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COMPONENTS OF ZERO SETS OF ANALYTIC
FUNCTIONS IN C2 IN THE UNIT BALL

OR POLYDISC

B. A. TAYLOR

Let Ω denote either the unit ball or unit polydisc in C2.
Let / be a function analytic on a neighborhood of the closure
of Ω, and let V be an irreducible component of {/= 0} Π Ω.
Then there is a bounded analytic function on Ω whose zero
set is V.

1* Introduction* Let Vι be the zero set of a polynomial in C2.
H. Alexander has posed the question of determining if an irreduci-
ble component of V, in U2 = {(z, w) e C2: \ z \ < 1, | w | < 1}, the unit
polydisc, can be defined by a bounded holomorphic function in U2

([4] p. 233; see also [8], p. 90). We show here that this is the case
for both U2 and the unit ball {(z, w) e C2: \ z |2 + | w |2 < 1}. For the
proof an explicit local construction is first made and then the patching
theorems of Stout [9], [10], or Range and Siu [7] are used to prove
the theorem.

2* Statement of theorem and outline of proof.
THEOREM. Let f be holomorphic on a neighborhood of Ω, where

either
( i ) 12= U2= {(z,w)eC2\\z\ < 1, | w | < l } ; or
(ii) Ω is a strongly convex bounded open set in C2 with (real)

analytic boundary.

Let V be an irreducible component of {z e Ω: f(z) = 0}, the variety
of f in Ω. Then there exists a bounded holomorphic function F on
Ω such that

V= {zeΩ\F(z) = 0} .

According to theorems of Stout [9], [10], or Range and Siu [7],
it suffices to prove the following local version of the theorem.

PROPOSITION 1. Let Ω, V be as in the theorem. For each ζeΩ9

there is an open set Uζ in C2 and a bounded holomorphic function
fζ on U: Π Ω such that for ζ,ηeΩ,

( i ) ζeUc;
(ϋ) Vf] Uζ = {ze Uζf]Ω:fζ(z) = 0};
(iii) if h — fjfη, then h and 1/h are holomorphic and bounded

on Uζf] UVΠ Ω.
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The only difficulty in finding the functions fζ of Proposition 1
occurs when ζedΩ and /(ζ) = 0. The most obvious candidates to try
are pieces of the Weierstrass polynomial occuring in the local factori-
zation of / . This procedure works, and an outline of the steps is
as follows.

Step 1. Choose local coordinates (z, w) at ζ e dΩ so that near
ζ, / may be factored as a Weierstrass polynomial P in w times a
unit U,

f(z, w) = U(z, w) P(z, w)

= U(z, w)[wm + am^{z)wm-1 + + cφ)]

The {w3(z)} are not analytic functions, but may be thought of as
multivalued analytic functions (see e.g. [2], p. 69, equation (2), or
[1], Chapter 1, §4, especially p. 20). For an appropriate choice of
local coordinates {z, w), it is possible to choose branches of the
multivalued functions wβ(z) so that the functions

hj(z, w) = w — Wj(z)

are single-valued analytic functions on the part on Ω near ζ.

Step 2. Show that the restriction of each of the functions hs

to Ω is irreducible (or a unit). Thus, any irreducible component of
Vf)Ω must locally be the union of the zero sets of some of the hj.
A function fζ which works is then the product of these hj.

We have encountered several problems in carrying through this
program. These have required us to consider only % — 2. It may
be that similar methods will work for n > 2, but the appropriate
choice of local coordinates is not so evident. In case the boundary
of Ω is only C°° instead of analytic (or piece wise analytic), there
seems to be little hope that these methods will work, since the varieties
{hj = 0} f] Ω can have infinitely many components.

Proposition 1 is a consequence of the following lemma.

LEMMA 1. Let Ω, V, f be as in Theorem 1. For each ζedΩ
withf (ζ) = 0, there exists open sets Uζ, Wζ in C2, and a holomorphic
function fζ on Wζ Π Ω such that (i) and (ii) of Proposition 1 hold
andf further,

(iv) ζeUζ(zUζaWc

(v) fz is continuous on Wζ Π Ω, and F n Wc Π Ω = {ze Wζ Π
Ω:fζ(z) = 0}.
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Also, condition (iii) of Proposition 1 holds when ζ, rj e dΩ and

/(O = f(v) = o.

