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THE DUAL OF A SPACE WITH THE
RADON-NIKODYM PROPERTY

JaMEs B. COLLIER

Two characterizations of a Banach space with the
Radon-Nikodym property are proved here. The first shows its
equivalence with a condition on the dual space which is some-
what weaker than that of being an Asplund space. This leads to
a second characterization by a renorming property.

A convex function f on a Banach space X will be assumed to take its
values in (—%, +»] and to be finite at some point. The domain of
continuity of f is the convex open set of all points at which f is finite and
continuous. The space X is called an Asplund space if each convex
function on X is Fréchet differentiable on a dense G; subset of its
domain of continuity. If X is the dual of a Banach space Y, then it will
be called a weak *- Asplund space if each weak* lower semi-continuous
(w*-Isc) convex function on X is Fréchet differentiable on a dense G,
subset of its domain of continuity. The terms “G;” and ‘“‘domain of
continuity” here still refer to the norm topology on X. Thus a dual
space which is an Asplund space is also a weak*-Asplund space. A
Banach space may be said to have the Radon—Nikodym property (RNP)
if each closed bounded convex subset is the closed convex hull of its
strongly exposed points [6]. A point x in a set C is said to be strongly
exposed by a linear functional y if the supremum of y over C is finite and
attained at x and || x, — x || = 0 whenever {x;} is a sequence in C for which
y(x) = y(x).

Using the same method as in [3], we characterize the dual of a space
with the RNP by its differentiability properties. This allows us to give
an alternate proof of a result of Huff and Morris [4] concerning the
density of strongly exposing functionals and to observe that weak*-
Asplund spaces enjoy some of the permanence properties that Asplund
spaces do.

THEOREM 1. A Banach space X has the RNP if and only if X* isa
weak *- Asplund space.

Proof. Assume X has the RNP and let f be a w*-Isc convex
function on X* with nonempty domain of continuity D. Choose any
point w € D and an ¢ >0 so that f is bounded on N ={y: |y — w| =€}
and N CD. We use the dual norm so that N is weak* closed. Define g
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on X* by g(y)=f(y)if y € N and g(y)= + ~ otherwise. Then g is a
w*-Isc convex function on X*, bounded on N, and whose domain of
continuity is the interior of N. We may assume without loss of
generality that the unit ball B of X * is containedin N and —1=g(y)=0
for all y € N. Choose some A >1 such that N C AB.

Define p on X* by p(y)=0if y € B and p(y) = + » otherwise. Let
q(y)=p(y/A)—1. Then p and g are w*-Isc convex functions on
X*. For any convex function h on X*, the conjugate of h on X is
h*(x)=sup{y(x)—h(y): y € X*} for each x € X. Thus p*(x)=|x|
and g*(x)= A/ x|+ 1. Since q(y)= g(y)=p(y) forall y € X* p*(x)=
g*(x)=q*(x) for all x € X, and hence |[x||[= g*(x)=A|[x|+1 for all
x € X. This implies that the closed convex set C ={x € X: g*(x)=2}
is bounded and has nonempty interior.

Letepig*={(x,r): x € X, g*(x)=r}, H={(x,r): x € X, r =2} and
K =epig*NH. Since KC Cx|[0,2], K is a closed bounded convex
subset of X X R with nonempty interior. It is well-known that the RNP
is preserved under products; hence X X R has the RNP and K must be
the closed convex hull of its strongly exposed points. As a consequence,
there must be a point a in the interior of C such that g*(a)<2 and
(a,g(a)) is strongly exposed as a point of K by some functional
(b, —1)€ X* X R. Since g*(a)<?2 and epi g is convex, (a, g(a)) is also
strongly exposed as a point of epi g by (b, —1). Because g is w*-Isc,
Theorem 1 in [2, p. 450] together with the Lemma in [3] implies that g is
Fréchet differentiable at b with gradient a. Since b lies in the interior of
N, f is also Fréchet differentiable at b and ||w — b | < e. Since the choice
of w € D and € >0 was arbitrary, the set G of points at which f is
Fréchet differentiable is dense in D. Lemma 6 in [1, p. 43] implies that
G must in fact be a dense G; subset of D and therefore X* is a
weak*-Asplund space.

