QUOTIENT-UNIVERSAL SEQUENTIAL SPACES

R. SIROIS-DUMAIS AND S. WILLARD

We produce 2^c mutually nonhomeomorphic countable sequential spaces. These are used

- (1) to answer in the negative the following question of Michael and Stone [4]: is every regular T_1 space which is a quotient of some separable metric space and a continuous image of the space P of irrationals a quotient of P?
- (2) to characterize c (with or without the continuum hypothesis) as the smallest cardinal κ with the property that a metric space of cardinality κ exists of which every sequential space of cardinality $\leq \kappa$ is a quotient.
- 1. Introduction. We let Q denote the space of rationals, \mathbf{P} the space of irrationals, \mathbf{R} the real line, and \mathbf{c} the cardinality of \mathbf{R} . For any set X, the cardinality of X is denoted |X|.

We begin with the basic construction, which will be applied in the sequel in two different directions. Denote by Y the set $[Q \times (Q - \{0\})] \cup \{\infty\}$ and, for $E \subseteq \mathbf{R}$, denote by τ_E the quotient topology induced on Y by the obvious map from the subspace $[Q \times (Q - \{0\})] \cup (E \times \{0\})$ of $\mathbf{R} \times \mathbf{R}$. The set Y endowed with the topology τ_E will be denoted Y_E . Note that Y_E is a countable, regular, T_1 -space which is, by construction, the quotient of a separable metric space. (Thus, see [3], Y_E is both an \mathbf{N}_0 -space and a k-space.)

2. Quotients of P. In [4], Michael and Stone establish that every metrizable continuous image of P is a quotient of P. The question is raised there whether this result can be extended to nonmetrizable images of P, that is, whether a regular T_1 -space which is at the same time a quotient of some separable metric space and a continuous image of P must be a quotient of P. The construction of \$1 provides the negative answer. To see this, first note that the countable discrete space (hence, every countable space) is a continuous image of P (collapse each interval (n, n + 1) to a point). It follows that each space Y_E is a regular T_1 -space which is a continuous image of P and a quotient of some separable metric space. But:

THEOREM. Not every space Y_E is a quotient of P.

Proof. If E and F are distinct subsets of **R**, the topologies τ_E and τ_F on Y are different, one containing a set containing ∞ which does not belong to the other.

Now let S be the set of all surjections $f \colon P \to Y$ such that each $f^{-1}(y)$, $y \in Y$, is closed in P, and let Φ be the set of all $\phi \colon Y \to 2^P$, where 2^P denotes the collection of closed subsets of P. Then $f \to f^{-1}$ is a one-one map from S into Φ ; since $|\Phi| = \mathbf{c}^{\mathsf{N}_0} = \mathbf{c}$, we have $|S| \leq \mathbf{c}$. Let J be the set of all T_1 topologies τ on Y such that (Y, τ) is a quotient image of P. Then each $\tau \in J$ is generated by some $f \in S$, so $|J| \leq \mathbf{c}$. Since $|\{\tau_E \mid E \subseteq \mathbf{R}\}| = 2^c$, and since each τ_E is T_1 , it follows that (Y, τ_E) is not a quotient of P for some $E \subset \mathbf{R}$.

- Notes. (1) From the above, it is easily seen that there are 2^c nonhomeomorphic spaces Y_E , at most c of which can be quotients of P. This result can be sharpened, with some difficulty. In fact, Y_E is a quotient of P iff E is an analytic subset of R.
- (2) If, in the construction of Y, the set $Q \times (Q \{0\})$ is replaced by a discrete space, say $\{(k/n, 1/n) | k, n \in \mathbb{N}\}$, the spaces Y_E which result still work, and have now the additional property that each has only one nonisolated point.
- 3. Quotient-universal sequential spaces. Let κ be an infinite cardinal and let $S(\kappa)$ denote the collection of all sequential spaces of cardinality $\leq \kappa$. A sequential space S is quotient-universal* for $S(\kappa)$ if $S \in S(\kappa)$ and every $T \in S(\kappa)$ is a quotient of S. We are particularly interested in the existence of metrizable quotient-universal spaces for $S(\kappa)$.

