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WALLMAN RINGS
H. L. BeENTLEY AND B. J. TAYLOR

In 1964 Frink defined a normal base. He hypothesized that
every Hausdorft compactification of a Tychonoft space X may be
realized as a compactification w (%) of Wallman type obtained
from a normal base ¥ on X, where % is the family of zero sets
for some subring of C(X). Later Biles formally defined a
Wallman Ring on a Tychonoff space to be a subring of C(X)
whose zero sets form a normal base on X.

The problem in this paper is to study examples of Wallman
Rings and develop properties of Wallman Rings. For a locally
compact space with a given compactification and a certain type
of retract map, a Wallman Ring is defined which induces the
given compactification.

General algebraic and topological properties of Wallman
Rings are considered. Among the results obtained are “Every
Wallman Ring is equivalent to one which contains all rational
constant functions” and “An ideal of a Wallman Ring which is
itself a Wallman Ring is equivalent to the superring.”

I. Introduction. In 1938 H. Wallman [23] gave a method for
associating a compact T,-space w(%) with a distributive lattice %;
w(%) is the space of all %-ultrafilters and the topology of w(%) has a
base for closed sets a lattice #* which is isomorphic to the lattice %.
Wallman applied this procedure to the case when % is the lattice of all
closed subsets of a T,-space X to arrive at a T, compactification w (%)
of X which is now called ‘“‘the Wallman Compactification” of X.

Several later mathematicians applied Wallman’s construction to
certain types of lattices which are sublattices of the lattice of all closed
sets of a T,-space. Among these were Sanin [18], Banaschewski [3],
and Frink [12]. These techniques give rise to certain classes of
compactifications. In 1964, Frink [12] asked whether each Hausdorff
compactification of a Tychonoff space X can be realized as a compac-
tification w(%) of Wallman type obtained from a normal base & for the
closed sets of X. (A normal base is a lattice which is a base for closed
sets and which satisfies certain separation properties.) This question
remains unanswered to the present day, but a great deal of effort has
been exerted by many mathematicians in an endeavor to solve the
problem.

Partial solutions have been obtained, e.g. Steiner and Steiner have
shown that any product of compact metric spaces is a Wallman type
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compactification (determined by some normal base) of any of its dense
subspaces. It has become customary to call a compactification of the
form w(%), where % is some normal base, a “Wallman compactifica-
tion” of X and we shall use this terminology in the sequel.

Frink observed that the family Z(X) of all zero sets of continuous
real valued functions on a Tychonoff space X is a normal base on X
which gives rise to a compactification w(Z(X)) equivalent to the
Stone-Cech compactification X of X. He also observed that if Y is a
given compactification of X, then Z(E (X, Y)), the zero sets of continu-
ous real valued functions on X which are continuously extendible to Y,
is a normal base. Biles [8] later called a subring & of the ring C(X), of
all real valued continuous functions on X, a Wallman ring on X
whenever Z(s£), the zero sets of functions in &, form a normal base.

Frink wondered whether every Hausdorff compactification of a
Tychonoff space X is of the form w(Z(sf)) where & is some Wallman
ring on X. This question is still unanswered although many partial
results have been obtained.

Biles [8] studied relationships between the Gelfand and the Wall-
man compactifications determined by a Wallman ring &/ on a Tychonoff
space X.

In this paper we study examples of Wallman rings and develop
properties of Wallman rings.

In §IV we will consider a locally compact space and a compactifica-
tion of that space such that there is a certain type of retract map on the
compactification. We establish a Wallman ring on this locally compact
space which induces the given compactification. From this result we are
able to define a Wallman ring which yields the Alexandroff compactifi-
cation and a Wallman ring on the open unit disc which induces a
compactification equivalent to the closed unit disc.

In section III we consider general properties of Wallman rings on
spaces with more than one element. We find that a Wallman ring cannot
be an integral domain; that every Wallman ring is equivalent to one
which is inverse closed; that an ideal of a Wallman ring which is itself a
Wallman ring is equivalent to the larger ring. We also examine the
relationship between a Wallman ring being the direct sum of nontrivial
ideals and its associated compactification being disconnected. We
present some results linking Wallman rings to sublattices of C(X), and
we pose the question: “Is every Wallman ring on X equivalent to one
which is a sublattice of C(X)?”

II. Preliminary notations and definitions. Throughout
this paper, all topological spaces are Tychonoff (completely regular and
Hausdorff), and contain at least two points. If X is a topological space,
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then a compact space Y is said to be a compactification of X if there is a
homeomorphism h from X into Y such that h[X] is dense in Y. The
function h is called an embedding. To simplify notation, embeddings
will be taken to be inclusions.

We will use the customary ordering of compactifications: Y, = Y, if
there is a continuous map f: Y,— Y, which leaves X pointwise fixed
(i.e. f(x) = x for all x € X). Also, Y, and Y, are equivalent (Y, =Y),) if
Y,=Y,and Y,=Y,. Asis well known, Y, =Y, if and only if thereis a
homeomorphism f: Y,— Y, which leaves X pointwise fixed.

We will use the following notation throughout the paper.

N —the set of natural numbers

R —the field of real numbers

C(X)—the ring of all real valued continuous functions on the
space X.

C*(X)—the ring of all bounded functions in C(X).

