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CHARACTERIZING FINSLER SPACES WHICH ARE
PSEUDO-RIEMANNIAN OF CONSTANT CURVATURE

Joun K. BEEM

Let M be an indefinite Finsler space. The bisector of two
points of M is the set of points equidistant from these two points.
A bisector is called flat if with any pair of points it contains the
extremals joining this pair. In this paper it is shown that M is
pseudo-Riemannian of constant curvature if and only if M
locally has flat bisectors. Another result is that M is
pseudo-Riemannian of constant curvature if and only if M can
be reflected locally in each nonnull extremal.

1. Introduction. Blaschke [6] has shown that if M is a two
dimensional definite Finsler space in which the bisector of two points is
an extremal then M is a Riemannian space of constant curvature.
Busemann [7] has shown that among his G-spaces the requirement that
bisectors contain with each pair of points a segment joining this pair
characterizes the Euclidean, hyperbolic and spherical spaces of dimen-
sion greater than one. Phadke [8] has investigated the flat bisector
condition in two dimensional G-spaces which have a distance which is
not necessarily symmetric. In [4] we have shown that a pseudo-
Riemannian manifold locally has flat bisectors if and only if it is a space of
constant sectional curvature.

In the present paper an ordinary or definite Finsler space with a
symmetric distance is considered to be a special case of an indefinite
Finsler space. Consequently, our arguments are valid for definite metrics
as well as nondefinite metrics. The arguments are different from those of
Busemann [7] because he does not make any differentiability assump-
tions and since a number of his arguments do not extend to indefinite
metrics.

2. Indefinite Finsler spaces. Let M be an n dimensional
connected and paracompact differentiable manifold of class C*. The
local coordinates of a point x will be denoted x',---,x" In the tangent
space T(x) to M at x take the natural basis and let y', - - -, y" denote the
components of a vector Y € T(x). The coordinates of Y are (x,y). Let
L(x,y) be a continuous function defined on the tangent bundle T(M) of
M which has the following properties:

(A) The function L(x,y) is C~ for all (x,y) with y#0.

(B) L(x,ky)=k’L(x,y) for all kK >0.
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(C) The metric tensor g;(x, y)=3%d°L/dy’'dy’ has s negative eigen-
values and n — s positive eigenvalues for all (x,y) with y# 0.

(D) L(x, —y)=L(xy).

The function L(x,y) is called the basic metric function. It corre-
sponds to the square of the fundamental function F(x, y) usually studied
in definite Finsler spaces (compare [10]).

The manifold M together with the basic metric function L(x,y) is
called an indefinite Finsler space of signature n — 2s. If L(x, y)is replaced
with — L(x,y), then M becomes a space of signature 2s — n. In the
special case s = 0 the manifold M is a definite Finsler space. In this paper
we do not exclude the case s = 0.

When M has a metric tensor g;(x, y) which does not depend on y,
then M is called pseudo-Riemannian. A pseudo-Riemannian space is
Riemannian when s =0 or n. If M is R" and the metric tensor is
constant, then M is called pseudo-Euclidean.

Let W, Y, Z be three tangent vectors at x € M. Using the natural
basis let (x, w), (x, y) and (x, z) be the respective coordinate representa-
tions of these vectors. The scalar product of Y and Z with respect to W
is defined by

W(Y, Z)= gi(x, w)y'z’.

If Y is a nonzero vector, then we say Y is perpendicular to Z when
Y(Y,Z)=0. When Y is perpendicular to Z we write Y 1Z. This
relation is not, in general, symmetric. When M has dimension at least
three we have shown [5] that perpendicularity is symmetric on M if and
only if M is pseudo-Riemannian.

The norm squared of a vector Y is defined by | Y|*= Y(Y, Y). The
quantity |Y " may be positive, negative or zero. A vector Y with
|Y[?= =1 is called a unit vector. If |Y[?=0, then Y is called a null
vector. A vector is nonzero as long as it is not the origin of the tangent
space at which it is attached.

The indicatrix K(x) consists of all of the unit vectors in T(x). The
light cone C(x) consists of the null vectors in T'(x).

If Y& K(x), then Y4 Z if and only if Z is parallel to the tangent
hyperplane to K(x) at Y, compare [10, p. 26].

