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QUOTIENT-UNIVERSAL SEQUENTIAL SPACES
R. Sirois-DumMals AND S. WILLARD

We prb\duce 2° mutuzlly nonhomeomorphic countable se-
quential spaces. These are used

(1) to answer in the negative the following question of
Michael and Stone [4]: is every regular Tspace which is a
quotient of some separable metric space and a continuous image
of the space P of irrationals a quotient of P?

(2) to characterize ¢ (with or without the continuum
hypothesis) as the smallest cardinal x with the property that a
metric space of cardinality x exists of which every sequential
space of cardinality =« is a quotient.

1. Introduction. We let Q denote the space of rationals, P
the space of irrationals, R the real line, and ¢ the cardinality of R. For
any set X, the cardinality of X is denoted | X |.

We begin with the basic construction, which will be applied in the
sequel in two different directions. Denote by Y the set [Q X
(O —{0})]U{=} and, for E CR, denote by 7 the quotient topology
induced on Y by the obvious map from the subspace [Q X (Q —{0})] U
(E x{0}) of RxXR. The set Y endowed with the topology 7= will be
denoted Y. Note that Y; is a countable, regular, T,-space which is, by
construction, the quotient of a separable metric space. (Thus, see [3],
Y: is both an N,-space and a k-space.)

2. Quotients of P. In [4], Michael and Stone establish that
every metrizable continuous image of P is a quotient of P. The question
is raised there whether this result can be extended to nonmetrizable
images of P, that is, whether a regular T-space which is at the same time
a quotient of some separable metric space and a continuous image of P
must be a quotient of P. The construction of §1 provides the negative
answer. To see this, first note that the countable discrete space (hence,
every countable space) is a continuous image of P (collapse each interval
(n,n + 1) to apoint). It follows that each space Y is a regular T-space
which is a continuous image of P and a quotient of some separable metric
space. But:

THEOREM. Not every space Yr is a quotient of P.

Proof. If E and F are distinct subsets of R, the topologies 7 and 7¢
on Y are different, one containing a set containing * which does not
belong to the other.
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Now let S be the set of all surjections f: P— Y such that each
f'(y), y € Y, is closed in P, and let ® be the set of all ¢: Y —2°, where
2* denotes the collection of closed subsets of P. Then f—f"'is a
one-one map from S into ®; since |®|=c™=c, we have [S|=c. LetJ
be the set of all T, topologies 7 on Y such that (Y, 7) is a quotient image
of P. Then each 7 € J is generated by some fE S, so |J|=c. Since
[{rz | E CR}| = 2¢, and since each 7z is T}, it follows that (Y, 7¢) is not a
quotient of P for some E CR.

Notes. (1) From the above, it is easily seen that there are 2°
nonhomeomorphic spaces Y, at most ¢ of which can be quotients of
P. This result can be sharpened, with some difficulty. In fact, Ye is a
quotient of P iff E is an analytic subset of R. ’

(2) If, in the construction of Y, the set Q X (Q — {0}) is replaced by
a discrete space, say {(k/n, 1/n)| k, n € N}, the spaces Y, which result still
work, and have now the additional property that each has only one
nonisolated point.

3. Quotient-universal sequential spaces. Let k be an
infinite cardinal and let S(k ) denote the collection of all sequential spaces
of cardinality = k. A sequential space S is quotient-universal* for S(x)
if S € S(k)and every T € S(x) is a quotient of S. We are particularly
interested in the existence of metrizable quotient-universal spaces for
S(k).

Whenever k™ = k, the disjoint union of « copies of the converging
sequence will serve as a metrizable quotient-universal space for
S(«). In particular, there is a metrizable quotient-universal space for
S(c). In this section, we use the construction of §1 to demonstrate that,
whether or not the continuum hypothesis is true, c is the smallest cardinal
for which this is true. In fact, we exhibit a countable sequential space
which is not a quotient of any metric space of cardinality <c.

LeEMMA. There exists a subset E of R with | E | = ¢ which contains no
uncountable closed subset of R.

