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ON IRREDUCIBLE SPACES II

JAMES R. BOONE

A topological space is said to be irreducible if every open
covering has an open refinement that covers the space minimally.
Irreducibility is a fundamental property related to cardinality
conditions for open coverings. In this paper, a constructive
proof is presented to establish that the weak θ- refinable spaces of
Smith are irreducible. Various results concerning cardinality
conditions for open coverings follow as corollaries. Some exam-
ples are included.

1. Introduct ion. Recently Smith [11] introduced the notion
of a weak θ-refinable space and obtained a variety of applications of this
topological structure. Smith defines a space to be weak θ-refinable if
every open covering has a weak ^-refinement [2], U {%: i E N} such that
{$?: / EN} is point-finite. For a collection of sets Jί, M* denotes the
union of the sets in M. We define a space to be weakly θ-refinable of finite
type if every open covering has a weak θ-refinement U{%: i E N} such
that all but finitely many % are empty. Also we call a weakly
θ-refinable space which is not of finite type, strictly weakly θ-
refinable. The variations of Bing's Example G which are presented in
[2], [6], [7] and [12] as presented in [4], are weakly θ-refinable of finite
type. Clearly, metacompact spaces are weakly θ-refinable of finite
type. Weakly θ-refinable spaces of finite type and the θ-refinable
spaces of Wicke and Worrell [13] (As Smith proves in [11]*) are weak
θ-refinable.

The primary purpose of this paper is to establish that the weak
θ-refinable spaces of Smith have the fundamental property of
irreducibility. A space is irreducible if every open covering has an open
refinement that covers the space minimally. In [5] a constructive proof
that every θ-refinable space is irreducible is presented. Also, the
following characterization of irreducibility is established.

THEOREM 1.1. A nonempty space X is irreducible if and only if for
each open covering {Va: a E A} of X there exists a discrete collection of
nonempty closed sets {Tβ: β E B} such that B C A, Tβ C Vβ for each
βEB and {Vβ: β E B} covers X.

In this paper the cardinality of set γ will be denoted by | γ | and the
natural numbers will be denoted by N. Also, if 7 = { V f t : α E Λ } i s a
collection of subsets of a space where A is well-ordered and a collection

351



352 JAMES R. BOONE

of nonempty subsets !£ - {Lγ: y C A, y/ 0 } refines V in such a way that
L γ C Π { V α : α E y } , for each γ G A , γ ^ 0 , then we will adopt the
following convention in the proof of Theorem 2.1, that st(i?, T ) is the
union of the sets Va where a is the least element in γ for some γ in the
indexing set of L. When denoting a collection of sets Ύ as the range
{Va: α E A} of some function, we mean that this function is a bijection.

The main results of this study are contained in §2. Some examples
relating to weak 0-refinable spaces are in §3 and §4 is the proof of the
main theorem, Theorem 2.1.

2. Main theorem and some corollaries.

THEOREM 2.1. Every weak θ-re finable space is irreducible.

Proof. Section 4.

A space is said to have property (δ) [11] if discrete collections in X
are countable. The following corollary to Theorem 2.1 is a special case
of Theorem 2.5.

COROLLARY 2.2 [11]. In a weak θ-refinable space the following are
equivalent:

(a) property (δ)
(b) Lindelόf
(c) Mrcompact.
Since the essential property of metacompact spaces used by Arens

and Dugundji in [1] was irreducibility, we have the following corollary.

COROLLARY 2.3. [11] A weak θ-refinable space is compact if and
only if it is countably compact.

Also since irreducibility of spaces with property (δ) implies these
spaces are Lindelόf, and regular Lindelόf spaces have the star-finite
property [9, Theorem 10], Theorem 4.2 of [11] can be generalized in the
following manner.

COROLLARY 2.4. Every regular irreducible space with property (δ)
has the star-finite property.

The results of Corollary 2.2 can be extended to arbitrary infinite
cardinal numbers. For instance, if m is any infinite cardinal we say a
space has property (m) if every discrete collection has cardinality
^ m. Also, a space is m-Lindelόf if every open covering has a
subcovering of cardinality ^ m.