It is easy to deduce Proposition 1 from Lemma 1. In the rest
of the paper we prove Lemma 1.

Proof of Proposition 1 from Lemma 1. Choose an analytic
function g on Ω so that V is the variety of g and, further, that g
defines the ideal of V locally (see e.g. [2, p. 251]). If ζeΩ choose
ε smaller than the distance from ζ to dΩ and set

Vζ = ball of radius ε about ζ = B(ζ, ε)

Next, if ζ 6 dΩ, but /(ζ) Φ 0, choose ε > 0 so small that / is holo-
morphic on B(ζ, 2e) and B(ζ, 2ε) does not meet the zero set of /.
Then let Uζ = B{ζ, ε), fζ = 1. Finally, if ζedΩ and /(ζ) = 0, let
Ϊ7C, /ζ be as given by Lemma 1. It is now easy to check that (i)-(iii)
of Proposition 1 are satisfied.

3* Structure of V at dΩ. In this section we prove Lemma 1
in case (ii) of Theorem 1. That is, we assume that locally Ω is
defined as {p < 0} where p is a real analytic, convex function with
Vp Φ 0 on p = 0. We may also assume that / is irreducible on a
neighborhood of Ω, since if not, a preliminary factorization can first
be made. We may also assume that for any choice of affine coordi-
nates on C2, / is regular in w. That is, /vanishes on no open subset
of a complex hyperplane in C2. For, if this is the case, then f(z, w) =
[a + bz + cw] h{z, w), where h is holomorphic on a neighborhood of
Ω. Since / is irreducible, we either have a + bz + cw Φ 0 on Ω9 in
which case we can replace / by h, or h Φ 0 on Ω, in which case we
take F = a + bz + cw and the Theorem is trivial.

Thus, let ζ G diλ Choose orthonormal coordinates with origin at
ζ so that for small values of z and w,

(3.1) ρ(z, w) = 2Re 72 + Q(s, w) + 2Re P(z, w) + e(s, w)

where 7 > 0 (7 = 1/2 | Vρ{ζ) |) and

— V ^ ίΌ ΠV T > *̂ίΊ / I2 4- I / !2^ h ^> 0Σ

(3.2) P(ί t, ί2) = Σ ^ - (0, 0)

ε(z, w) = 0(| 213 + I w Is) .
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Thus, the direction of Re z is the direction of the outward normal
to Ω at ζ.

In this coordinate system, factor / as a Weierstrass polynomial
in w times a nonvanishing function,

(3.3) f(z, w) = P(z, w)U(z, w) = [ft (w - wy(z))]F(z, w) ,

m = m(ζ) .

on a neighborhood of ζ. Since / is irreducible on a neighborhood
of Ω, the variety of common zeroes of / and Vf is discrete, since
it must have codimension of at least 2. Thus, for sufficiently small
z Φ 0, the roots wό{z) of / given by (3.3) are all distinct. Further,
on any simply connected open subset of a small punctured disc 0 <
I z I < δ such as

{z I 0 < I z I < δ, Re z < 0}

the Wj(z) may be chosen as single valued analytic functions of z, and
each of them w(z) = ws(z) has a Puiseux expansion

(3.4) w(z) = £φιιq)1

1=1

as a series of fractional powers of z (see e.g. [3], p. 346, or [1], pp.
7.22).

We want to study each of the "pieces" of the variety of / near

ζ,

(3.5) hό{z, w) = 0

where

hj(z, w) = w — Wj(z) .

In particular, we want to prove that the hά are irreducible analytic
functions on the part of Ω near ζ; that is, the part of the zero set
of hj lying inside Ω is connected. Since Ω is defined by the inequality
p < 0, this means we have to study when the function

(3.6) u(z) = p(z, w(z)) ,

where w(z) = w3(z) for some j, can be negative. The necessary facts
are in the next two lemmas.

LEMMA 3.1. There exists δ0 > 0 such that either
( i ) u(reiθ) ^ 0, π/2 ^ θ ^ 3ττ/2, 0 < r ^ δo; or
(ii) for every r, 0 < r < δ0, there exists θ = θ(r) with π/2 <̂

θ ^ 3ττ/2, such that
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u(reiθ) < 0 .