3. The bisector condition. The Christoffel symbols
vi(x, y) are defined in the usual way. The extremals are the solutions of
the differential equations

B+ yh(x, ¥)E9E = 0.

An extremal x(t) with velocity vector of length zero is called a null
extremal.
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A result of Whitehead [9] implies that for each point x there is a
simple convex neighborhood U(x). Given two points p and q in U(x)
there is a unique extremal arc a(p, q) from p to g which liesin U(x). In
U(x) the separation between two points p and g is defined by

d(p,q) = f L"(x, £)dt.

The integral is taken along a(p, q). The quantity L'?(x, y) is either real
and nonnegative or pure imaginary. Hence, d(p, q) is either nonnegative
or imaginary. The function d is continuous on the domain U(x)x U(x).
In indefinite metric spaces the local distance function d(p, q) is usually
only defined for points sufficiently close together.

The bisector of p and g with respect to U(x) is defined by

B(p,q)={p'€ U(x)|d(p,p’)=d(q,p")}.

We say locally M has flat bisectors if for each x € M there is a simple
convex neighborhood U(x) such that for all p, q € U(x) with d(p,q) #0
the bisector B(p, q) contains with any pair of points the extremals in
U(x) containing this pair. '

4. The two dimensional case. In this section and the next
we always assume M satisfies the bisector condition. If n = 2, then this is
the assumption that B(p, q) lies on an extremal of M.

PropPOSITION 1. Let M be a two dimensional indefinite Finsler space
which locally has flat bisectors. Then M is a pseudo-Riemannian space of
constant curvature.

Proof. If M has signature two or minus two, then the metric is
definite and the proposition follows from the result of Blaschke [6] which
was mentioned in the introduction.

Let M have signature zero. The metric tensor must have one
negative eigenvalue and one positive eigenvalue for all (x, y) with y# 0.
For each fixed x € M, the light cone C(X) consists of a finite number m
of lines passing through the origin of the tangent space T(x). When M
is pseudo-Riemannian, the light cone consists of two lines. When M is an
indefinite Finsler space, the number of lines m may be larger than two,
see [2].

Let m >2 and let U(x) be a simple convex neighborhood of x such
that B(p, q) is flat whenever p,q € U(x) with d(p,q) # 0. Each p € U(x)
has at least three distinct null directions and there are three null
extremals through p corresponding to these directions. At x, choose
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three null vectors Y,, Y, and Y, such that any pair Y, Y, for i#j is a
linearly independent set. Since the null directions through a point vary
continuously with the point, each null vector Y, attached at x may be
extended to a continuous and nonvanishing null vector field Y, defined
on a neighborhood W(x) with W(x)C U(x). For each p € W(x), let
a,(p) where i = 1,2,3 be a null extremal through p with tangent vector Y,
at p. Assume without loss of generality that W(x) and the extemals «,(p)
have been chosen such that each extremal has its endpoints outside of
W(x). Choose g = x. For all p sufficiently close to ¢ we have a,(p)N
a,(q) # ¢ when i# j, since the tangent to «,(p) converges to Y, at q as
p—q and the tangent to «,(q) is Y, at g. Choose a fixed p with
a,(p)Na,(q)# ¢ for i#j and with d(p,q)#0. Let p,= a\(p) N ai(q)
and p,= a)(p)N as(q). Since d(p,p.)=d(q,p)=0 1t follows that
p. € B(p,q) for i =1,2. The flat bisector condition implies d(p,r)=
d(q,r)=0 for all r € a(p,, p.), since a(p,, p,) lies on the null extremal
as(q). For each point r € a(p,, p,), there is a null extremal a(p, r) which
determines a null direction at p. Since p& a;(q), distinct points of
a(pi, p.) must determine distinct directions at p. This contradicts the
fact that p has only a finite number of null directions.

Assume that m =2. A two dimensional indefinite Finsler manifold
for which C(x) always consists of two lines has been shown to be a
doubly timelike surface, see [2, p. 1038]. Doubly timelike surfaces have
been studied by the author in [1]. In particular, the doubly timelike
surfaces which locally satisfy the flat bisector condition have been
completely characterized by Theorems (IV. 36) and (VI. 17) of
[1]. These two Theorems together with the differentiability of L(x,y)
imply that M is a pseudo-Riemannian manifold of constant curvature.