ON IRREDUCIBLE SPACES II 353

THEOREM 2.5. Let X be an irreducible space. If X has property
(m), then X is m-Lindelδf.

Proof. Suppose X is not m -Lindelόf. Let °U = {Ua: a E A} be an
open covering of X such that every subcovering of °U has cardinality
> m. Since X is irreducible, by Theorem 1.1, there exists a discrete
collection of nonempty closed sets {Tβ: β E B) such that B C A, Tβ C Uβ

for each β E B and {Uβ: β E B } covers X. Since {Uβ: β E B } is a
subcovering of %, the cardinality of {Tβ: β E J5} is strictly greater than
m. Thus X does not have property m. This completes the proof.

Further, for an infinite cardinal m a space is called m-compact if
every subset of cardinaltiy m has a cluster point. Let ra+ be the first
cardinal exceeding m. In the following corollary, which is an extension
of Corollary 2.2, the irreducibility of the space is needed only in
(a) Φ (b). The implications (a) <=> (c) and (b) Φ (a) are easily verified.

COROLLARY 2.6. In an irreducible Trspace the following are equiv-
alent :

(a) property (m)
(b) m-Lindelόf
(c) mΛ-compact.

Every discrete collection of subsets of the ordinal space [0, Ω), where
Ω is the first uncountable ordinal, has finite cardinality. Thus [0, Ω) has
property (Mo) (^property (δ)). However, [0, Ω) is not H0-Lindelόf
( = Lindelof). Thus, (a) does not imply (b), if the space is not
irreducible.

3. Examples.

EXAMPLE 3.1. A space which is weakly θ-refinable of finite type
which is not countably θ-refinable.

This is Example 2 of [10]. It is presented here to correct an
inconsistency between the statement in [10] that this space is θ-refinable
but not countably metacompact and the theorem of Gittings [8] which
establishes that countable metacompactness is equivalent to countable
0-refinability.

Let G = {p,: i E N} be any countably infinite set of objects which
are not real numbers, and let JR be the set of real numbers. Let
X = JR U G. A neighborhood base at r E R is a usual neighborhood
base in JR. A neighborhood base at p, E G consists of all sets of the
form {p(} U (R - C) where C is any closed countable subset of R. Let
°ίί = {Un: n E N} be any countable open covering of X by basic open
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sets. Then every open σ-refinement of °U, T= U f ^ / G N } , which
covers X on every level must contain on every level /, sets of the form
V) ={pι}U(R- C;), for each pt E G. Since R n(n{V): ij E N}) =
R - ( U {C;: /, / G N}) 7̂  0 , there are uncountably many r £ Λ such that
r E V) for each / E N and on each level j . Accordingly, X is not
countably 0-refinable. The space X is Tu Lindelόf and weakly θ-
refinable of finite type. Thus X is irreducible. The closed set G is not
a G8 set, which is precisely the reason that X is not 0-refinable [2].

EXAMPLE 3.2. A strictly weakly θ-refinable space which is weak
θ-refinable.

All examples of weakly 0-refinable, but not θ-refinable spaces that
appear in the papers cited in the introduction are of finite type. Thus
these examples are trivially weak θ-refinable. This example is built on
the disjoint union of a countably infinite number of copies of the real line.

Let X = R xN = U{Rn: n EN} where Rn = {(r,n): r E R}. For
each (r, n) E X a basic open neighborhood of (r, n) is any set of the form
ί/(r,n,λ,^ π ) = {(p,n): p E (r - λ, r + λ)} U U {R} - F7: j > n}9 where
Fj E &n, F} is any finite subset of /?;_and A > 0.

This space is hereditarily weak β-refinable, Tλ and Lindelόf. It is
not of finite type. That is, it is strictly weakly θ-refinable.