REMARK. If p is only C°° instead of real analytic, this lemma
is false. A counterexample may be obtained as follows. Choose a
C°° function χ of one real variable r with an infinite order zero at
r = 0, and such that X(r) changes sign infinitely often as r —>0. For
example, χ(r) = e~1/r2 sin (1/r). Then set

where φ is a C°° function with φ = 1 on a neighborhood of (0, 0),
0 ^ φ ̂  1, and 0 = 0 outside a slightly larger neighborhood of (0, 0).

We can do this keeping ε(z, w) small in the C2 norm. Then define

p(z, w) = ~2Re z + I z |2 + | w |2 + ε(z, w)

and set Ω = {p <0}. Since ε(s, w) is small in the C2 norm, Ω is
strictly pseudoconvex and is, of course, a small perturbation of the
ball with center at (1, 0) and radius 1. Then set f(z, w) = w2—2z
and V= {(z, w): f(z, w) = 0}. It is not hard to verify that Vf)Ω has
infinitely many components, and also, all the sets Pj(δ) have infinitely
many components. Thus, Lemma 3.1 fails. However, an extra
argument will show that the Theorem is still correct for this ex-
ample.

Proof. Set z = tn, v(t) — u(tn) where n ^ 1 is chosen so that
w(tn), given by (3.4) is an analytic function of t near t = 0. Let

Sδ = {t = re**: - | £ n<p g ψ, v(t) < 0, r <

If the lemma is false, then there exists sequences {ry}, {r*}, {φs} such
that rx > rt > r2 > r2* , rs -> 0, π/2 ^ nφά ^ 3ττ/2, and v{rόe

iψ) ^ 0
for all π/2 ^nφS 3π/2, and v(rfeiφή < 0.

We can assume that for φ = Zπj2n or φ = 7r/2^ we have v(reiφ) ^ 0
for all sufficiently small r > 0. Otherwise, since r —> v(reiψ) is real
analytic, we have v(reiψ) < 0 on an interval (0, δ) and the lemma is
true. Consequently the assumption that the lemma is false leads to
the conclusion that for any neighborhood U of t — 0, the points r*ei<pJ
all belong to different components of O = U\{t: v(t) = 0}. However,
since v(t) is real analytic, the set O can have only finitely many
components ([5], p. 96, Lemma 1), which is a contradiction.

LEMMA 3.2. There exists δ0 = <?0(ζ) > 0 so small that if S(δ) =
{z: Re z < 0, | z \ < δ} then
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( i ) for each j the set

Pd(δ) = {z:ze S(δ), p{z, wό{z)) < 0}

is either empty for all 0 < δ < δOf or else Pά(δ) is nonempty and
connected for every 0 < δ <. δo;

(ii) if Pj(δ) is not empty for some (and hence all) 0 < δ < δ09

then its closure in S(δ) is equal to {z: z e S(δ), p(z, w5{z)) <Ξ 0};
(iii) if ζ' e dΩ and the length of the z coordinate of ζ' is less

then δ0, and if the function z —> p(z, wό(z)) vanishes at ζ' for some
j for which P3(δ) is not empty, then m(ζ') = 1, where m(ζ') is as
defined in (3.3).

Proof. We, of course, choose δ so small that all the points
with coordinates (z, wό{z)) are in the domain of p. From the expansion
(3.4), we see that if w(z) is one of the roots of f(z, w) = 0, then

(3.7) w(z) = azβ + h(z)

where a Φ 0, β > 0, and h(z) is a power series in fractional powers
of z higher than β which converges on some neighborhood of z = 0.
Writing z = reiΘ, we have, in particular, that

I h(z) I = 0(rα) for some a > β .

Let u(z) = p(z, w(z)), so we wish to study the set u < 0.
We will distinguish the three cases β < 1/2, β = 1/2, β > 1/2.

Case 1. β < 1/2.
With z = reiθ, π/2 ^ θ ^ 3ττ/2, we claim that

u(z) = r2β[\ a |2 + 2 | c \ cos (2/3̂  - 0O)] + o

(3.8) - ^ ^ ) = -4/S I c I r2^ sin (2/9^ - ί0) + o(r2β)
oθ

d^2(z) = -8β2\c\ r*β cos (2βθ - β0) + o(r2β)

for some real number ΘQ and complex numbers a Φ 0 and c. The
number α ^ 0 is a constant multiple of the number a of (3.7) while
c is a multiple of the coefficient of w2 in the Taylor series expansion
of ρ(z, w) about (2, w) = (0, 0). The equations (3.8) follow from direct
substitution of the formula (3.7) for w(z) into the Taylor series
expansion of p given by (3.1), and standard estimates for the re-
mainder in Taylor's formula. We omit the calculations.

