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NORMS OF POWERS OF ABSOLUTELY CONVERGENT
FOURIER SERIES: AN EXAMPLE

CHARLES H. HEIBERG

Let f be defined on T° and have an absolutely convergent
Fourier series

f(eial, eioz) — Z fme imlaleimzoz‘

Set|f|=2|f.|and|f[5=Z|f.|>. In this paper the asymptotic
behavior of || f*|, as k — o, is studied.

THEOREM 1. Let f be a continuous function on T? such that
M If(2)[<1 for z# (1, 1), |z:|=]z|=1
and such that for all o in some R*? neighborhood of (0,0)

) f(e”)=exp(iA(a) = ¥(a))

where A is a real-valued linear function defined on R’ and ¢ is a
continuous, complex -valued valued function defined on R*? and satisfying
certain smoothness conditions to be defined near the end of §2
below. Then

i) |f*IB= ak " logk,

(i)  supm |(f*)m | = ak " log k,

(iii) bk"?log k =sup, Re(f*).n,

(iv) blogk =3, |[Re(f*). |

THEOREM 2. There exists a polynomial f in two complex variables
satisfying f(1,1)=1 and

[f(z)I<1 for z# (L 1), |z|=]z|=1,

such that
@) lfl=blogk,
(i) alogk=|f“(,
(iii) alogk =||f[*|,
(i) [f*IE=bsup, |[(f)ml.

In 1970 B. M. Schreiber published smoothness conditions which, for
functions defined on T*, having absolutely convergent Fourier series and
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satisfying a condition that reduces to (1) in the case g = 2, imply that || f* ||
remains bounded as k tends to infinity.

1. Introduction. It is a consequence of Theorem 2 that
certain well-known results concerning functions f(z) analytic on the
closed unit disc do not extend to even the case of functions of two
complex variables. Namely, letting

fk(z) = z am,kzm’
1 =2 lamil, Iff =2 lanel

it is known that if f(1)=1 and [f(z)| <1 for z# 1, |z| =1, then

@) lfl*Il=0Q), as k -, (see [5]),

(i) ak® =[If<[|= ck®, if [If* =, as k — e, (see [5], [3]),

(i) [If* [B/supn | @i |0, if [|f*[| > as k — oo, (see [1], [2]).
None of these results extend to functions of two complex variables.

The results of Bajsanski [1] and Clunie and Vermes [2] were
rediscovered and appear in [7], [9], [10]. For other results concerning
norms of powers of absolutely convergent Fourier series of several
variables see [4], [6], [8].

2. Notation and remarks. Let T, Z, R and C denote
the wunit circle, integers, real numbers and complex numbers
respectively. For any set S let S* denote the cartesian product of the set
with itself. The letters o and z denote points of R*> and C? respectively,
o, o, and z,, z, their respective components and e’ the point
(e, e®). For p in Z* oF denotes oPa%. Forp =2,3,--+, of denotes
ofoj.  The scalar product of two points o and A of R? will be denoted
by A - o. Since R?is its own dual the same notation is used for a point A
of R? and the corresponding linear map A: 0 — A - . For any subset S
of R? and point r of R let rS denote the set of points rs such that s
belongs to S.

Denote [ — 7, w]* by II and the complement in II of any subset S of
IT by CS.

The letters a, b, ¢, d will denote absolute positive constants. The
use of one such letter in two inequalities does not mean that the letter
represents the same absolute constant in both inequalities. However,
the use of such a letter in an inequality involving the indices k and m
means that the constant represented by the letter is independent of k and
m. The phrases “for k sufficiently large” and ‘““for all m” will be
omitted finitely many times from this paper.
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For positive, even integers p and q let ®,, denote the class of
continuous complex-valued functions ¢ defined on R? for which

(€) |6(0) = ¥(a)l/d(o) = O(log™| o), as |a]|—0,
for some polynomial ¢ of the form
a(o?toi+oi), a>0.

Then a function ¢ satisfies the smoothness conditions mentioned in
Theorem 1 if and only if there exist positive even integers p and q such
that ¢ belongs to ®,, and such that 2p <gq.

Finally, note that for Theorem 1 it is not assumed that the Fourier
series of f is absolutely convergent.

3. Proofs of theorems.

Lemma 1. Fix p>1. Let F(t) denote the integral of exp(— bx?)
over (t,©). Then

B a
() f f exp(— bs?t?)dsdt ~ F(0)log B, as B — <. Consequently,
0 0
if p is a positive even integer, then

Ba Ba
(ii) f f exp(— bs*t?)dsdt ~ 8F(0)log B, as B —> .
—Ba —Ba

Proof. Let € >0 be given and let I(B) denote the double integral in
(i). By substituting x/t for s in I it can be seen that for g >1

F(0)log B — I(B) = L " (F(at)— FO))/tdt + f " Flat)ytd.