S. The bisector theorem. Let M have dimension at least
three and satisfy the bisector condition. If p,q € U(x) with d(p,q) # 0,
let r be the midpoint of a(p,q) so that d(p,r)= d(q,r). The bisector
B(p, q) is a submanifold through r of codimension one. This implies
that B(p,q) has an n—1 dimensional tangent space T,(B(p,q)) at
r. The space T,(B(p, q)) is naturally identified with an n—1 dimen-
sional linear subspace of the tangent space T(r).

LEMMA 2. If ris the midpoint of the nonnull extremal a(p, q), then
a(p, q) is a perpendicular to B(p,q) at r.

Proof. Let W be the unit tangent to a(p,q) at r and let Y be a
nonzero vector at r in the hyperplane T,(B(p,q)). Let a(s) be the
solution of the extremal equations such that a’(0)=Y. For each s
(sufficiently small), let x(t s) represent the extremal a(p,a(s)) for



CHARACTERIZING FINSLER SPACES 71

0=t=1. Let X denote the partial derivative of x(t,s) with respect to
t. Define

flx, %)= L"(x, %) = [ gk ¥*]"

For each fixed s, the value of f(x, x) is either real or pure imaginary.
Define

1) = [ fx,%)di = d(p.a(s)

where the integral is from ¢ = 0 to ¢t = 1. Differentiation of this equation
with respect to s yields

I’(s)=f <_aL a—xl+—QLQ§~]> dt.

! x’ ds = Ix’' 3s

Integrating by parts we obtain

GG GG a

This last integral must vanish because the Euler-Langrange equa-
tions hold along each extremal. Furthermore, the derivative of x’ with
respect to s is zero at t =(. Hence,

, af dx’
1) = 4 5

x' a3s |-

1o = 2 &

The next equation (compare [10, p. 15]) results from the homogene-
ous assumption (B) together with the definition (C) of the metric tensor.

% i = g,

x’
This last equation and the definition of f(x, x) imply

Of _ X'
ax’ f(x,x)°
Consequently,

15(0) = ?(Kxﬁ‘x—) Zl = Wl W(W, Y).
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If I,(s)= d(q, a(s)), then
LO)= - |W['W(W,Y).

The fact that a(s) € B(p, q) implies I1{(0) = I;(0). This implies W 4 Y and
establishes the Lemma.

LEmmA 3. Let r be the midpoint of the nonnull extremal a(p,, q,). If
P, q € a(p,, q,) and r is the midpoint of a(p, q), then B(p, q) = B(p,, q1).

Proof. From Lemma 2 it follows that both B(p,q) and B(p,, q,)
consist of the union of all extremals in U(x) which pass through r and
have the property that a(p, q) is perpendicular to them at r.

Let W and Y be nonzero vectors attached at x with coordinate
representations (x, w) and (x, y) respectively. Then W 1Y if and only if
gi(x, w)w'y’ = 0. Since the metric tensor is nonsingular the vector W is
always perpendicular to a hyperplane containing the origin of
T(x). This hold even if | W|*=0 (as long as W # 0). This hyperplane
varies continuously with W and may actually contain W.

LemMmAa 4. If M is an indefinite Finsler space which locally has flat
bisectors, then perpendicularity is symmetric on M.

Proof. The nonnull vectors are dense in the set of nonzero vectors
and a vector W is perpendicular to a hyperplane which varies continu-
ously with W. Consequently, it is only necessary, to verify that WY
implies Y4 W for nonnull vectors W and Y.

Let a(p, q) be a nonnull extremal with midpoint r and unit tangent
W atr. Let Y be a nonnull vector at r with W 4Y. Using the notation
of Lemma 2, we let a(s) be an extremal with a(0)=r and a'(0)=Y.
The extremal a(p,q) has an arclength representation b(u) where
—=ld(p,r)|=u =|d(p,r)| and b'(0) = W. Choose some fixed s, different
from zero and let x(f,u) represent the extremal a(a(sy),b(u)) for
0 =t = 1. The partial derivative of x with respect to ¢ will be denoted by
x. Define

1) = [ 1 2)de = da(s). b))
The arguments used in the proof of Lemma 2 yield

1o = 2L &

— -1
= Y'Y (Y, W).
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Lemma 3 implies that I,(— u)= I,(u). It follows that I3(0) = 0. Hence,
|Y|"'Y(Y, W)=0. This implies Y 4 W and establishes the Lemma.