Next note that if c = 0, then u(z) > 0 for small r > 0, so P3(δ)
is empty for all small δ. We can therefore assume c Φ 0. We claim
that



COMPONENTS OF ZERO SETS OF ANALYTIC 259

Ir = {θ: π/2^β^ 3π/2, u(reiθ) < 0}

is an (possibly empty) open interval. This follows from a (slightly)
tedious analysis of (3.8). For, from the last two equations of (3.8)
we see that for sufficiently small r, on any interval of length π/2β > π,
the function θ —> u(reiθ) either

(A) decreases to a minimum and increases thereafter; or
(B) increases to a maximum and decreases thereafter.

Thus, the only way Ir can fail to be an interval is to have u(ir) < 0,
u(-ir) < 0 and u(reiθ) ^ 0 for some θ, π/2 < θ < 3τr/2. This implies

cos
21c

cos (Sβπ - θo)< - -iLJ! + o(l) < 0
2c

when r is small. Then, since the interval βπ — θ0 <̂  x <̂  Zβπ — θ0

has length 2βπ < π and the cosine function is negative at both end
points, it follows that it is negative on the entire interval, and in
fact, smaller than the largest of the endpoint values. In this case,
we then have u(reiθ) < 0 on the entire interval, for sufficiently small
r. Thus, Ir, must be an interval.

It then follows from Lemma 3.1 that the set P(δ) = Pj(δ) of (i)
of the Lemma is either empty or has the property that it is an open
set which meets every circle \z\ = r < δ in an arc. In this latter
case, it is clear that P(δ) is connected.

Part (ii) of the lemma follows from (3.8) in much the same way.
The equations show that for sufficiently small r > 0, near any point
θe(π/2,3π/2) the function u is either strictly increasing, strictly
decreasing, strictly concave, or strictly convex. Thus, near any
point where u(reiθ) = 0, there are either points with u < 0 or else u
has a strict relative maximum or minimum. The case of a relative
maximum cannot occur, since then Ir would not be an interval. In
the case of a relative minimum, we see from (3.8) that it must be
an absolute minimum, so Ir is empty. Thus, (ii) follows. Note also
that when Ir is not empty, we also have that

— u(reiθ) Φ 0 at points θ with u(reiθ) = 0.
3Θ

We now prove part (iii). Let ζ Φ ζ' e oΩ be a point near ζ with
coordinates (α, 6), a Φ 0. Assume that P{δ) is not empty and that
u(a) = 0. As noted at the end of the last paragraph, (du)/(dθ)(a) Φ 0.
Consider the factorization of / in the (z\ w') coordinate system near
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/(*', W) = [ g V - wW))\F\z\ w') .

Suppose by way of contradiction that m(ζ') ;> 2. Then 3//3w' = 0
at the point ζ'. However, since the zeroes {ws(z)} are all distinct,
df/dw ^ 0 at C, so F/ =£ 0 and df/dz' Φ 0 at ζ. By the implicit
function theorem, we can write the zeroes of / near ζ' as z' = h(w') =
const. (w')p + higher order terms. If p ^ 2, the manifold (/&(W), w')
is tangent to 342 at ζ', and so the restriction of p to this manifold
must have a vanishing gradient. However, this restriction is just
what we are calling u(z), and we have already seen that du/dθ Φ 0,
hence Vu Φ 0. Thus, p ;> 2 does not occur, so, locally, w' is an
analytic function of z' on / = 0. Thus, m(ζ') = 1, as asserted. This
completes the discussion of Case 1.

Case 2. β = 1/2.

Exactly as in Case 1, we find, with a Φ 0,

w(s) - r[| α |2 + 2 | δ | cos (θ - ^)] + o(r)

(3.9) ^ ( ^ ) = - 2 I 6 I r sin (̂  - ,̂) + o(r)

oθ

d-^(*)= -2\b\rcos(θ~ θt) + o(r).

The proofs of (i)-(iii) are then the same as in Case 1.

Case 3. β > 1/2.

Exactly as in Case 1, we find

u(z) = 2Tr cos θ + o(r)

(3.10) iϋ(«) = -27r sin ί + o(r)
oθ

~(z)= - 27r cos θ + o(r)

and we can again proceed as in the earlier cases.