A* —the subset of bounded functions of a collection &f C C(X),
A*={fe d: fe C*X)}

Z(f)—the zero set of a real valued function f on X, Z(f)=
{x € X: f(x)=0}.

Z[A]— the zero sets of a collection & of real valued functions on
X, ZIA)={Z(f): fEe A}.

Z(X)—the zero sets of C(X), Z(X)=Z[C(X)]=Z[C*X)].

For basic concepts regarding the ring C(X), we refer the reader to
Gillman and Jerison [13].

Following the terminology of Biles [8] and Frink [12] we give the
following definitions.

2.1. DerINITION. If % is a collection of subsets of X, then % is a
lattice on X if:

1) ¢, XeF

2 A BeE% then ANBE% and AUBE %

2.2. DEerinITION. The lattice % on X is a normal base on X if #
is:

(1) a base for the closed subsets of X,

(2) a disjunctive lattice on X (i.e. if A € % and x € X — A, then
there exists B € # such that x € B and A N B = ¢),

(3) a normal lattice on X i.e. for each A, B & % such that
A N B = ¢, there exists C, D € ¥ suchthat A ND = ¢, BN C = ¢ and
CuD=X

The space w(%) consisting of the set of all %-ultrafilters on X isa
Hausdorff compactification of X. The topology of w(%) is defined as
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follows. If A €%, A* is the set of all %-ultrafilters having A as a
member. A base for the closed subsets of w(%) is the set of all A* such
that A € %.

X is embedded in w (%) by the map which sends a point x € X into
the #-ultrafilter consisting of all %#-sets which contain x.

2.3. DEFINITION. w(%) is said to be a Wallman compactification
of X.

As was mentioned earlier a subring &/ of C(X) is a Wallman ring on
X if Z[] is a normal base on X. So if & is a Wallman ring on X, then
w(Z[#]) is a Wallman compactification of X.

We will content ourselves here with the above statements on
Wallman compactifications. The reader is referred to the literature (e.g.
Frink [12], Biles [8], Steiner [19], Alo and Shapiro [2]) for proofs of the
above statements.

Being interested in ordering of compactifications, we are led to the
following concept which is due to Steiner [19].

2.4. DEerFINITION. Let % and 9 be families of sets. Then:

(1) #=9% (9 separates ¥) if and only if for each F,, F,€ %,
F,N F,= ¢ implies there exist G,, G, € 9 such that F,C G,, F,C G,
and G,NG,= ¢.

2) F=9%(Fisequivalentto 9)ifandonlyif F=%and ¥ =%

2.5. THEOREM. The relation ** =’ defined in 2.4 is transitive and

(X3 k)

reflexive. The relation ““=" is an equivalence relation.

We will now look at an application of this concept. By a sublattice
of C(X) we mean a subset of C(X) which contains the supremum and
infimum of each pair of its elements. By a closed subring of C(X) we
mean a subring of C(X) which is closed in the uniform topology on
C(X).

2.6. DEerINITION. & is an inverse closed subset of C(X) if and
only if for each f € o and for each g € o suchthat Z(g)= ¢, f/g € A.

2.7. THEOREM. Let o be a Wallman subring and sublattice of
C(X), then f, g € o implies {x € X: f(x)=g(x)}€ Z[A].

Proof. {(x€X:f(x)=gx)}=Z({(f—g)v0).

In a restricted situation, the following theorem gives some insight
into the separating relation of Steiner defined in 2.4. This theorem also
is closely related to generalizations of the Stone-Weierstrass Theorem
(for details see Taylor and Bentley [22]).
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2.8. THEOREM. Let o be a sublattice of C(X) which contains the
constant functions. Let B be an inverse closed subset of C(X) which is
also a closed subring of C(X). Then Z[A)=Z[R] if and only if
A*C B.

Proof. Half of the proof is obvious. We will show only the other
half. We borrow our method of proof from Hager [14].

Let g € «*. There is a positive real number r such that |g|=r.
Choose € >0. Then there is a natural number n such that 1/n <e/2r.
LetI={-n~-1, -n,---,-1,0,1,---,n — 1}

Fori&€l let

F={xeX: gx)sirlnfU{xE€X:(i+2r/n=gx)}

Then F, € Z[«4] and N ., F, = ¢. As was shown by H. L. Bentley [4]
there are functions f; € B for each i€l such that F, C Z(f) and
N Z(f;) = ¢. For each j €1 let

h,' = "i?_.
2
2 f
So S h; =1 and since @ is inverse closed h; € B for each jEL
Let u = Z,c,irh;/n. Since % is inverse closed, is a closed subring of
C(X), and contains a function whose zero set is empty, namely Z.c,f?,
A contains all the constant functions. Therefore u € A.
Now let x € X and let j be as small as possible so that x& F;; x
cannot be in each of the F; since N F, = ¢. x& F,; implies jr/n <
g(x)<(+2)r/n so|g(x)—(G+Dr/n|<r/n and

xe(N{F:i€Li<jpN(N{F:ieLi>j+1).