4. Proof of Theorem 2.1.

Proof. Let X be a weak θ-refinable space, and let V = {Va: a E A}
be any open covering of X. Consider A to be well ordered. Recall, all
stars of collections of subsets are taken according to the criterion
described in the introduction. Let % = U{%: i SN} be a <τ-precise
weak θ-refinement of V, where % = {Uι

a: a E At C A, Uι

a^ 0}.
The discrete collection of closed sets, indicated in Theorem 1.1, is

constructed by induction with the sets defined in the following paragraph.

For each n, k E N, let Knk = {p E X: p is in exactly k sets in °lin} and
Zn = X - <% . Let ^ ( n , fc) = {F(n, γ) : γ C Aπ, | γ | = fc}, where F(n, γ) -
^ n ( Π { ί / ; : α E γ}). Then ^ ( n , fe) is a collection of subsets of X -
(Zπ U U {^ *(« ,/) :/< fc}), which are closed in this subspace. Also,
3?{n, k) is discrete in this same subspace. Let Nk = {Γ CN: | Γ | = /c}, and
let Hk = {p E X: p is an element of exactly /c sets in {%?: / E N}}. Let
^ f e -{//(fc,Γ): Γ G Λ , H(fc,Γ)^0}, where

) = H k Π ( Π { % * : i eΓ}>,

for each Γ E Mk. Then 5ίffc is a collection of subsets of X - U {$?*: / < fc},
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which are closed in this subspace. Also, 5ίffc is discrete in this same
subspace. Note that: X = U {W\\ k E N}, and X =
U{^*(n,/c):n,fcEN}.

The desired discrete collection of nonempty closed subsets of X
which are constructed by induction is denoted by SΓ and will consist of
unions of the families denoted <€ (n,/, /c, Γ) and SΓ (/c, Γ). The verifica-
tion that SΓ is a discrete collection of nonempty closed sets is presented at
the end of the proof.

We begin the construction in the set %tλ. (Every point in ffl* is
covered by at most a finite number of sets in one level of the collection
°U.) For each H(l, Γ) E Wu Γ = {n} for some n E ΛΓ, and °U * Π H(l, Γ) =
0, if iVn. Let «(n,l,l,Γ) = {C(n,γ,l,Γ): γ C An, | γ | = l, Γ = {"}},
where C(n, γ, 1, Γ) = F(n, γ) Π H(l, Γ).

Then for each k > 1, let <g(n, k, 1, Γ) = {C(n, γ, 1, Γ): γ C Am \ y | = k,
Γ = {n}}, where

Π H(1,Γ))- sί( U

Hence SΓλ = U{^(1,Γ): H ( 1 , Γ ) E ^ } , where #"(1,Γ)= U{«(n,/,1,Γ):
Γ = {n}, / E N } is a discrete collection of closed subsets of X and
3"\ C ̂ f * C st(3Ί, V). This completes the construction for points in one
set in {W*: iEN}.

Suppose this process has been continued for the sets $fy, / < k. By

this we mean, discrete collections of closed subsets of X, SΓU 2Γ2, * * *, SΓk-λ

have been defined such that SΓ* C 2T* C s ί ( U l S / J",, T ) for each j^k-1.

Now consider the collection fflk. Let H(k, Γ) E Hfc. Say Γ =
{n(l),n(2), ,n(fc)}, where n(l)< n(2)< < n{k). Let M(fc,Γ) =
f/(/c,Γ)-5ί(U{3r

/: y = l,2, ,fc-l}, V) for each H(k,Γ)G%. Note
that {M(/c, Γ): Γ E jVfc} is a discrete collection of closed subsets of X and
every point in M(fc, Γ) is covered by a finite number of sets on at least one
of the levels n(l), n(2), , n(k).

The construction of the discrete collections of closed subsets of
M(fc, Γ) will proceed in the following order:

^(n(l), m), ̂ (n(2), m), , ̂ (n(k), m),

Let <g(n(l), 1, k,Γ) = {C(n(l), γ, fc,Γ): γ C Aπ(1), | γ | = 1}, where
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C(n(l), γ, fc, Γ) = F(n(l), γ) Π M (fc, Γ).