THEOREM 5. Let M be an indefinite Finsler space. Locally M has flat
bisectors if and only if M is pseudo-Riemannian of constant sectional
curvature.

Proof. If M has dimension two, then Proposition 1 yields the result.

In [5] we have shown that an indefinite Finsler space of dimension at
least three has symmetric perpendicularity if and only if it is pseudo-
Riemannian. In [4] we have shown that a pseudo-Riemannian manifold
locally has flat bisectors if and only if it is a space of constant curvature.
These two results together with the conclusion of Lemma 4 that M has
symmetric perpendicularity complete the proof of the Theorem.

6. Reflections in extremals. In this section another
theorem characterizing pseudo-Riemannian spaces of constant curvature
is proven.

Let f be a diffeomorphism of M onto itself and let f, denote the
derivative map induced on the tangent bundle. The map f is an isometry
if for all x EM and W, Y, Z € T(x) we have

When f is a diffeomorphism of some open set U, of M onto an open set
U, of M which satisfies the above equality, the map f is called a local
isometry. When f is a local isometry different from the identity and such
that f* is the identity, then f is an involution.

Let x be an interior point of the nonnull extremal a. A reflection in
a near x is said to exist, if there is a neighborhood V(x) and a local
isometry f defined on V(x) such that f is an involution and the set of
fixed points of f is exactly a N V(x).

If every nonnull extremal may be reflected near each interior point,
then we say M may be locally reflected in each nonnull extremal.

Let f be a reflection in @ near x. The tangent map f, is a linear
map of T(x) onto T(x) which preserves the metric induced on
T(x). Hence, f. maps the indicatrix K(x) onto itself and the light cone
C(x) onto itself. If W is a nonzero vector tangent to a at x, then
f«W =W and

W(W,Z)= W(W, f.Z)

for all Z € T(x). This implies that if W is perpendicular to the (n — 1)
dimensional linear subspace H of T(x) then f,H = H.
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Let (M, g) be a pseudo-Riemannian space of constant sectional
curvature. It is known (see [11, p. 69]) that each x € M must have a
neighborhood which is isometric to an open set of one of the model
spaces S¢, Rt or H!. When s = 0, these model spaces are the classical
models for spaces of constant curvature. The space S§ is an n dimen-
sional sphere, the space R is n dimensional Euclidean space and Hj is
an n dimensional hyperbolic space. The groups of motions of all of tte
model spaces are well known, compare {11, pp. 65-66]. In particular,
each of the model spaces may be reflected over any nonnull geodesic
G. This reflection may have more than G as its set of fixed points,
however, the geodesic G will have a neighborhood U such that the fixed
points of U are all on G. If follows that any pseudo-Riemannian space
of constant curvature may be locally reflected in any nonnull extemal. In
general, pseudo-Riemannian spaces of constant curvature cannot be
reflected over null extremals.

ProposITION 6. If M is a two dimensional indefinite Finsler space
which may be locally reflected in all nonnull extremals, then M is
pseudo-Riemannian of constant curvature.

Proof. 1f the metric on M is definite the result is well known, see {7,
p. 350].

Assume the metric is not definite and let W be a nonnull vector in
T(x). There is a local reflection f in the extremal « determined by W.
Furthermore, f. W = W and f, is an involutoric motion on T(x). Letting
W vary, it follows that there exist infinitely many motions of T(x)
holding the origin fixed. The metric on T(x) is Minkowskian and it is
known [3, p. 533] that a two dimensional Minkowskian space has an
infinite group of motions holding one point fixed if and only if the metric
is the ordinary two dimensional Lorentz metric. Letting x vary, it follows
that M is pseudo-Riemannian.

Let a(p, q) be a nonnull extemal from p to q. For each positive
integer k, there is a set of equally spaced points {p,, p, - -, pi} on a(p, q)
with d(p,p.)=md(p,q)/k where m =1,2,--- k. Each extremal
a(p, p..,) has a midpoint r. Let a*(r,) be the nonnull extremal perpen-
dicular at r, to a(p, p..,). Let F, be the local reflection over a*(r,). The
map F, takes points of a(p, p..,) to points of a(p, p..,). For sufficiently
large k each F, may be defined on all of a(p,p..) and this map
interchanges p, and p,,,. Consequently, the composite map

F=FoF,_o---°F,
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is a local isometry taking p to g whenever k is sufficiently large. It follows
that M has the same curvature at p and gq.