Now u(x) =3 Lrh(x)

i€l

j j +1
= %rh,»(x) +]—n— rh;.(x)

I
S|~

Py (x) + hyi(X) - hy(x)

%r(% hi(x)) + ;r h,-+.(x))

-r]l—r + -r:— hii(x).
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Since 0= h;,,(x) =1 this yields

j+1

=i—r

j r
r§u(x)§—]~r +—
n n n

Therefore |u(x)— (G +r/n|=r/n and
200 - ut)|=| g L+ [ - <2<
- n n | n ’

For € >0, we have shown there is a function u € 8 such that
|g(x)—u(x)|<e for each x € X. Therefore, since % is closed in C(X),
gEB.

The following theorem is due to A. K. Steiner and E. F. Steiner
[21].

2.9. THEOREM. If % and 9 ire normal bases on X, then:
(1) F=9if and only if w(F)=w(%9).
2) F =9 if and only if w(F)=w(9).

2.10. THeOReM. If =% i1nd ¥ is normal, then 4 is normal.

Proof. Let G, and G, be disjoint elements of 4. 4 = % implies
there are sets F,, F,€ % such that G,C F,, G,CF, and F,NF,= ¢.
Since # is normal there exist F;, Fy€ % such that F,N F}= ¢,
F,NFi=¢ and F1 U F,= X. Now, since ¥ separates & there exist G|,
G, G, G, € & such that F,C G, F,C G), F,CG,, F'CcG) G,NG,)=
¢ and G, NG| = ¢.

Now G, CF,CG, and G, NG;= ¢ implies G,N G, = ¢.

G,CF,CG, and G, NG| = ¢ implies G,N G| = ¢.
andF|C G| and F,C G} implies GiUG,=X.
Therefore 4 is normal.

2.11. THEOREM. If Fis a disjunctive base for the closed sets of X,
% is a collection of closed sets of X and F = 4, then % is a disjunctive
base for the closed sets of X.

Proof. X and ¢ € ¢ since X and ¢, as elements of %, must be
separated by elements of 4.

If C is a closed subset of X and x is an element of X not in C, then
there exists F, € ¥ such that C C F, and x& F,. Consequently there
exists F,€ ¥ such that x € F, and F.NF, = ¢.
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Since ¥ = Y, there are G,, G, € ¥ such that F,C G,, F,C G, and
G, N G,= ¢. This implies 4 is a base for the closed sets of X since
xZ G, and C CG,.

If G €% and x & G, then as above there are F,, F, € % such that
x €F,, GCF,and F,N F,= ¢; and consequently disjoint G,, G, € ¢
such that x €G,, GCG,. Since xEG, and GNG,=¢, G is a
disjunctive base for the closed sets in X.

2.12. THEOREM. If % is a normal base on X, % is a lattice of
closed subsets of X and ¥ =%, then 94 is a normal base on X and
w(F)=w(9).

We will now translate this result from normal bases to Wallman
rings.

2.13. DeriNiTION. If o and B are subrings of C(X) then:
(1) A=R if and only if Z[A]=Z[B].
2) A=R if andonly if «/ =B and B = A.

2.14. THEOREM. Ifsf1nd B are Wallman subrings of C(X) then:
(1) A =B if and only if w(Z[A) =w(Z[B))
Q) A =R if and only if w(Z[A) =w(Z[B)).

2.15. THeoreM. oA is a Wallman ring on X, B is a subring of
C(X) and A =R, then B is a Wallman ring on X and w(Z[A]) =
w(Z[B)).

III. Properties of Wallman Rings and Some
Questions. Since a Wallman ring is a ring in the usual algebraic
sense, it is natural for us to investigate which properties of rings
Wallman rings possess. Along this line we have discovered that a
Wallman ring cannot be an integral domain, and that each Wallman ring
is equivalent to a Wallman ring which is inverse closed. We have
investigated the problem of when a Wallman ring is equivalent to a
Wallman ring which is a sublattice of C(X), but have only partial
results.

We also investigated relationships between algebraic properties of
Wallman rings and topological properties of the induced compactifica-
tions. Our main result along this line is one involving the relationship
between a Wallman ring being the direct sum of nontrivial ideals and the
induced compactification being disconnected.

Our first result is the following.
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3.1. THeoOREM. A Wallman ring cannot be an integral domain.

Proof. Let o be a Wallman ring on a space X and let x and y be
distinct elements of X. Since Z[</] is a disjunctive base for the closed
sets of X, there are functions f and g € & such that x € Z(f), y € Z(g)
and Z(f)N Z(g) = ¢. By the normality of Z[sf] there are functions f’
and g'€« such that Z(f)NZg)=¢, Z@NZ({f)=¢ and
Z(fYUZ(g')= X. Now we have f'(y) #0, g'(x) #0 but f'g’ is the zero
function.

We will now show that every Wallman ring is equivalent to a
Wallman ring which is inverse closed and therefore to a Wallman ring
which contains all the rational constants.

3.2. LeMMA. Every Wallman ring contains at least two functions
whose zero sets are pairwise disjoint and nonempty, and a function
whose zero set is empty.

Proof. Let o be a Wallman ring over X. Let x and y be distinct
elements of X. Then there are functions f, and f,€ « such that
xE€Z({), yEZ(f,) and Z(f))NZ(f,) = ¢. Then fi+f; is a function
from &f whose zero set is empty.