Choose T >1 so that F(at) < eF(0) for all ¢ in (T,»). The function
F(t)/t is bounded on (1, T) so it follows from the last equality that

|F(0)log B — I(B)|=c + €F(0)log B.

Since € was arbitrary

[1-I(B)(F(0)log )" = c(F(0)log B)"

for B >1, which proves (i).

To prove (ii) substitute x for s and yB~"' for ¢ in the integral in (ii),
use that the integrand is an even function of each variable to obtain an
integral over (0, a) x (0, B%a) only and apply (i).
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Proof of Theorem 1(i). From (2), (3) and the definition of the
function ¢ it follows that

@ |f(e)| = exp(~ cd(a)),

for all o in some neighborhood of (0,0). Since |f| satisfies (1) and is
continuous, the inequality (4) holds on all of T?. Thus,

5) If* o= f exp(— ko) do.

Substituting k "*?7 for o in this last integral and applying Lemma 1(ii)
completes the proof of (i).

1

Proof of Theorem 1(ii). If f satisfies the hypothesis of (i), then |f*
does also, so

IF1<%|E = ak ™" log k.

This and the inequality

sup| () [ =1 f1**[

prove (ii).

Define on II an auxiliary function A which is used in estimating the
Fourier coefficients of f*. Let

A =exp(iA — ¢)
and note that
() |A|=exp(— @),
since A is real-valued.

LEMMA 2. For i =1,2 there exists a collection of sets {E;(k,m)}
indexed by k in Z, m in Z* such that

=ck"

w02~ (S et

Proof. For each k in Z, m in Z? let
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) @) vkm)=ka—m, (i) pi(k,m)=|vvlk",
S={ocell:|a|<p/|v|},
D ={oc€ll: ’0'.’>P/IV,i},
E ={oc€ll:|a[>p/lv|, |osi[<pllv]-},
i=1,2. Then
®) (= (S xeat) =21

where, for j =1,2,3, I is the mth Fourier coefficient of f* — A% x;A ,
XpA¥ respectively.

Since by (6) | A | =1 the integral I, can be estimated by the area of S
and hence

) |L|=4p%|viv,| = 4k 7P,

the equality resulting from (7)(ii).
To estimate I, let

(10) W,={o €Il: k()= (1+1/c)logk},

where ¢ is given in (4), and write

wi=(], [ i

To estimate f , the second integral in (11), estimate the sum of the
CWi

supremums over CW, of |f|* and | A |*. Since on CW,

exp(—ck¢)=exp(—(c +1)logk),
exp(— ké)=exp(—(1+1/c)logk)

it follows from (4) and (6) that the supremums to be estimated are
o(k™), as k—. Since the measure of CW, is bounded by 47 it
follows that

(12) L‘=owﬂ,%kew

To estimate f , as given in (11), note that (2) holds on W,, for k
Wi
sufficiently large, so that f =exp(¢ —¢)- A on W, and so that
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(13) j <sup |expk(¢—¢)—1|f exp(— ako’)do.
Wi Wi n

By (3),

sup | ¢ — | = asup($log”|al).

Using that |o|=|0,|+|0,| and the definition of W, yields for some
positive number e

sup (log”|o|)=log™*(2k™)
and
sgkp¢> = k'log k.
The last three estimates involving supremums imply that
sup|¢ — ¢ = O((klog k)™), as k —,
and hence that
(14) sup |exp k(¢ — )~ 1= O((logk)™), as k-,

since

o

expk(p—¢)=2 (k| — | /u!.

u=0

The second integral in (13), being of the same type as the integral in (5), is
O(k " logk), as k — . This and (11)-(14) prove that

(15) [I,|= O(k™""), as k — .

From the definition of A it follows that

[I3|§4f exp(— ako?)do.
D
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By substituting pr/|v| for o and using (7)(ii) and that exp(— ar”) is
integrable on (1,*) conclude that |I;|=4k~"". This, (15), (8) and (9)
prove Lemma 2.

Since 2p < g there exists € in (0, 1) so that

(16) 2p <gqe.

For each k in Z and positive constant b let M,(k) denote the set of
points m of Z? such that v(m) and p(m), defined by (7), satisfy

(17) () k" =min|y|, i=1,2 and (i) p?<b.

Lemma 3. For all k sufficiently large
inf(xsA*).|logp|™" = ak ™", i=1,2,
where the infimum is over all m in M, (k).