Assume now that X* is a weak*-Asplund space and C is a closed
bounded convex set in X. Define f(x)=0 if x€ C and f(x)= +x
otherwise. Then f*(y)=sup{y(x)—f(x): x € X} is a w*-Isc convex
function on X* whose domain of continuity is X*. Since X* is a
weak *-Asplund space, f* is Fréchet differentiable on a dense G; subset
G of X*. From Theorem 1 in [2, p. 450] it follows that each functional
in G strongly exposes a point of C. The density of G implies that C is
the closed convex hull of its strongly exposed points and hence X has the
RNP.

The last part of the proof of Theorem 1 actually proves the following
result of Huff and Morris [4]:

COROLLARY 2. If X has the RNP and C is a closed bounded convex
subset, then the set of linear functionals which strongly expose some point of
C is a dense G; subset of X*.
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The convexity restriction on C which occurs in this proof is easily
dropped by observing that a linear functional strongly exposes a point of
a closed bounded set A whenever it strongly exposes a point of the
closed convex hull of A.

Since the dual norm on a dual space is a w *-Isc convex function, the
following is also an immediate consequence of Theorem 1:

CoroLLARY 3. If X has the RNP, then the dual norm on X* is
Fréchet differentiable on a dense G; subset of X*.

The differentiability of the dual norm can be used to characterize
spaces with the RNP. Let A be a nonempty bounded subset of a
Banach space X. A slice of A will be any set of the form S(A, y, €)=
{(xEA: y(x)+e>supy[A]} where y € X* and € >0. We can show
the following:

THEOREM 4. A Banach space X fails to have the RNP if and only if
there is an equivalent norm on X for which the dual norm on X* is Fréchet
differentiable nowhere.

Proof. 1f such a renorming exists, then Corollary 3 implies that X
cannot have the RNP. In order to prove the other direction assume that
for each equivalent norm on X, the dual norm on X* is Fréchet
differentiable at some point. Let C be any closed bounded convex
subset of X and let B be the unit ball. Let D be the closure of C + B
and let E be the closure of D + (— D), then E is the unit ball of an
equivalent norm on X.

Define f on X by f(x)=01is x € E and f(x) = + « otherwise, then
the conjugate of f, f*(y) =sup{y(x)— f(x): x € X}, is the corresponding
dual norm on X*. By hypothesis, f* is Fréchet differentiable at some
point b with gradient a € X**. Since f* is w*-Isc, Corollary 5 in [2]
implies that a actually belongs to X. By Theorem 1 in [2] f is norm
rotund at a relative to b and therefore E is strongly exposed at a by b.
Thus diam S(E, b,e)— 0 as € — 0. By the construction of E it follows
that diam S(E, b, €)= diam S(C, b, €) and hence diam S(C, b,e)— 0 as
€ — 0 also. Since each closed bounded convex set C is dentable in the
sense defined by Rieffel [7], X must have the RNP and the theorem
follows.

A number of permanence properties for weak*- Asplund spaces may
be proved using Theorem 1 in very much the same fashion as the
permanence properties for Asplund spaces were proved in [5].

THEOREM 5. If X* and Y* are weak *- Asplund spaces, then X* X
Y* is weak *- Asplund.
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Proof. Theorem 1 implies that both X and Y have the RNP and
hence X X Y has the RNP. Therefore (X X Y)*, which is isomorphic to
X*x Y* is weak*-Asplund.

THEOREM 6. If X* is a weak *-Asplund space and M is a weak *
closed subspace of X*, then X*/M is weak *- Asplund.

Proof. Let M*={x€ X: y(x)=0 for all y € M} be a closed
subspace of X. Theorem 1 implies that X has the RNP and hence M*
has the RNP also. Therefore (M*)*, which is isomorphic to X*/M, is
weak*-Asplund.

Namioka and Phelps [5] raised the question of whether a Banach
space X is an Asplund space whenever X * has the RNP. This may now
be restated in the following way: If X ** is a weak*-Asplund space, is X
an Asplund space? The converse is known to be true. If we consider X
to be a (norm) closed subspace of X ** by the usual embedding, then each
continuous convex function defined on an open convex subset of X is the
restriction of a w *-Isc convex function on X**,  We note, however, that
since the RNP is not preserved under quotients, we cannot expect even a
weak* closed subspace of a weak*-Asplund space to thave good differen-
tiability properties.
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