3.3. THeoreMm. Every Wallman ring is equivalent to a Wallman
ring which is inverse closed.

Proof. Let 4 be a Wallman ring on X and let B ={f/g: f,g € A,
Z(g)= ¢} U f € oA then Z(f) = Z(f/g) where g is some function from
o such that Z(g) = ¢;s0 Z[A]1C Z[B]. Similarly Z[B]C Z[A]. B is
a subring of C(X) and & = % so by Theorem 2.15 & is a Wallman ring
and w(Z[A)) =w(Z[B])).

3.4. CoroLLARY. Every Wallman ring is equivalent to a Wallman
ring which contains all the rational constants.

Proof. Let of be a Wallman ring on X. Let & be the Wallman ring
{fle:f,e €A, Z(g)=¢}. Letg € o suchthat Z(g)= ¢. Thenif m and
n are integers, n# 0, mg/ng € B and (mg/ng)=(m/n).

From this proof we observe that every inverse closed Wallman ring
contains all the rational constant functions.

The Wallman ring C*(X) is equivalent to the inverse closed
Wallman ring C(X), for any given space X. C*(X) itself need not be
inverse closed.
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3.5. DeriNITION. If Y is a compactification of X, then E(X, Y) is
the set of all real valued continuous functions on X which are
continuously extendable to Y.

Frink [12] was the first to observe that E(X, Y) is a Wallman ring
on X. Proofs of this were later given by Hager [14] and Biles [8].

In the next theorem we give conditions for C*(X) to be inverse
closed.

3.6. THEOREM. The following are equivalent :

(1) X is pseudocompact,

(2) Every nonempty zero set of BX meets X,

(3) For any compactification Y of X, every nonempty zero set of Y
meets X,

(4) For any compactification Y of X, E(X,Y) is inverse closed,

(5 C*(X) is inverse closed.

Proof. 1= 2. Let f€ C(BX) and suppose Z(f|X)=¢. Then
(1/f|X)E C(X)=C*(X). So So there exists g € C(BX) such that
g|X =(/f|X). Now (gf)| X =1s0 gf =1and Z(f) = ¢. So Z(f|X) =
¢ implies Z(f) = ¢ or equivalently Z(f) # ¢ implies Z(f|X) # ¢.

2 > 3. Let a be a continuous mapping of X into Y which leaves
X pointwise fixed. The existence of such a function is guaranteed by
Stone’s Theorem [14]. Let f € C(Y) such that Z(f) # ¢ and suppose
Zf|X)=¢. Let g=f|X. g€ C(X) so g has an extension to a
continuous function g# in C(BX), g# =fca. Since Z(g)=¢, Z(g?)=
¢. Let x € Z(f). There exists y € BX such that x = a(y). Therefore
0=f(x)=f(a(y)) = g°(y), which contradicts the fact that Z(g*?) = ¢.
Therefore Z(f) # ¢ implies Z(f| X) # ¢.

3>4..Let fEE(X,Y) such that Z(f) = ¢. There is a function
g€ C(Y) such that f=g|X. Since Z(g|X)=¢, Z(g)=¢ and
l/g € C(Y). Now 1/f =1/g|X,so 1/f € E(X,Y)and E(X, Y)isinverse
closed.

45 C*X)=E(X BX)

5> 1. LetfeC(X). Let g =|f|v1. f will be bounded if and
only if g is. Z(g)=¢ so 1/g€C(X). But |l/g|=1/g=1, so
1/g € C*(X). Of course Z(1/g)=¢. Therefore g =1/(1/g) € C*X),
and C(X) = C*X).

Parts of this theorem are problems in Gillman and Jerison. 1 & 2is
problem 6, 1 & 5 is problem 15Q.

We now investigate what happens when & is a Wallman ring and %
is an ideal of .
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3.7. THeorReM. If o is a Wallman ring on X, R is an ideal of A
and Z[B) is a disjunctive base on X, then of = A.

Proof. Let f and g € such that Z(f)NZ(g)=¢. Assume
Z(f)# ¢ and Z(g) # ¢ since otherwise the conclusion follows from
X€EZ[B]and ¢ € Z[B]. Let x € Z(f). Then x& Z(g) so there is a
function f, € B such that x € Z(f,) and Z(f,)NZ(g)=¢. Now let
yEZ(g); y& Z({f:) so there is a function g, € B such that y € Z(g,)
and Z(g,) N (ff.) = ¢. Consequently ff, and gg, are functions from %
whose zero sets separate the zero sets of f and g.

3.8. CorOLLARY. Ifsf and B are Wallman rings on X and R is an
ideal of o then of =R, i.e., w(Z[A]) =e(Z[RB)).

The next corollary tells us that a Wallman ring cannot be an ideal of
C(X) unless the Wallman ring is C(X) itself.

3.9. CororLARrY. If & is an inverse closed Wallman ring on X,
then A has no proper nontrivial ideals whose zero sets are disjunctive;
consequently of has no proper ideals which are Wallman rings.

Proof. Let B be an ideal of & such that Z[%] is disjunctive. By
Lemma 3.2 there are at least two disjoint non-empty zero sets of &, say
F, and F,. By Theorem 3.7 there are functions f, and f, € # such that
F.CZ(f), F,CZ(f) and Z(f)NZ(f)=¢. Let f=fi+fr-fER and
Z(f) = ¢. Since « isinverse closed g/f € o for each g € of. Therefore
g=fglf € B for each g € 4. The only nontrivial ideal of &/ whose
zero sets are disjunctive is & itself.