REMARK. In this last case, which is always the one if m(ζ) = 1,
we definitely have that P(δ') is not empty. The first two cases only
occur when {/ = 0} is tangent to dΩ at ζ.

Proof of Lemma 1. Let ζedΩ, /(ζ) = 0. Choose δ = δ(ζ) > 0
so small t h a t the conclusions of Lemma 3.2 all hold. Then let Uζ

be the collection of all points wi th (z, w) coordinate satisfying \z\<

1/2 δ(ζ). By an abuse of notation, we will wr i te
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(3.11) Uζ={(z,w):\z\<λδ(ζ)ή,

Similarly, let

(3.12) Wζ = {(z,w):\z\<δ(Q}.

For δ < <5(ζ), let

X,(δ) = {(z, wj(z)) e Ω: Re z < 0, \z | < δ} .

Prom (i) of Lemma (3.1), each Xj(δ) is empty or a connected variety
in ΩΠ{\z\<δ9 Re z < 0}. Thus, if we let S(δ) = {(z, w): Re z < 0,
| s | < <?}, and V, = {/ = 0), then

vi n fl n S(δ) - ΰ W )

and the latter union is the decomposition of Vx into irreducible com-
ponents in βfl S{δ). Since V is an irreducible component of Vx Π Ω,
if we put J = J(ζ) = {j: 1 ^ i ^ m, X, (δ) c V, X3(δ) Φ ψ}. Then

u^)
j e j

Thus, with hj(z, w) = w — wό(z)f we define

(3.13) Λ = Π

Now, conditions (i), (ii), (iv) and (v) of Lemma 1 hold by con-
struction. We only have to check condition (iii). Thus, assume
ζ, ζ' e dΩ, /(ζ) = /(C) = 0, and there is a point peUζf)Uζ>n Ω. We
have to prove that u = fjfc,, is holomorphic, nonvanishing, and \u\
is bounded above and away from zero on Uζ Π Uγ Π Ω. Actually,
we will see that u is analytic and nonvanishing on the closure of

uζ n uv n Ω.
Now, on the set Wζ Π Ω, the function fζ satisfies Ffζ Φ 0 on fζ = 0.

Thus, since / ζ and /C/ have the same zero set on Wζ f] Wv Π i3, it
follows that u is analytic and nonzero on Wζ Π Wζ> Π i3. To prove
M and 1/w are bounded on Uζ Π Z7C' Π i3, we only have to prove u
is bounded near each point q in the boundary of Uζ Π Uζ> Π β. If
^ £ 3i2, this is clear since then q e WZΓ\ Wζ> Π Ω, and u is analytic
and nonvanishing at q. Thus, assume q e dΩ. We consider three
cases.

Case 1. qedΩ,qφ ζ, ζ'.
In this case u is again analytic and nonzero on a neighborhood

of q. For if, for example, fζ(q) — 0, then hj(q) = 0 for a unique
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j e J(ζ), because all the {w3(z)} are distinct. Then by (ii) of Lemma
3.2, we have that qeΫ. Thus, if /c, = ΐlkBJlζn K we have h'k{q) = 0
for a unique k e J(ζ') Because all the {w3(z)}, {wf

k(z')} are distinct,
and because Fh3(q) Φ 0, Fhk(q) Φ 0, we must have that h3/h'k is analytic
and nonvanishing at q, and therefore also u since none of the other
hj, hk can vanish at q.

Case 2. q = £,qe UζΠ Uζ, Π iλ

Since /(ζ') = 0, there is a unique j such that fey(ζ') = 0. If
j ί J(ζ), then C £ F, so /c, = 1 and /c(ζ') ^ 0. Also, fζ is analytic on
a neighborhood of ζ', so we are done. Thus, we may assume j e J(ζ).
Then by (iii) of Lemma 3.2 we have m(ζ') = 1, so near ζ',

/ = [W> - W\Z')]. F'

where w\z'), F' are analytic and F' Φ 0. Since only one of the h3-
vanishes at ζ', we have for that j

hi = [wf - w\z')] G

where G is a non vanishing analytic function near ζ'. Therefore also,

where H is analytic and non vanishing at ζ', which proves this case.

Case 3. q = ζ, q e Uζ Π Uζ. Π β.

Same as Case 2.

This completes the proof of Theorem 1 for case (ii).