Proof. The proof is given for i =1, the proof for i =2 being
similar. Since p and q are even integers, ¢ is an even function of o, and
of o,. It follows that yoA* is also and that

ollvyl

f " I(o) do dor,
(

)

(18) e A= [

where I(o) = cos(v,0,)cos (v,0,)exp (— ko).
Since for some y in (0, 1), | (o) = y* for o, = 7 and since | I(o) [} is
integrable on R? it follows from (18) that

(19)

pllvyl =
f f I(U)dold(fz’ = O(y*), as k —o.
0 T

Using the points 7/8|v,|, 37/8|v,|, m/2|v,| partition (0,37/2]|v,|)
into four subintervals I, 0 =j =3, and write

pllv) [ 4
(20) f f I(o)dodo,= D T,
0 0 1=0

where J; is the integral of I over the rectangle R; defined to be
I x(0,p|n|"), for 0=j =3, and where J, is defined by (20).

Requiring that b = 1 it follows from (17) and the definition of R, that
for o in R,

max o; = k Ve,
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Since € is in (0,1) it follows that for all k sufficiently large
exp(—ka(of +0%))=} for all o in Ry,. Also cos(v,0,) and cos(»,0,)
exceed ; for all o in R,. Thus,

8J, éj exp(— kao”)do.
Ro

By substituting x | »,|™ for o, and then y | »,|"'p” for o, in this last double
integral, by using 7(ii) and then by applying Lemma 1(i) it follows that
there exist constants a and b such that

21) Jy=ak ™" |logp]|

for all m in M, (k).

Since p=1 it follows for each fixed o, in (0,p/|v,]) that
cos (v,0,)exp(— k¢ (o)) is a monotone decreasing function of o, on (0, )
and hence that J,= 0.

Since I is positive on R,, J,=0.

To estimate J, + J; substitute for o, in J; in such a way that the limits
of the integrals J, and J, become identical, combine integrals and factor
the integrand to obtain that

(22) J+JI,= f cos (v,0,)exp(— k¢ (4o, 0,))H (o) do,

H being continuous and defined by the equality.

We note that the last integrand is bounded absolutely (independent
of k and m) and shall show that there exists a rectangle R, such that the
last integrand is positive on R,\R, and such that the area of R, is
O(k™'"), as k — oo,

It will follow that J, + J,= — dk "7 which with (18)-(21) and the fact
that J, and J, are positive prove the lemma.

Let R,= I, x(0,3]| v,|(ka)™"?).

On I,, cos(v,0,)=1/3 so

H(o)= (exp(k¢ (404, 0;) — kd(0)))/3 — 4.

But the argument of the exponential is bounded from below by ak (4” —
1)o?, which is never less than 12 on R,\R,, since p is an even integer. It
follows that H and hence the integrand in (22) are positive on
R\R,. This and the fact that the area of R, is O (k™'"), as k — =, prove
the lemma.

Proof of Theorem 1(iii). From Lemmas 2 and 3 it follows that
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Re(f“). = (allogp|—c)k™"",
for all m in M,(k). For p, sufficiently small
(23) Re(f“)n = dk ™" [logp |

for all m in M, (k).
Choose for each positive integer k, points m (k) in Z? such that

24) k' = |v,(k, m,(k))| =2k ", i=1,2.
By 7(ii) and this choice
(25) pi(k,m(k))=4k>e"r
which by (16) implies that
p’(k, m(k)) < p,

for all k sufficiently large. This and (24) imply that m (k) belongs to
M, (k) and hence that

Re(f*),. = dk " |log p(k, m (k))|.

This, (25) and (16) prove (ii).

Proof of Theorem 1(iv). Since m belonging to M, (k) implies that
p’> < p, and since p,< 1, inequality (23) implies that

Re(f*), = ck ™

for all m in M,(k). So to prove (iv) it suffices to show that the
cardinality of the set M, (k) exceeds

(26) ak' (1/p —2/qe)log k,

where by (16) the constant in parentheses is positive.

For this proof only, extend the definitions of v and p (see (7)) to all k
in Z, o in R? and define S, (k) to be the set of points o of R?such that v
and p satisfy (17). It suffices to show that if for some m in Z* the set
S1,(k) intersects the square (m,, m, + 1) X (m,, m,+ 1), then m belongs to
M, (k), since then the cardinality of M, (k) is no less than the area of
S1,(k) which is no less than the expression in (26).
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Let o be a point of intersection. Since o belongs to Si,(k) then
v(k, o)z k" i=1,2,

and since o belongs to (m,, m;+ 1) X (m,, m,+ 1) then

0<w(k,m)—v(k o)<l, i=1,2.
It follows that m satisfies (17)(i) and that

v,(k, m,)=2v,(k,o,) for k = 2%
Using (7) to express p as a product of the v, obtain that
p’(k,m)=4p’(k, o).

This and the fact that o belongs to Si,(k ) imply that m satisfies (17) (ii).

To prove Theorem 2 a polynomial f is defined and Lemmas 4 and 5
are used to show that f and consequently | f| satisfy the conditions given
in the hypothesis of Theorem 1. It follows by Theorem 1 that the
inequalities given in (ii) and (iv) and hence (iii) of Theorem 2 hold for
both f and |f|. Lemmas 2 and 6 are used in a rather difficult proof that f
satisfies the inequality given in Theorem 2(i).