If we were to eliminate the hypothesis in 3.9 that & be inverse
closed, then the conclusion of the corollary would not necessarily
follow, as is illustrated in this example.

3.10. ExampLE. Let X =(0,1], o = C*(0,1],

B ={f € A: lim_,f(x)=0}

Then & is a Wallman ring on X which is not inverse closed, % is a
proper ideal of &/ and as we shall now show, Z(%) is disjunctive. Let
fE€ERB and let ye X —Z(f). Then for some a€X, 0<a <y and
[a,yINZ(f)=¢. Let H=([a,11NZ(f))U{a}. Then y& H and H is
closed in [a, 1]. So, there exists a function g € C([a, 1]) so that g(y) =0
and g(H)=1. Observethat g(a)=1. Extended g toafunctionh € R
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by defining h(x)=x/a for each x €(0,a). Clearly y €Z(h) and
Z(fyNZ(h)= ¢ so that Z(R) is disjunctive.

We now divert our attention to the topology of a space with relation
to the zero sets of a Wallman ring on the space and observe that the
following properties hold.

3.11. THEeOReM. If o is a Wallman ring on X, then every neigh-
borhood of a point x € X contains a Z[A] — neighborhood of x.

Proof. Let A be a neighborhood of x, x € X. {X —Z(f): f€ A}is
a base for the open sets of X. So for some f € o, x € (X — Z(f)) C A.
Since Z[«/] is disjunctive, there is a function g € & such that g(x) =0
and Z(g) N Z(f) = ¢. By the normality of Z[«], there are functions h
and k&€« such that Z({f)nZk)=¢, Z(g)NZh)=4¢, and
Z(h)UZ(k)=X. Thisyieldsx €Z(g)C X -Z(h)C X -Z(f)CA. So
Z(k) is a neighborhood of x and Z(k) C A.

3.12. CoroLLARY. If o is a Wallman ring on X, then the weak
topology generated by s is the given topology on X.

In the case of the Wallman ring C*(X) it is known that its Wallman
compactification BX is connected if and only if C*(X) cannot be
expressed as the direct sum of nontrivial ideals. With slight modifica-
tions, this theorem can be generalized to arbitrary Wallman rings.

3.13. Tureorem. If o is a Wallman ring such that s{ = B D €
where B and € are proper ideals of- A and. if

d={Lifged  26)-4)
w-{lfea  gea z@-9|

<g'={—t:fe<6, g€, Z(g)=d>}

then B’ and €’ are proper ideals of &/ and ' = RB' P €'.

3.14. Tueorem. If o is a Wallman ring such that o = B P €
where B and € are proper ideals of A, then w(Z[s] is disconnected.

Proof. Define o', B' and €' as in the previous theorem. Then
1 € 4’ implies there are function fE B’ and g € €’ such that 1=f+g
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and fg = 0. Since B’ and €' are proper ideals, they contain no functions
whose zero sets are empty. In particular Z(f) # ¢ and Z(g) # ¢.
Now Z(f)NZ(g)=Z(f*+g"
=Z(f*+2fg +g°
=Z(1)
=¢

and Z(f)U Z(g)=Z(fg) = X.
Therefore Clw(Z[yg']) Z(f) n Clw(Z[&fl']) Z(g) = ¢ and

ClyzianZ(f) U ClyzianZ(g) = w(Z[A'])

where Cl, ) Z(f) and Cl,z4)Z(g) are nonempty closed sets in
w(Z[«A']). This means w(Z[«']) is disconnected. Therefore w(Z[])
is disconnected, since it is homeomorphic to W(Z[«']).

Whether or not the converse of this theorem is valid is an open
question. We do however have a partial converse.

3.15. DeriNiTION. If of C C(X), then A is sectionally replete if it
satisfies the following condition:

f X=U Y,
i=1

where Y, € Z[A] fori =1, -, n and if there are functions g; € & such
that f|Y, =g |Y, for i =1,---,n, then f € A.

3.16. THeoreM. If o is a sectionally replete Wallman ring and
w(Z[A)) is disconnected, then there are proper ideals B and € of A such
that 4 =B P €.

Proof. Since w(Z[«]) is disconnected, there exist nonempty,
disjoint closed subsets H and L of w(Z[]) such that HUL =
w(Z[sA]). Therefore, there exist sets B, C € Z[#] such that H C
Cl,zapB, L CCl,z14)C and B N C = ¢ (Bentley [4]). Let B ={f € A:
f=0on B}and € ={fEA4:f=0o0n C}. B and € are ideals of o
whose intersection is the zero ideal.

For each f € o let

[ 0 if xeB
f'(x)—{f(x) if xecC

and

(fx) if x€B
fz(")‘{o if xecC
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Since & is sectionally replete f, and f,E A f=f +f, fi€ B, and
f,€ €. Therefore o = B P €.

The final topic in this section is the sublattice problem. The
question of when a sublattice of C(X) is a Wallman ring was answered
by Biles [8]. Any sublattice of C(X) whose zero sets form a base for the
closed sets of X is a Wallman ring. It is well-known that every closed
subring of C(X) is a closed sublattice of C(X). So every uniformly
closed Wallman ring is a sublattice of C(X).

