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NORMAL HYPERSURFACES

JOSEPH BECKER

The purpose of this note is to give a simple analytic
proof of a theorem of Oka: If V is a complex analytic
hypersurface whose singular locus has codimension at least
two, then V is normal. In other words, every weakly holo-
morphic function is holomorphic.

This result has since been generalized by Abhankar and Thimm
to the case when V is an algebraic complete intersection (which is
to say that the ideal of functions holomorphic in the ambient space
vanishing on Fis generated by k functions, where k is the codimen-
sion of V in the ambient space).

Actually we prove a slightly stronger result than Oka's.

THEOREM. Let V be a complex analytic hyper surface, A a
complex analytic subset of V with codimension at least 2. Then
there is a bounded linear operator φ: έ?(V— A)~+έ7(V) such that
Φ(f)\V-A=f.

Proof. Suppose VcCn and the projection π:Cn—>Cn~1 to the
first n — 1 co-ordinates gives an r-sheeted branched cover of V in
some neighborhood of the origin with branch set B, B' = π(B),
A! — π(A) and z' = π(z). Now π induces a homomorphism ^έ?—*

nέ?II(V) = έ?{V) making &(V) into a finitely generated έ?n-x module
with generators 1, zn, •••, zr

n~
ι. Let P(z', zn) be the minimal degree

polynomial for zn over n-^\ for any feέ?(V) by the Weierstrass
division theorem we have / = QP + R where R e ^^[zj is a holo-
morphic polynomial of 'degree ^ r — 1. Hence / can be written as
ΣlΓo1 δiOz')^*"1 modI(V). However the b^'s are unique.

For every z'ίB', let <%&'), , ar(z') be the values of zn on the
fiber π~ι{z) and / , = f{z\ a3(z')) for j = 1, . . , r. Then

fi = Σ^Os'Kίs'r'-1

These equations can be viewed as a system of r linear equations in
the r unknowns b^z') and solved by Cramer's rule:

b /vv = det [1, aj9 a), ---, arr~\ ft, ofΓ*, " > aV\
Λ } d β t [ l , α i f .. a'Γ1]

where in both determinants the entries in the jth row are indicated.
The denominator is the Vandermonde determinant Δ(axy * ,tfr) and
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equals Π^* (tf«0O — ock{z')). It is an easy exercise in linear algebra
to verify that the numerator equals

Σ σt(alf , άjf , α , ) ^ ^ , ••-,«,-, , α r ) / y

where ^ is the elementary symmetric polynomial of degree i, and
α̂  means that ^^ is to be deleted. Therefore

Π («,(z) - «*(

Since / is holomorphic so is

(r — ̂  — 1)! α«Λ

and hence the b^z') extend holomorphically across B'. (Since / and
/ — QP — R have the same values on V, it makes no difference
which is used in these formulas.)

Now suppose hed7{V — A), and for z'£B' define

Φ(h) = Σ ( Π z:~ahW)

f ,,)h&, *&')) - Σ
yi Vfc^α^') (^(2;) / <o

where δ̂  is defined above. Then the functions are holomorphic in a
neighborhood of z' provided h is holomorphic near each point in
π~ι(z'). Thus bt(z') extend to holomorphic functions near any point
of B' — A' and then by Hartogs' theorem, hi extends across A\
because codim A 2> 2.

The operator φ whose existence has been demonstrated is obvi-
ously linear and clearly bounded with norm one because both
έ?(y — A) and d?(V) are Frechet spaces [3] with seminorms being
sup on compact subsets; V— A is dense in V so supa;eF | φ{f) =

Incidentally notice that we did not use the result [4] that a
function holomorphic in the complement of an analytic set of codim
two is bounded in a neighborhood of that set, e.g. έ?(V — A) =

REMARK. The same proof works when <?( V) is a Cohen Macauley
ring, that is the direct image sheaf of έ?(V) by a local parametri-
zation is a free sheaf.
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