 1, , 1, 0, 1, 1, . . . , 1); 0 is in the ith position .

An argument similar to the one given in the proof of Lemma 3
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shows that we obtain a contradiction if we assume that R is a
2^-ring. This proves the lemma.

We are now in a position to prove the following

THEOREM 1. Let XξkΨl. Then every X-semisimple ring is
finite if and only if every X-division ring of prime characteristic
is finite.

Proof. The "only if" part of the theorem being obvious, we
now proceed to prove the "if" part. Thus, suppose that

(10) Every X-division ring of prime characteristic is finite.

Suppose, further, that R is an X-semisimple ring which is not finite.
We shall show that this leads to a contradiction. Since R is semi-
simple, there exist ideals IJaeΩ) of R such that [3; p. 14]

f|/α = (0); each R/Ia is primitive .
aeΩ

Now, by Lemma 1 and Lemma 3, it readily follows that R/Ia is a
complete matrix ring Dq over a division ring D of prime characteristic.
Since D is a subring of R/Ia( = Dg), it follows, by Lemma l(b), that
D is an X-division ring of prime characteristic, and hence D is finite,
by (10). Therefore,

(11) R/Ia( = Dq) is finite .

Now, choose a^R, and having chosen ocu •••,<£& so that

(12) ± S
i

choose ak+1 e Ω such that Πf=i Iai Λ Lk+1- That such ak+1 can always
be so chosen is proved as follows: suppose no such ak+1 exists. Then
(0) = ΠaeβL = ΠUiIaif and hence (see (12))

R^R/Γi Ia< s Σ* R/Iat .
*=1 i=l

Thus, using (11), we see that R is finite, a contradiction. This
contradiction shows that there exists ak+1 e Ω such that Πi=i Iai §= 4&+1

Now, as we have seen in (11), R/I«k+1 is simple. Since, moreover,
Πf=i Iai £ I*k+1f we have f|"=i I«{ + Lk+ι = R- Hence, by applying
the second isomorphism theorem, we readily verify that

Rl n Ia. ~R/h la, + W«k+ι = Σ'
i—ί
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by (12). In particular, we have

Σ" E/Iβi ~R!Π Wat.

Hence, using Lemma l(b), Σ'iU RIIH is an X-ring (and thus a 3^-
ring) also. This, however, contradicts Lemma 4 (see (11)). This
contradiction shows that R is finite, and the theorem is proved.

We call a field F periodic if for every x in F, we have xm = cc%

for some positive integers m,n,mΦn. A periodic field which is also
an X-ring is called an X-periodic field. We now prove the following

THEOREM 2. Let X £ 3^. Suppose that there exists a fixed
integer N such that, for all polynomials p(xu •••,#») iw X, £/&e
degree in xu , a?Λ 0/ ever?/ term in p(xlf , xn) is less than N.
Then, every X-semisimple ring is finite if and only if every X-
periodic field is finite.

Proof. The "only if" part of the theorem being obvious, we
now proceed to prove the "if" part. Thus, suppose that R is an
X-semisimple ring. Now, in view of Theorem 1, it suffices to show
that

(Every X-division ring D of prime characteristic is

(a periodic field.

Thus, suppose that D is an X-division ring of prime characteristic
p, and suppose aeD. We first show that

(14) a is algebraic over GF(p) .

Clearly, we may assume that a Φ 0. Now, suppose that

(15) ql9 -*-,qn are fixed distinct primes; each g* > N, and

(16) K = (tfi g.)/g4; (i = 1, , n) .

Then

(17) q3- divides ht if and only if i Φ j .

Let bi = ahi. Then since D is an X-ring there exists a polynomial
p(xlf , xn) e X, and a word w(xlf , xn) with some xk missing such
that

(18) p ( b l f . . . , b n ) = w ( b l f . . . , 6 J .