To conclude that M has the same curvature at all points we observe
that any pair of points of M may be joined by a path consisting of a finite
sequence of nonnull extremals. This establishes the Proposition.

LeMMA 7. Let W be a unit vector at x which is tangent to a and let f
be a reflection in a near x. Then W {Z implies f.Z = — Z.

Proof. Let W be perpendicular to Z. Then W is also perpendicu-
lar to f . Z since f, preserves the metric on T(x). Assume f.Z# — Z and
let Y=Z+f.Z Then Y is nonzero. Also, f,Y=f.Z+fiZ=
f«Z+Z=Y and WHY.

If | Y?#0, let B be the extremal through x with tangent Y at x.
Then f leaves B pointwise fixed near x which contradicts the assumption
that f only leaves @ N V(x) fixed.

If |Y=0, let P be the two dimensional linear subspace of T(x)
spanned by Y and W. The map f, is the identity on P since f,Y =Y
and f, W = W. For sufficiently small positive ¢, the vector X = W + €Y is
a nonnull vector in P. Letting B be an extremal tangent to X at x, it
follows as before that f leaves B pointwise fixed near x. This last
contradiction establishes the Lemma.

THEOREM 8. If M is an indefinite Finsler space, then M may be
reflected locally in each nonnull extremal if and only if M is a pseudo-
Riemannian space of constant curvature.

Proof. Because of Proposition 6, we only consider n = 3.

Let W be a nonnull vector tangent to « at x. Assume that f is a local
reflection in a and that Z is any vector with W+ Z. Let (x, w) and (x, z)
be the respective coordinate representations of W and Z. Lemma 7 and
the fact that f, must preserve the metric induced on the tangent space
T(x) yield g,(x,w + €z)=g,(x, w — €z) for all real . This implies the
derivative of g;(x, w + €z) with respect to € must vanish at € = 0. The
function g;(x,y) is homogeneous of degree zero in y because of
conditions (B) and (C). Thus, the derivative of g;(x, w + ew) with respect
to € must vanish at € = 0. We conclude that

ag,(x,w) -0

ax*

forall k = 1,2, -, n. This equation must hold for all nonnull vectors W.
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Since the nonnull vectors at x are dense in T(x), we find g;(x, X) is
independent of x. Hence, M is pseudo-Riemannian.

Consider a nondegenerate two dimensional linear subspace E of
T(x) with sectional curvature K(x, E). Let E be spanned by vectors Y
and Z. The two dimensional sections of T(x) have a natural topology
induced from the Grassmann manifold of 2-planes in T(x). If Y.— Y
and Z, — Z, then the subspace spanned by Y, and Z, converges to E.

If f is the reflection in the nonnull extremal a through x, then
K(x,E)= K(x, f«E). In general, given two arbitrary sections E, and E,
at x there may not be a reflection f such that E, = f,E,. In fact, it may
happen that the metric is definite on one section and indefinite on the
other.

Let Y’ be a vector attached at x and let E’ denote the section
spanned by Y'and Z. If Y'is chosen sufficiently close to Y, then there
is a reflection f in some nonnull extremal a such that E’ = f,E. It follows
easily that all sections sufficiently clese to E have the same curvature.
This implies that two nondegenerate sections E, and E, will have the
same curvature if there is a continuous family of nondegenerate sections
from E, to E,. It follows that the sectional curvature K(x, E) is
independent of E. However, when n = 3 the sectional curvature is only
constant at each x when the curvature is independent of x, see [11, p. 57].
Therefore, M is a space of constant curvature.

Theorems 5 and 8 yield our final Proposition.

ProposiTION 9. If M is an indefinite Finsler space, then the follow -
ing conditions are equivalent.

(1) M is pseudo-Riemannian of constant curvature.

(i) Locally M has flat bisectors.

(i) M may be reflect locally in each nonnull extremal.

REMARK. If M has a definite Finsler metric, then Theorems 5 and 8
may be established without using the assumption of condition (D) that
the metric be symmetric. Furthermore, by making some modifications of
the arguments in [3] and in the proof of Theorem 8, we may establish
Theorem 8 for indefinite metrics without assuming condition (D).
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