MOMENT SEQUENCES IN 1°

J. BOCKETT HUNTER

Let p > 0. Conditions are derived, each necessary and sufficient, for a moment sequence to be in l^p . It is shown that the moment sequences in l^p are dense in l^p . For p = 2, these results were obtained by G. G. Johnson.

G. G. Johnson obtained a necessary and sufficient condition for a moment sequence to be in l^2 , and showed that the moment sequences in l^2 are dense in l^2 . This paper shows that the same conclusions hold in any l^p space. The proofs are similar to and improvements of those in G. G. Johnson, Pacific J. Math., 46(1973), 201-207.

LEMMA 1. Let 0 , <math>q > 0. If $a_n = 1 - (n+1)^{-p}$, then $\{a_n^n\} \in l^q$.

Proof. $a_n^{nq} = \exp(qn \log(1 - (n+1)^{-p})) < \exp(qn(-(n+1)^{-p})) = (\exp(qn(n+1)^{-p}))^{-1} < [\sum_{k=0}^{N} (qn(n+1)^{-p})^k/k!]^{-1}$, where N satisfies N(1-p) > 1. Then

$$\sum_{n=1}^{\infty} a_n^{nq} < \sum_{n=1}^{\infty} \left[(qn(n+1)^{-p})^N / N! \right]^{-1} = N! \ q^{-N} \sum_{n=1}^{\infty} \left[(n+1)^p / n \right]^N,$$

which converges if and only if $\sum_{n=1}^{\infty} n^{-(1-p)N}$ converges, and the latter is a convergent *p*-series.

THEOREM 1. Let p > 0, $f \in BV[0,1]$, $\mu_n = \int_0^1 t^n df$. For each $\{a_n\}$ such that $0 \le a_n < 1$, and $\{a_n^n\} \in l^p$, the following are equivalent.

(i) $\{\mu_n\} \in l^p$

(ii)
$$\left\{ f(1) - (1 - a_n^n)^{-1} \int_{a_n}^1 f(t) dt^n \right\}_{n=1}^{\infty} \in l^p$$
.

Lemma 1 shows such $\{a_n^n\}$ exist.

Proof. Split the integral for μ_n at a_n and integrate by parts to obtain, as in [1], $\mu_n = a_n^n (\delta_n - \gamma_n) + (f(1) - \delta_n)$, where $\delta_n = (1 - a_n^n)^{-1} \int_{a_n}^1 f(t) dt^n$ and $\gamma_n = (a_n^n)^{-1} \int_0^{a_n} f(t) dt^n$. Since $|\delta_n - \gamma_n|$ is bounded, $\{a_n^n (\delta_n - \gamma_n)\} \in l^p$, so that $\{\mu_n\} \in l^p$ if and only if $\{f(1) - \delta_n\}_{n=1}^\infty \in l^p$.

LEMMA 2. If $g(t) = 1 - (1 - t)^{\alpha}$, $\alpha > 0$, and $\nu_n = \int_0^1 t^n dg$, then $\{\nu_n\} \in l^p$ if and only if $\alpha > 1/p$.

Proof. $\mu_n = \int_0^1 t^n dg = \Gamma(\alpha + 1)\Gamma(n + 1)/\Gamma(n + \alpha + 1)$. Using Stirling's formula or Gauss's test, $\sum_n \mu_n^p$ converges if and only if $\alpha > 1/p$. [3, pp. 92-93].

Consequently no l^p space contains all of the moment sequences.

COROLLARY. If there is δ , $0 < \delta < 1$, B > 0 and α such that

(i) $\alpha > 1/p$ and $|f(1) - f(t)| \le B|1 - t|^{\alpha}$ for t in $[\delta, 1]$, then $\{\mu_n\} \in l^p$

(ii) $\alpha \leq 1/p$ and $f(1) - f(t) \geq B(1-t)^{\alpha}$ for t in $[\delta, 1]$, or $f(t) - f(1) \geq B(1-t)^{\alpha}$ for t in $[\delta, 1]$, then $\{\mu_n\} \not\in l^p$.