Whenever $\kappa^{\kappa_0} = \kappa$, the disjoint union of κ copies of the converging sequence will serve as a metrizable quotient-universal space for $S(\kappa)$. In particular, there is a metrizable quotient-universal space for $S(\mathbf{c})$. In this section, we use the construction of §1 to demonstrate that, whether or not the continuum hypothesis is true, \mathbf{c} is the smallest cardinal for which this is true. In fact, we exhibit a countable sequential space which is not a quotient of any metric space of cardinality $<\mathbf{c}$.

LEMMA. There exists a subset E of \mathbf{R} with $|E| = \mathbf{c}$ which contains no uncountable closed subset of \mathbf{R} .

Proof. Let $\{C_{\alpha} \mid \alpha < \mathbf{c}\}$ be a transfinite enumeration of the \mathbf{c} uncountable closed subsets of \mathbf{R} . Pick p_0 and q_0 in C_0 with $p_0 \neq q_0$. If p_{α} and q_{α} have been chosen in C_{α} for $\alpha < \beta$ so that all p_{α} and q_{α} are distinct, choose p_{β} and q_{β} in C_{β} so that $p_{\beta} \neq q_{\beta}$ and p_{β} , q_{β} are distinct from all p_{α} , q_{α} for $\alpha < \beta$. This is possible since any uncountable closed subset of \mathbf{R} has cardinal \mathbf{c} so that $C_{\beta} - \{p_{\alpha}, q_{\alpha} \mid \alpha < \beta\} \neq \phi$.

^{*} The term "universal" has been preempted by those who study spaces with a given property P which contain as subspaces every space (of appropriate cardinality or weight) having property P. See, for example, [2], [5] and [6].

Let $E = \{p_{\alpha} \mid \alpha < \mathbf{c}\}$. Then $|E| = \mathbf{c}$ and E contains no uncountable closed subset of \mathbf{R} since $q_{\alpha} \in C_{\alpha} - E$ for each α .

Let $E \subseteq \mathbf{R}$ be the set of the lemma. Let M_E denote the subspace $[Q \times (Q - \{0\})] \cup (E \times \{0\})$ of $\mathbf{R} \times \mathbf{R}$. Recall that Y_E is the quotient of M_E obtained by collapsing $E \times \{0\}$ to a single point e. Let $q: M_E \to Y_E$ be the quotient map.

 Y_E is a countable sequential space, but:

THEOREM. Y_E is not the quotient of any metric space of cardinality $< \mathbf{c}$.

Proof. Suppose there is a quotient map f of S onto Y_E , where S is a metric space and $|S| = \kappa < c$. For each $p \in E$, let $\sigma_p = (x_{p1}, x_{p2}, \cdots)$ be a sequence in $Q \times (Q - \{0\})$ such that

$$|x_{pn}-(p,0)| \leq \min \left\{\frac{1}{n}, |x_{pn-1}-(p,0)|\right\}.$$

Recall that q denotes the quotient map of M_E onto Y_E . For each n, let

$$z_{pn}=q(x_{pn})$$

and denote by η_p the sequence (z_{p1}, z_{p2}, \cdots) in Y_E . Now $\eta_p \to e$. Hence, since f is a hereditary quotient map, there exists some $b_p \in f^{-1}(e)$ and a sequence $\sigma_p = (s_{p1}, s_{p2}, \cdots)$ in $S - f^{-1}(e)$ such that $\sigma_p \to b_p$ and $f(\sigma_p) = \eta_p$. Let

$$f^{-1}(e) = \{x_{\alpha} \mid \alpha < \kappa\}$$

and, for $\alpha < \kappa$, let

$$A_{\alpha} = \{ p \in E \mid b_p = x_{\alpha} \}.$$

We claim some A_{α} must contain a sequence (p_i) converging to some element of $\mathbf{R} - E$. For otherwise $C1_{\mathbf{R}}(A_{\alpha}) \subset E$ for each $\alpha < \kappa$, whence E is the union of fewer than \mathbf{c} closed sets. But since $|E| = \mathbf{c}$, one of these would be an uncountable closed set in E, contradicting the construction of E.