A question related to this, namely, “Given an arbitrary Wallman
ring, is it possible to construct an equivalent Wallman ring which is a
sublattice of C(X)?” does not appear to be easily answered.

Along this line we do have the following results.

3.17. THEOREM. Let o be a Wallman ring on X, let B be the ring
generated by {|f|: f € oA}. Then B is a Wallman ring on X and o = B.

Proof. Z(flx|gh=Z(*+xg») and Z(|f| |g])=Z(fg) so Z[L] =
Z[B].

Clearly % is not necessarily a sublattice of C(X). With further
hypotheses we can get a little closer 1o a sublattice of C(X).

3.18. THEOREM. Let A be a Wallman ring over X, let 1€ 4, and
let Z(f A 0)E Z[A] for each f E 4. Then

7 ={2 flel: fogi €l n EN}

is a Wallman ring on X, of =%RB, and B contains the supremum and
infimum of any two functions from 4.

Proof. (1) Z[A)C Z[R] since A C B.
2) Z[RB]C Z[A] since

23 flel)= U{P:acll, -

where

Se=N Z@ r0), T.= N Z((—8) A 0),

i€a

V.= Z<2 f& — ;} figr)

i€a
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and
P=SNT, NV,

(3) % is a subring of C(X).
Therefore % is a Wallman ring on X and 8 = «.
4 If f,g €, then

frg=g+l(f-g)r0)=Lte=lf=gl

2

and

fve=g+if-g vo=LrELlI el

Sofagand fvgeERB.

The following example illustrates that in trying to find a sublattice
of C(X) which is a Wallman ring equivalent to a given Wallman ring we
cannot in general look at the sublattice generated by our given Wallman
ring.

3.19. ExampLe. Let Y=[-1,1], X=Y {0}, # ={f € C(X):
for some compact set H C X, f is constant on X — H}, j: X — R be the
inclusion map, & be the subring of C(X) generated by . U {j}, and &
be the sublattice generated by «. Then (1) Z[A]=Z[M] s0 A is a
Wallman ring and 2) Z[B1Z Z[A].

Proof. (1) A ={Z0 gj": 8. EMmEN}, and MCHA so
ZIMIC Z[A].

To show Z[A1C Z[M] let fE A, f=2Z7_,g.j" where g, €M If
m =0, then f = g, € /M and we are through. Therefore suppose m >0.

For n =0, - -, m, there exist compact subsets H, of X such that g,
is constant on X — H,.

Let t >0 such that [-£,t]CY - U7 H, Let a,=g./t) for
n=0,---,m. Then a, =g, (x) for xe[-t,t]NX, n=0,---,m. For
XE[-ttINX, f(x)=2r0g.(x)j"(x) =27y a,x" which is a polynomial
over [—t,t]NX. So f has finitely many zeros in [—¢ft]NX.
Z=1Z@HN[-1, —t]UL, 1IDULZ() [ -t t]] so Z(f) is compact.
Therefore Z(f) € Z[MU].

(2) Suppose Z[Bl=Z[A)=Z[M]. Let

j*=jv0, and j =(-j)".
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Then j" and j"€RB, and Z(G)NZ()=¢. Now since Z[B]=Z[M]
there exist functions f, g € # such that Z(j*) C Z(f), Z(j") C Z(g), and
Z(f)NnZg)=¢. But Z(GH=[-1,00- and Z({)=(0,1]. So
CL[-1,00NnCl, (0, 1CCLZ(f)NCLyZ(g)=¢ since Y =w(Z[M]).
But Cl,[-1,0)NCl,(0,1]={0} so we have a contradiction and it
follows that Z[B1& Z[HA].

Henriksen and Isbell [16] showed that & is a ring but we do not
know if it is a Wallman ring.

This example shows us that there is a Wallman ring &/ such that if €
is a Wallman ring on X, € is a sublattice of C(X) and & C € then &
and € are not equivalent, since any such Wallman ring would contain 2.

Example 3.19 eliminates the obvious procedure for attacking
another problem. Given an arbitrary Wallman ring we have shown there
is an equivalent Wallman ring which contains all the rational constants.
If we could state that the uniform closure of a Wallman ring is a
Wallman ring equivalent to the original, we would have shown that
every Wallman ring is equivalent to one which contains all the real
constants. However, a uniformly closed subring of C(X) is a sublattice
of C(X) and by example 3.19 there is a Wallman ring which is not
contained in any equivalent Wallman ring which is a sublattice of C(X).
This means that in general the answer to getting the real constants in a
Wallman ring does not lie in taking uniform closures. For now, we
cannot answer the question, “For an arbitrary Wallman ring, is there an
equivalent Wallman ring which contains all the real valued constant
functions?”

IV. Examples of Wallman rings on locally compact
spaces. In this section, we present a method for constructing exam-
ples of Wallman Rings on locally compact spaces. These Wallman rings
are determined by compactifications of the space which can be mapped
by a certain kind of retract map onto the remainder. H. L. Bentley [6]
has shown that these compactifications are Wallman; we show how they
arise from Wallman rings.

Throughout this section, X is assumed to be a locally compact
space.