Since xk is missing from w(xlf •••,»») we have by (17),
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(19) w(bu . . . , δ j = α

Now let dιr be the degree of xt in the rth term of p(xu

Then each dιr > 0 and

(20) p(bu , bn) = Σ ^r^Cr where cr — Σ ^ ί Λ and mr are
r i = l

some integers.

By hypothesis each dir < N and thus, by (15), qk > d ί r. We therefore
have, by (17), that qk\cr for every r. In particular, by (19), cr Φ t
for any r. We now have, by a combination of (18), (19) and (20),

(21) Σ ™^Cr = α', Cr Φ t for all r .
r

Hence α is algebraic over GF(p) and (14) is proved.
Now, consider the field (GF(p)){a). Since, by (14), a is algebraic

over GF(p), it is easily seen that (GF(p))(a) is a finite field, and hence

am = αw; m, w positive integers; m Φ n; (a e D) .

Thus, by Jacobson's Theorem [3], D is a periodic field. The theorem
now follows from Theorem 1.

In preparation for the proof of the next theorem, we now intro-
duce the following notations and lemmas.

Suppose a and b are positive integers, a > 6, which are relatively
prime, and suppose

(22) Vu - an - b\ (a > b ^ 1; (α, 6) = 1) .

Let ^i, w2, , nk be all the distinct positive divisors of n which are
less than n. Then Vn is divisible by Vnί, V%2, •••, V»k. A divisor of
Vn which is relatively prime to all of the Vn.(i — 1, , k) is called
a primitive divisor of Vn. For example, 5 is a primitive divisor of
24 - Γ.

The following lemma was proved by Birkhoff and Vandiver [1];

LEMMA 5. Let n be a positive integer, n Φ 2, and let Vn be as
in (22). Then Vn has at least one primitive divisor other than unity,
with the single exception Vn — 26 — I6.

Next we introduce the following

NOTATION. Z will denote the set of all positive integers. Let
seZ+. Then,

D(s) = {m\me Z+, m divides s}

P(s) = {m\me D(s), m is prime} .
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If S is any nonempty subset of Z+, then

D{S) = U D(s) and P(S) = U P(s) .
seS seS

The following lemma is an immediate consequence of Lemma 5.

LEMMA 6. Let peZ+,p> 1, and let {ki\ieZ+} be a strictly
increasing sequence of positive integers such that kt divides ki+1 for
each i. Let

S= {pki - l\ieZ+} .

Then P(S) is infinite.

We are now in a position to prove the following

THEOREM 3 (Principal Theorem). Let I g y ; . Suppose that
there exists a fixed integer N such that, for all polynomials p(xlf

• , xn) in X, the degree in xlt , xn of every term in p(xlf , xn)
is less than N. Suppose, further, that for all polynomials p(xu ,
xn) in X, each xt is of the same degree in each term in p{xu , xn).
Then every X-semisimple ring is finite.

Proof. In view of Theorem 2, it suffices to show that every
X-periodic field F is finite. Suppose not; that is, suppose that F
is an infinite X-periodic field. Then F is of prime characteristic p,
since F is periodic. Moreover, the subfield (x) generated by a single
element x in F is finite, and hence

(23) xpk = x for some positive integer k — k(x) .

Now, for each j e Z+, define

(24) Fj = {x\x e F, xpjι = x) .

Then, in view of (23) and (24), we have (since if x e F satisfies (23),
then x e Fk)

JF\ g ^ g ^ g . . . each F, is a finite subfield of F

\JFt = F.
iez+

Now, since F is infinite, we can find a subsequence of (25) such that

(26) ^ C ^ C f i s C , and again [J Flk = F .

Moreover, the order of Fίσ = pk°(σ e Z+). Next, let

S= {pk° - l\σeZ+} .
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Then, as is well known, kσ\kσ+1 for each σeZ+, and kσ<kσ+ι, by
(26). Henc by Lemma 6, P(S) is infinite, and there, therefore, exist
n distinct primes qu . ••, qn in P(S), such that

(27) qt> N+p , (i = lf...fn).