Proof. Let {C,|a <c} be a transfinite enumeration of the ¢ un-
countable closed subsets of R. Pick p, and g, in C, with p, # q,. If p, and
4. have been chosen in C, for &« < f so that all p, and g, are distinct,
choose p; and g, in G, so that p; # gz and pg, g, are distinct from all p,, q.
for « < B. This is possible since any uncountable closed subset of R has
cardinal ¢ so that C; —{p., q.|a < B} # ¢.

* The term “‘universal” has been preempted by those who study spaces with a given property P
which contain as subspaces every space (of appropriate cardinality or weight) having property P. See,
for example, [2], [5] and [6].
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Let E ={p.|a <c}. Then |E|=c and E contains no uncountable
closed subset of R since g, € C, — E for each «.

Let E CR be the set of the lemma. Let M; denote the subspace
[O %X (O —{0})] U (E x{0}) of RxR. Recall that Y; is the quotient of
M; obtained by collapsing E X {0} to a single point e. Let q: Mg — Yg
be the quotient map.

Y: is a countable sequential space, but:

THEOREM. Yg is not the quotient of any metric space of cardinality
<c.

Proof. Suppose there is a quotient map f of S onto Y, where S isa
metric space and | S| =k <c. Foreachp EE, let g, = (x,, X2, - ) bea
sequence in Q X (Q —{0}) such that

. (1
| X,n — (p,0)| = min {;, | Xpn—1 — (P, O)I}.
Recall that q denotes the quotient map of Mg onto Y. For each n, let

Zpn = q (Xpn)

and denote by m, the sequence (z,,2,,---) in Yg Now
n, —e. Hence, since f is a hereditary quotient map, there exists some
b, € f'(e) and a sequence o, = (S,1, S, ") in S—f'(e) such that
o,— b, and f(o,)=m,. Let

f(e)={x.|a <«}
and, for a <k, let

A, ={pEE|b, = x,}.

We claim some A, must contain a sequence (p,) converging to some
element of R— E. For otherwise C1g(A,) CE fot each a < k, whence
E is the union of fewer than ¢ closed sets. But since |E|= ¢, one of
these would be an uncountable closed set in E, contradicting the
construction of E.

Without loss of generality, say A, contains a sequence (p,) which is
closed and discrete in E. Then the sequence m, = (2,, Z,5, " **) con-
verges to e, for each i, and the sequence §, = (s,., S,2, - - - ) converges to
x,, foreach i. A diagonal sequence (S,n,, Sy, - - - ) With n, = k for each k
will then converge to x,. Then (z,,., Zym, * - ) converges to e. Hence
(Xpimis Xpony - ) must have a cluster point in M.
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But |x,m — (Px,0)| = |xpu — (P, 0)| = 1/k, so any cluster point of
(Xpims Xpuns, =+ ) in Mg would be a cluster point of ((pi,0),(p,,0),---),
which is impossible by choice of the p.

We conclude with some observations on extension of the result
above.

(1) Asnoted in §2, there are 2° mutually nonhomeomorphic spaces
Y:. Since there are at most ¢ quotients of any single countable
sequential space, there can exist no quotient-universal space (metrizable
or not) for S(N,). It is at least consistent with the usual (Zermelo-
Fraenkel) axioms for set theory (with Choice) that this result extends to
all cardinals k <¢, for Martin’s axiom entails 2* <2 for k <c.

(2) Let M(k) denote the collection of metrizable spaces of
cardinal = k. The space Q of rationals is a (metrizable) quotient-
universal space for M(N,), while the disjoint union of ¢ copies of the
converging sequence is a quotient-universal space for M(c). For cardi-
nals k between N, and c little is known. Baumgartner ([1]) has shown
that it is consistent with Zermelo-Fraenkel set theory with choice that all
N-dense subsets of R are order-isomorphic. (A subset A of R is
N -dense if whenever a < b in R, (a,b) N A has cardinal N,.) If this is
the case, then every separable metric space M of cardinal =N, is a
quotient of the unique N;-dense subset D of R. For M is a quotient of
M X D, while ([7], Theorem 76) M X D is homeomorphic to a subset of R
and hence, by Baumgartner’s result, to D.
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