Also let «(n(2), 1, fc, Γ) = {C(ιt(2), % fc, Γ): γ C An(2), | γ | = 1}, where
C(n(2),γ9fc,Γ) = F(n(2),γ)nM(/c,Γ)-5ί( ίίί(n(l),l,/c,Γ), T). For 2<
/gfc, let «(nO"),l,fc,Γ) = {C(nO ),%fe,Γ): yCΛn 0 ), | γ | = l}, where

C(rc(/), % k,Γ) = F(nO'), γ) Π M(fc,Γ)

- 5ί( U {«(*(/),1, /c, Γ): / = 1,2, ,/ - 1}, T).

This completes the steps through 3P(n(k), 1).
Let m > 1 . Suppose discrete collections of closed subsets of X,

(n^), ί, fc, Γ) have been defined for 1 ^ / S k and t < m. Let
(n(l), m, fc,Γ) = {C(n(l), γ, fc,Γ): γ C Aπ(1), |γ | = m}, where

ί < m}, V). For n(fc)g n( r )>n( l ) and γ C Λn(r) such that | γ | = m, let
C(n(r),γ,k,Γ) = F(n(r),γ)nAf(fc,Γ)-5/(U{«(nO'),ί,fc,Γ): l S / S k ,
ί < m ori = m if/<r}, T). Then let «(n(r),m,fc,Γ) = {C(n(r),γ, Jk,Γ):
γCΛ n ( r ) , | γ | = m}. If ^(fc,Γ)= U{«(nO"), n, fc,Γ): / = l,2, ,fc,
n E JV}, then ^**(fc,Γ)CM(Jk,Γ)Csί(^(k,Γ), T).

Since H(k,Γ) was any set in $ffc, there is a discrete collection of
closed sets

ZΓk= U{^(fc,Γ):H(fc,Γ)eSίfk} such that ^ C %*k C 5ί(^"k, T).

Thus the discrete collections of closed sets SΓk are defined for each
k E N, consisting of sets of the type C(n, γ, fc, Γ). Let

3~ is a discrete collection of nonempty closed sets. It is easly verified
that for each n, k E N, ̂ (n, k) is a collection of subsets of X -
(Zn U U {&*(n,j);j < fc}) which is discrete in this subspace and the sets
F(/t, γ) E ^(n, fc) are closed in this subspace. Also, for each fc E N, fflk is
a collection of subsets of X- U{$f*:/<&} which is discrete in this
subspace and the sets H(fc, Γ) E % are closed in this subspace. Since
X= U{^ί : fcEN}, U{5r*:/<fc}C5ί(U{5r

y:/<fc},r)andM(fc,Γ) =
H(fc,Γ)-5ί(U{^:/<fc},r) for each/ί(fc,Γ)E^k,{M(fc,Γ):H(fc,Γ)E
5ίfk, fc E N} is a discrete collection of closed sets in X. Further, since for
each | y ' | < m , M(fc,Γ)ΠF(n, γ/)C5ί(U{9ί(n', r, fc,Γ): t < m or t = m if
n'<rc, n'EΓ}, Ύ\ {M(fc,Γ)Π F(n, γ ) - 5ί(U {«(n', ί, fc,Γ): n ' < n ,
n ' ε Γ , K m or t = m if n ; < n}, T*): | γ | = m} is a discrete collection of
closed sets in X. Since 3P(n, fc) covers H(k, Γ) for fc E N and n E Γ, it
follows from the definition of C(n, ί, fc, Γ) that 3~ is a discrete collection of
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nonempty closed sets in X since its members are the intersections of
closed sets from two discrete collections.

Let B = {β E A : β is the least element in y for some C(n, γ, fc, Γ) E
ίΓ}. By the convention in the introduction for forming the star of a
collection of subsets, and the use of the stars in the construction,
{Vβ: β E B} covers X. By Theorem 1.1, X is irreducible.
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