4.1. DerFINITION. A closed subset L of X is called co-compact
provided Cly(X — L) is compact.

4.2. DErINITION. If 9 is a family of closed subsets of X, then the
compact modification of ¥ is the family

CM(#)={(HNL)UB: HE%,L is co-compact, and B is compact}.
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4.3. DEerINITION.  (Borsuk [10].) A continuous map f: Y — K is
called a retract map provided K is a subspace of Y and f(x)=x for
each x € K.

4.4. DEFINITION. (BentleyA[6].) If Y is a compactification of X,
K=Y -X,and f: Y — K is a continuous map, then f maps onto K at ©
provided f[L]= K for each co-compact subset L of X.

4.5. Turorem. (Bentley[6].) Let Y be a compactification of the
locally compact space X, let K =Y — X, and let f: Y — K be a retract
map which maps onto K at ©. Let # ={X N f"(E): Eis a closed subset
of K}. Then CM (%) is a normal base on X and w(CM(¥))=Y.

Our objective is to exhibit a Wallman ring & on X for which
w(Z[A])=Y, with Y as in the preceding theorem.

4.6. THEOREM. Let Y be a compactification of the locally com -
pact space X, let K =Y — X and let f: Y — K be a retract map which
maps onto K at ©. Let B be the set of all h € C(Y) for which there
exists a co-compact set L C X such that forall z € K, h[L N f'({z}D] =
{h(2)}. Let oA be the set of all restrictions h | X with h € B. Then A is a
Wallman ring on X and w(Z[H])=Y.

The proof of this theorem will depend on the following lemmas.
Let Y, K, f, # and o be as in Theorem 4.6 and let % be as in Theorem
4.5.

47. LeEMMmA. Z[A]=CM((¥)

Proof. Let h € o, then h has an extension h' € C(Y) such that
for some co-compact set L in X

R'[LNf'{zhl=h'(z) for all z€E€K.

So Zh)=Zh)NX.

=[Z(h)NClx(X-L)JU[Z(h")NL].
[Z(hW)NClk(X-D)IVIf(Z(h')NK)NL].
[Z(h)NClx(X - L)V (Z(h)NK)NX)NL].

Now Z(h') N Clx(X — L) is compact, L is co-compact, and Z(h')N K
is a closed subset of K, so Z(h) € CM(%) and Z[A]=CM(¥).

48. LemMma. CM)=Z[A].
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Proof. Let F,, F,€ CM(3) such that F, N F,= ¢. There are sets
L, and L, which are closed and co-compact in X, subsets B, and B, of X
which are compact, and subsets E, and E, of K which are compact,
such that F, = (L, N f"(E;)) U B, for i =1,2. Also F,N F,= ¢ implies
[L,NfY(E)IN[L,Nf(E)]=¢. Sohave LINL,Nf(E,NE,)=¢.
Since f maps onto K at «, and L, N L, is co-compact, we conclude
E,NE,=¢.

K is completely regular so there exists wu,, u,€ C*K),
u;: K—[0,1], u,: K—[0,1], such that E,C Z(u,), E,C Z(u,), and
Z(wu)NZ(u,)=¢. Let fi=u,°f, and fy=u,of. Then fi, fL€ C(Y),
fi: Y—[0,1], fi: Y—>[0,1].

If x e L, N f'(E)), then f(x) € E;; and since u;, = 0 on E,, it follows
that x € Z(f: for i =1,2. Also Z(f)NZ(f3) = ¢.

Now {[L,Nf'(E)]U B} N{[L,Nf'(E,)]U B,} = ¢ and these two
sets are elements of a normal base for Y so

CIW{L NfYEDIUB}INCI{L.Nf(E)]UB,}=¢.

Therefore there exist closed sets G, and G, in Y such that Cl, {[L; N
f(E)JU B;} C IntyG, for i =1,2. B, and B, are disjoint compact sets
in X, so there are disjoint compact sets C, and C, in X such that
B: CIntxC, i = 1,2. Then C; N G; is a compact set in X which contains
B; in its interior and is disjoint from [C; N G;]U[L; N f~'(E;)] for i#j;
i=12;j=1,2.

Now define h;, =0 on B,, h;=1 on Cl, (Y —(C,N G,)). These are
disjoint closed sets in Y so we can take h, to be a continuous function
onY, h;: Y—[0,1]. Similarly define h,: Y —[0,1], h,=0o0n B,, h,=1
on Cl,(Y —(C,NGy). So Z(h)NZ(hy) = ¢.

Now we have no assurance that Z(f5))NZ(h)=d¢ or that
Z(f)NZ(h,) =¢ so we modify fi and f5.

f'(Zu))N(C,N G,) is a compact set in X disjoint from f™'(E;) N
L,, aclosed setin X. Therefore since X is locally compact there exists a
compact subset D, of X such that

f_l(Z(un)) NC,NG,CIntyD, CD,C X — (f_](El) NL,).

Similarly there exists a compact subset D, of X such that

' Zw)NCNG CintyD, C D, C X —(f(E;) N Ly,).

Since f'[Z(u)]NC,N G, and Cly(Y —D,) are disjoint closed
subsets of Y and since Y is compact, hence normal, there exists a
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continuous function g,: Y —[0, 1] such that g,is 1 on f'[Z(u,) N C,N
G,] and g, is 0 on Cly(Y — D,). Similarly define g,.