Thus, there exists m, 6 Z+ such that

k ~ 1), 0" = 1, ...,**).

Now, since the nonzero elements of the field i^m. form a multiplicative
group of order pkfΛ* — 1, and since the prime qj\phmj — 1, it follows,
by Cauchy's theorem, that there exists a3 eFim{^F) such that

(28) order of a3- = g, ; α, Φ 0 (i = 1, , n) .

Now, since F is an X ring, there exists a polynomial p(xlf , xn) in
X and a word w ^ , • ••,&„) such that

I p(au , α j = w(αi, , α%); each xt appears in every

term in p{xu , xn); some x3- is missing from ^(ίCi, , xn)

all coefficients in #(#!, , xn) are integers .

Moreover, recalling that F is commutative, and using the hypothesis
regarding the degrees of the x/s in the various terms of p(xlf •••,
xn), we see that

(30) \P^au ' a^ mWl(ai> '' *> a^; m a n

Wi(^i, •••, an) a word involving every at.

Furthermore, m Φ 0, since ^(αx, , an) Φ 0 (see (29), (30) and recall
that each at Φ 0). Hence, by Fermat's Little Theorem (recall that
F is of prime characteristic p), we have

(31) m*-1 - 1 .

Now, let Cj be the degree of xs in the word wt(xlt , xn). Then, by
hypothesis,

(32) Cj<N; (j = l,...,n).

Let

(33) Λf= «LUJ-22L.(p-i).

Then, by (29), (30),

(34) (mw^a,, . . . , αn))* = (w(αx, , an))M .

Hence by (31), (28), (33), and the fact that a3- is missing from the
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word w(a19 •••, an), the above equality reduces to

(αjO* = 1

Therefore (see (28)), q3- divides cάM. This is absurd, however, since
qd does not divide cό (recall that q3 > N> c3-; see (27), (32)), and q3-
does not divide M (recall that q3- > p, by (27); also see (33)). This
contradiction proves the theorem.

Next, we prove the following

THEOREM 4. Let X be a collection of words in Yi each of which
is of degree <N in xu • ••,#*. If R is an X-ring with Jacobson
radical J, then J is a nil ring of bounded index, and R/J is finite.

Proof. Clearly, X satisfies the hypotheses of Theorem 3, and
hence the X-semisimple ring R/J is finite. Now, to prove that J is
nil, let α e J, and suppose that

(35) qlf •••,?» are distinct primes, each qt > N.

Let

(36) h = Qί ' " q« ( i = l , . . . , * ) ,
Qi

a n d l e t

(37) &< = <***; (i = lf...fn).

T h e n , s ince R is a n X - r i n g , t h e r e ex i s t w o r d s wJixu •••,»«) a n d
w(xl9 •••,»„) s u c h t h a t

(some a?/ is missing from ^(Xi, •••, a?Λ).

Now, let

(39) degree of xt in Wjixlf , xn) = ci (£ = 1, . . , n) .

Then, by (38), (37), (39), we obtain

(40) α«i*i+ + Ά = a* .

Moreover, since Xj is missing from the word w ^ , , xn), it is easily
seen (see (36)) that

(41) q5 divides t .

On the other hand, since qs > N, by (35), and c3- < N (since Wiί^,
• • • ^ J e l ) , } , - does not divide c .̂ Also, by (36), qs does τ̂ oί divide
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hί9 and hence the prime qό does not divide c5hj. However, by (36),
q5 divides ht for each i Φ j . Therefore,

(42) q3- does not divide cγhx + + cjιn .

Comparing (41), (42), we see that

(43) c A + + cnhn Φ t .

Now, let cfit + + cnhn = I, and let

(44) M = Nh, + + Nhn; (M > I, since each c, < JNΓ) .