4* The case Ω — t/2* This case is much the same as the earlier
case, so we will not give many details. There is one new difficulty,
however, which we will show how to avoid.

We assume that / is analytic and irreducible on a neighborhood
of the closed unit polydisc and that / does not vanish on any line
z = a, or w = b. Near a point (z0, w0) with f(z0, w0) = 0, we have,
as in (3.4), the Puiseux expansions for the (multiple valued) solutions
of f(z, w) = 0 near (z0, wQ),

z-zo=± a3(w - wo)
j'p = F((w - woy

p)
(4.1) i=i

= aa(w — wo)
a + higher order terms, aa Φ 0 .

and
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w - w0 = Σ bt(z - zo)
ilq = G((z - zoy«)

(4.2)
= bβ(z — zoy + higher order terms, bβ Φ 0 .

For later reference, note that

(4.3) aβ = l

since

\ z z o \

w — w,ol

If ζ = (z0, wo)e 3Z72, /(ζ) = 0, we want to show how to define the
functions fζ of Lemma 1. If ζ is not in the distinguished boundary,
then there is no problem. To be specific, suppose \zQ\ < 1. We have
near (z0, w0) the factorization of / as in (3.3),

Li=i JLi=i

where U(z, w) Φ 0 and hd has the form

h,'(z, w) = (z - zQ) - F3((w - wo)
llq) .

The zero set of (hs ΓΊ U2) is connected, so near (z0, w0), we can define

/ c = Π ^
ie/(ζ)

where J(ζ) is the set of all i for which the zero set of h5 in U2 is
a subset of V.

When ζ = (20, w0) has | «01 = | w01 = l, there is again some difficulty
in determining if {hd = 0} Π ?72 is connected. If

hs{z, w) = (z- zo) - F3-((w - wo)
lιP)

= (z- zQ) - aa(w - wo)
a - . . .

then it is not hard to check, as in Lemma 3.2, that for small o > 0,
the set

p.(δ) = {w:\w - wo\<δ,\w\ <1, hό{z, w) = 0}

is connected provided that a < 2. From equation (4.3), we see that
a /3 = 1. Thus, at least one of a, β is less than 2 (even 1). There-
fore, to find / c in this case we proceed as follows. First, factor /
into irreducible factors near ζ,

= π/*
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We then have the Puiseux expansions (4.1), (4.2) for the zeroes of
each fa near ζ. Further, the a, β are the same for all zeroes of /*
([1], p. 22) although they could possibly be different for different
factors fi9 The functions ft can then be factored in the form

where Ut Φ 0 and

hiti =(z- z0) - Fiti((w - wQyp) if a < 2

or, if a ^ 2, take the factorization in the ^-variable so that

Ki = (w~ Wo) - G^φ - zoyt«) .

The functions hiti\ V2 are then irreducible so / : can be defined as

Λ = Π ( Π Ks)

where Jt(ζ) = {j: zero set of hitί Π U2a V}. It can then be verified
that these functions fζ will work for Lemma 1.

5* Remarks* It is possible to obtain a better conclusion in the
Theorem than the result that V is defined by bounded functions. In
fact, since the functions fζ which define V locally are Lipshitz con-
tinuous of some small order ε (i.e. |/c(p) — fζ(q) \ ̂  C | p — q |% some
ε > 0), we should be able to conclude that the function which defines
V is also Lipshitz continuous of the same order. It is possible to
show this is the case. In fact, in §§ 3 and 4, we actually showed
that the quotients fζ/fv are nonvanishing and analytic on the closure
of Uζ Π Uη Π Ω for appropriate choices of the Uζ. Thus, instead of
using the Theorem of Stout or Range and Siu to carry out the
patching arguments, one can explicitely carry out the patching argu-
ments by taking logarithms and using the result that there are
solutions of du = f smooth up to the boundary if / itself is smooth
up to the boundary and df= 0. (See [6] for this theorem in the
case of the poly disc.)

We also note that the Theorem remains valid for strictly pseudo-
convex sets Ω in C2 with real analytic boundaries and H\Ω, Z) = 0;
since the only difficulties in the proof arise locally and, locally, a
holomorphic change of coordinates can be made so that Ω is convex
in the new coordinate.

Finally, it is a consequence of the patching arguments that the
function F of the Theorem has the property that it locally generates
the ideal of V, since it has the form F = fζe

at where aζ is an analytic
function.
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