Without loss of generality, say A_1 contains a sequence (p_i) which is closed and discrete in E. Then the sequence $\eta_{p_i} = (z_{p_i1}, z_{p_i2}, \cdots)$ converges to e, for each i, and the sequence $\delta_{p_i} = (s_{p_i1}, s_{p_i2}, \cdots)$ converges to x_1 , for each i. A diagonal sequence $(s_{p_in_i}, s_{p_in_2}, \cdots)$ with $n_k \ge k$ for each k will then converge to x_1 . Then $(z_{p_in_i}, z_{p_in_2}, \cdots)$ converges to e. Hence $(x_{p_in_i}, x_{p_in_2}, \cdots)$ must have a cluster point in M_E .

But $|x_{p_kn_k} - (p_k, 0)| \le |x_{p_kk} - (p_k, 0)| \le 1/k$, so any cluster point of $(x_{p_1n_1}, x_{p_2n_2}, \cdots)$ in M_E would be a cluster point of $((p_1, 0), (p_2, 0), \cdots)$, which is impossible by choice of the p_i .

We conclude with some observations on extension of the result above.

- (1) As noted in §2, there are 2^c mutually nonhomeomorphic spaces Y_E . Since there are at most \mathbf{c} quotients of any single countable sequential space, there can exist no quotient-universal space (metrizable or not) for $S(\mathbf{R}_0)$. It is at least consistent with the usual (Zermelo-Fraenkel) axioms for set theory (with Choice) that this result extends to all cardinals $\kappa < \mathbf{c}$, for Martin's axiom entails $2^{\kappa} < 2^c$ for $\kappa < \mathbf{c}$.
- (2) Let $M(\kappa)$ denote the collection of metrizable spaces of cardinal $\leq \kappa$. The space Q of rationals is a (metrizable) quotient-universal space for $M(\aleph_0)$, while the disjoint union of \mathbf{c} copies of the converging sequence is a quotient-universal space for $M(\mathbf{c})$. For cardinals κ between \aleph_0 and \mathbf{c} little is known. Baumgartner ([1]) has shown that it is consistent with Zermelo-Fraenkel set theory with choice that all \aleph_1 -dense subsets of \mathbf{R} are order-isomorphic. (A subset A of \mathbf{R} is \aleph_1 -dense if whenever a < b in \mathbf{R} , $(a, b) \cap A$ has cardinal \aleph_1 .) If this is the case, then every separable metric space M of cardinal $\leq \aleph_1$ is a quotient of the unique \aleph_1 -dense subset D of \mathbf{R} . For M is a quotient of $M \times D$, while ([7], Theorem 76) $M \times D$ is homeomorphic to a subset of \mathbf{R} and hence, by Baumgartner's result, to D.

REFERENCES

- 1. James E. Baumgartner, All N₁-dense sets of reals can be isomorphic, Fund. Math., 79 (1973), 103-106
- 2. Jonsson, Universal Relational Systems, Math. Scand., 4 (1956), 193-208.
- 3. E. Michael, No-spaces, J. Math. Mech., 15 (1966), 983-1002.
- 4. E. Michael and A. H. Stone, Quotients of the space of irrationals, Pacific J. Math., 28 (1969), 629-633.
- 5. R. Pol, There is no universal totally disconnected space, Fund. Math., 79 (1973), 265-267.
- 6. W. Sierpinski, Sur les espaces métriques universels, Fund. Math., 33 (1945), 123-136.
- 7. ——, General Topology, 2nd ed., U. of Toronto Press, 1956 (translated by C. C. Krieger).

Received March 12, 1976 and in revised form May 12, 1976.

UNIVERSITY OF ALBERTA