Then, by (40), (43), (44), it is easily seen that

(45) aM = a% for some positive integer s; s Φ M.

Now, if in (45), s < M, by iterating in (45), we can eventually make
8 > M. We have thus shown that

(46) aM = as; s > M > 0; M fixed .

Equation (46) readily implies that a suitable power of a is an idem-
potent element in J (recall that a is in J ) , and hence by (46), aM — 0,
(M fixed). Thus J is nil of bounded index, and the theorem is
proved.

In view of Theorem 4, it follows that J is locally nilpotent [2;
p. 28].

The following corollary is an immediate consequence of Theorem
4 as well as Theorem 3.

COROLLARY 1. Let X consist of a single fixed word involving
each of the variables xu •• , # Λ . Then every X-semisimple ring is
finite.

If, further, we let X consist of the single fixed word xt xn,
we obtain, as a further corollary of Theorem 4, the following result
which has already been proved by the authors [5]:

COROLLARY 2. Let R be an associative ring with Jacobson radical
J and with the property that, for all xJf "-,xn in R, there exists
a word w(xu •••, xn) depending on xl9 •••, xn, in which at least one
Xi (i varies) is missing, and such that x1 xn = w(xl9 , xn). Then
J is a nil ring of bounded index and R/J is finite.

2. Examples and remarks* In the following examples, we show
that the class of X-rings subsumes all finite rings and all nilpotent
rings. We also give an example of an X-ring which is neither finite
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nor nilpotent.

EXAMPLE 1. Let R be any finite ring with exactly m elements.
Let xu , xm+1 be any elements of R. Then xi = x3- for some i > j9

and hence

#1 * * Xm+1 = %ι * * ' Xj ' ' ' Xi-iXjXi + ι * Xm+ι

— W(Xί9 , Xi-i, Xi + lt ' * *> %m+l)

Thus R is an X-ring, where X = {x1 xm+1}.

EXAMPLE 2. Let R be any nilpotent ring, say Rm = (0). Then,
for all elements a?!, •••, xm+1 of j?, we have

Xl * ' ' Xm+l = V — Xι ' ' ' Xm

Thus R is an X-ring, where X = {x1 £m+1}.

EXAMPLE 3. Let Ro be an infinite field of characteristic 2, and let

Let xu x2f x3 be any elements of R. Then, as is readily verified,

1 u

0 0

0 0

Hence R is an X-ring, where X = {xtx2x^. Observe that R is neither
finite nor nilpotent. In fact, R is not isomorphic to any finite direct
sum of finite or nilpotent rings.

Returning to our Principal Theorem (Theorem 3), we have the
following

REMARK. In the proof of Theorem 3, we showed that every X-
periodic field is finite. We claim that the group-theoretic analogue
of this result is false. To see this, consider the group Zip00), which
consists of the set of all pnth roots of unity, where p is a fixed
prime and n = 0, 1, 2, [4, p. 4]. Suppose that xlf x2 e Zip00). Then,
for some integer n, xlf x2 e Zipn), where Zipn) is the group of all pn\h
roots of unity. Let σ be a generator of Zipn). Then



530 MOHAN S. PUTCHA AND ADIL YAQUB

Now let

r = rQp% s = sop
j; (r0, p) = 1, (s0, p) = 1 ,

and suppose, without loss of generality, that i ^ i Since (r/pi, p) = 1,
there exists a solution a; to

(r/p*)x = 8/p* mod pw ,

and hence τxpό~i = s mod pn. Thus, r + s Ξ r ( l + α p3'"^) xnod.p*, and
hence

since σp% = 1. Therefore x,x2 = (α O^^'" ' . Note that #(p°°) is an
infinite group.

We leave as an open question whether or not Corollary 1 is true
when X consists of a single fixed polynomial in which each term
involves every variable xl9 , xn. In view of Theorem 2, this question
reduces to whether or not an X-periodic field is finite in this case.
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