Now let fi=fivg, and f,=fivg,. Then f,, f,€ C(Y),
fi: Y=[0,1], £ Y—=[0,1], ZE)NZ(f)=¢, Z(f)NZ(h))=¢ and
Z(fz) NZhy) = ¢.

Finally let a,=f, A h, and a,=f, A h,. F,C Z(a,) since

fAENNL CZ(fHNZ(g)=Z(f) T Z(ay)

and B,CZ(h,)C Z(«a,). Similarly F,C Z(a,;). Z(a;) and Z(«,) are
disjoint since:

Z(a) N Z(az) = (Z(f) U Z(h)) N(Z(f) U Z(hy)
=(Z{f)NZ() V(Z(f) N Z(h)) U (Z(h) N Z(f2)
XU(Z(h) N Z(hy)
=¢

a, € B since a, = fi on ClI,L,NCl, (Y — D) NCly (Y —(C,N G))),
a set whose intersection with X is co-compact. Similarly «, € 3.

Therefore we have functions | X and @,|X whose zero sets
separate F, and F,, consequently CM(¥)= Z[HA].

4.9. Lemma. Z[A] is a lattice of closed subsets of X.

Proof. If f,g€RB, and L; and L, are the co-compact sets as-
sociated with f and g in the definition of % then f — g and fg satisfy the
condition for being elements of B on the co-compact set L; N L,.
Consequently & is a subring of C(Y) so Z(2A) is a lattice of closed
subsets of Y and hence Z(«) is a lattice of closed subsets of X.

We are now in a position to prove Theorem 4.6.

Proof. By Lemmas 4.7 and 4.8 Z[4]= CM(¥) and by Lemma
4.9, Z[s]is a lattice of closed subsets of X. Therefore by Theorem 2.12
Z[A] is a normal base on X and w(Z[«])=w(CM(¥)). But
w(CM(¥))=Y, so we have w(Z[L]) =Y.

We note that the theorem is also valid when f is defined just on the
closure in Y of some co-compact subset of X.

The following corollary gives a Wallman ring which generates the
one point compactification of a locally compact space. This result was
earlier observed by Brooks [11].
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4.10. CororLrary. If X is a locally compact space, then o =
{f € C(X): there is a co-compact subset of X on which fis constant} is a
Wallman ring on X and w(Z[s{)) is the Alexandroff compactification of
X.

Proof. Let Y be the Alexandroff compactification of X. There
can be only one function mapping Y onto (Y — X) since there is just
one point in (Y — X). Clearly this function maps onto (Y — X) at .
Therefore the hypotheses of Theorem 4.6 are satisfied. By examining
the set B as defined in the theorem, we see B ={h € C(Y): h(L) is
constant for some co-compact subset L of X}. Consequently & is a
Wallman ring which generates the Alexandroff compactification of X.

The zero sets of this Wallman ring are precisely those zero sets of
X which are either compact or co-compact.

4.11. THeoreM. If X is a locally compact space and A =
{f € C(X): there is a co-compact subset of X on which f is constant},
then Z[4)={F: F € Z(X) and F is either compact or co-compact}.

Proof. Let f € o, then Z(f) € Z(X). Let F be the co-compact set
on which f is constant. Then Z(f)NF=¢ or FCZ(f). H Z(f)NF =
¢, then Z(f) C Clx(X — F) which implies Z(f) is compact. If F C Z(f),
then Clx(X — Z(f)) C Clx(X — F) which implies that Clx(X — Z(f)) is
compact and Z(f) is co-compact.

Now let Z(f) be a zero set of X which is either compact or
co-compact, f € C(X). If Z(f) is compact, then let f'=14|f| Then
Z(fy=Z(f'). Since Z(f) is compact and X is locally compact there is a
compact subset W of X such that Z(f) CInt W C W C X. Also there is
a function g € C(X) such that g[Z(f)]={0}, g[X —Int W]= {1},
g: X—[0,1]. Define h = f' v g. Then Z(h)= Z(f) and h is constant on
(X —Int W) which is a co-compact subset of X. Therefore Z(f) €
Z[A].

If Z(f) is co-compact, then f is constant on the co-compact set
Z(f),so fed, and Z(f) € Z[A].

We will now define a Wallman ring &/, on the open unit disc such
that w(Z[«]) is the closed unit disc.

4.12. ExampLE. Let X be the open unit disc in Euclidean 2-space
and let Y be the closed unit disc.

We will consider the elements of Y to be complex numbers. Let
K={z€Y:|z|=1}, let J={z€Y:|z|=4}} and define a function
f:J—>K by

f(z)=|7zI for eaach z €.
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Let B be the set of all functions h € C(Y) for which there exists a
co-compact subset L of X such that forall z € L NJ, h(z) = h(z/|z]).
Note that B can equivalently be described as the set of all functions
h € C(Y) for which there exists ¢t €[}, 1] such that for all z with
t=|z|=1, h(z)=h(z/|z|).

As was noted after the proof of Theorem 4.6, that theorem is valid
if the retract map is defined only on the closure in Y of some
co-compact subset of X. In the present situation, J is such a closure.
Clearly, f maps JNX onto K at . Therefore if we let o =
{h|X: h B}, then & is a Wallman ring on X which induces a
compactification equivalent to the closed disc.
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