Proof. of (i)

$$\left| f(1) - (1 - a_n^n)^{-1} \int_{a_n}^1 f(t) dt^n \right| = \left| (1 - a_n^n)^{-1} \int_{a_n}^1 (f(1) - f(t)) dt^n \right|$$

$$\leq (1 - a_n^n)^{-1} \int_{a_n}^1 |f(1) - f(t)| dt^n$$

$$\leq (1 - a_n^n)^{-1} \int_{a_n}^1 B(1 - t)^{\alpha} dt^n$$

$$= B \left[g(1) - (1 - a_n^n)^{-1} \int_{a_n}^1 g(t) dt^n \right]$$

which we shall call ψ_n . By Lemma 2 and Theorem 1, $\{\psi_n\} \in l^p$.

The proof of (ii) is analogous to that of (i).

For each integer k > 0, m > 0, define the moment sequence $c_{km} =$

$$\{c_{nkm}\}_{n=0}^{\infty}$$
 by $c_{nkm} = (-1)^m k^m m!^{-1} \sum_{r=0}^m {m \choose r} (-1)^r (r/k)^n = m!^{-1} \Delta_{\omega}^m x^n$, where $\Delta_{\omega} f(x) = [f(x+\omega) - f(x)]/\omega$, $\omega = k^{-1}$, and $x = 0$.

THEOREM 2. Let p > 0. The moment sequences c_{km} belong to and have dense linear span in l^p .

Proof. For m > n, $\Delta_{\omega}^m x^n = 0$. From [2, p. 13], with $f(x) = x^{n+m}$, $\Delta_{\omega}^m f(x) = f^{(m)}(\xi)$ for some ξ between 0 and $m\omega$, so that $|\Delta_{\omega}^m x^{n+m}| \le \max_{0 \le \xi \le m\omega} |f^{(m)}(\xi)| = (n+m)! (m\omega)^n/n!$.

Using these facts we have, for 0 ,

$$\sum_{\substack{n=0\\n\neq m}}^{\infty} |c_{nkm}|^p = \sum_{\substack{n=m+1\\n\neq m}}^{\infty} |c_{nkm}|^p = \sum_{\substack{n=1\\n\neq m}}^{\infty} |c_{nkm}|^p = \sum_{\substack{n=1\\n\neq m}}^{\infty} |m!^{-1} \Delta_{\omega}^m x^{n+m}|^p$$

$$\leq m!^{-p} \sum_{\substack{n=1\\n\neq m}}^{\infty} (n+m)! (mk^{-1})^{np} / n!$$

$$= m!^{1-p} [(1-(m/k)^p)^{-m-1} - 1].$$

Therefore the sum is finite and tends to 0 as $k \to \infty$.

Since
$$\Delta_{\omega}^m x^m = m!$$
, $c_{mkm} = 1$. For

$$0
$$= |c_{mkm} - 1|^p + \sum_{\substack{n=0 \\ n \ne m}}^{\infty} |c_{nkm}|^p \to 0, \text{ as } k \to \infty.$$$$

But the $\{e^m\}_{m=0}^{\infty}$ form a basis for l^p so that the c_{km} have dense linear span in l^p for 0 .

For any p' > p, $l^{p'} \supset l^p$ and the $l^{p'}$ topology is weaker than that of l^p ([4, p. 203]). Therefore the $c_{km} \in l^{p'}$ and $c_{km} \to e^m$ in $l^{p'}$, so the c_{km} have dense linear span in each l^p space.

I wish to thank B. E. Rhoades for bringing [1] to my attention, and for his suggestions in the preparation of this paper.

REFERENCES

- 1. G. G. Johnson, Moment Sequences in Hilbert Space, Pacific J. Math., 46 (1973), 201-207.
- 2. N. E. Nörlund, Vorlesungen uber Differenzenrechnung, Springer Verlag 1924.
- 3. B. E. Rhoades, Spectra of some Hausdorff Operators, Acta Sci. Math., 32 (1971), 91-100.
- 4. A. Wilansky, Functional Analysis, Blaisdell Pub. Co., 1964.

Received December 6, 1973.

INDIANA UNIVERSITY