The proofs of the next two lemmas follow directly from Lemmas 1
and 2(i) in Heiberg [6].

LeEMMA 4. Let n be a positive integer and
— 2n
g(w)=w" + (- 1)"*1<——W2 1) :

for all complex w. Then

i) |gw)|<1 for |w|=1, w#1,

(i) g(e*)=-exp(nsi —=,.ds'), d., >0,
for all s in some neighborhood of 0.

LEMMA 5. Let p be a positive integer and Z c,o’ converge absolutely
for all o in some neighborhood of (0,0), where the sum is over all j in Z*
such that j,+j,>2p; j,j.=p. Then

[Z¢o’|=0(alla™]), as |o]|—0.
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LemMma 6. For all k sufficiently large
sup |(xe, - A*)n|(logp|+1)"' = ak™'", i=1,2.

Proof. The last inequality is proved for i = 1, the proof for i =2
being similar.
By (18) it suffices to prove that

pllvy T
(27) f f I(o)do,do, = ak ™" (|logp|+1)
0 0

for all m in Z°.
If 37/2| v,| < m, then for each fixed o, the integral, f I(o)do, is of
h

opposite signs for h =37/2|v,| and h = 7/2|v,| since for each fixed o,
¢ (o) is a monotone function of o,. It follows that

J’" I(o)do, ’ = Ifamw I(o)do, ‘ .

m/2|v1| w/2vi]

Thus,

pllvyl T
(28) f f I(o)do, do,
0 0

Note that this inequality is also valid if 37 /2|v,| = .

By estimating |I(o)| from above with exp(— kao?) in the last
double integral, substituting x| v,|™" for o, and y|»,|"'p? for o, using
(7) (i) and applying Lemma 1(i) we obtain (27) from (28). Lemma 6 is
proved.

P/l”2| 317/2|V1|
éf f |I(0)|do, do,.
0 0

Proof of Theorem 2. Let

~1\*/z,— 1)*
h(Z)=ZfZ§—<Z‘2 )(Zzz )

w—1\"
g(w)=w5+( 5 ) , for all complex w,

and

f(z) = g(z1)g(22)h(2).

As stated prior to Lemma 4, to prove that f satisfies the inequalities
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given in (ii}—(iv) of Theorem 2 it suffices to show that f satisfies the
conditions given in the hypothesis of Theorem 1.
To show that
If(z)|<1 for z#(1,1), |z\|=|z]=1
it suffices to prove that
(29) [h(z)|=1 for |z,|=]|z,] =1
since by Lemma 4

lgw)[<1 for w#1, |w|=1.

Since

@ 2
sin’(a/2)e” = (e 1)
2
then
(30) h(e”) = e* (1 —sin*(0/2)sin*(02/2))
from which (29) follows immediately.

To show that f belongs to @, ,, an expansion of f(e', ') about the
point (0,0) is needed. By Lemma 4

31) gle®)= exp(Ssi -> d,sf>, d,,>0,
=10

for all s in some neighborhood of 0.
By developing

1 —sin*(0,/2)sin*(0,/2)

and

exp(— 2 c,a’)

]EZ2

in power series in o, and o, about (0,0) and comparing these series
conclude using (30) that for all o in some neighborhood of (0,0)

h(e)=exp <2i(o-l +0,)— z c,cr’), Cua>0,

J1.j2Z4
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where the convergence of the double power series is absolute. This, (31)
and the definition of f imply that on some neighborhood of (0,0)

f=-exp(ix — ¢),
where
(32) Alo)="T(o, + o)),
(33) Wo)= 2 ¢o' + 2 di(oh+ 03), di, €s4>0,
j1,j2Z4 h=10

where again the convergence is absolute.
It follows from Lemma 5 that ¢ satisfies (3) with

(34) ¢ (o) = cuyo'+ d(o"+ o))

and hence that f belongs to ®,,, and satisfies the hypotheses of Theorem
1. This proves Theorem 2(ii)-(iv).
It remains to show that f satisfies the inequality given in Theorem
2(i). For this adopt the notation of Theorem 1 and its proof.
Also, let
S,={meZ%|v|<l,|v,|>kY, =12
Si={m € Z% 1/logk =p’ =1},
S:={m € Z>: min(p’, |y, |) = 1}.

It suffices to show for 1 =j =4 that

(35) zl(fk)ml=0(10gk), as k —,

since a similar estimate of the sum over the remainder of Z* follows from
Theorem 1(ii) and the fact that the cardinality of Z% U S, is O(k?), as
k — .

To prove (35) for j = 1 twice integrate by parts the integral defining
(f*)m, each time taking exp (iA,0,) to be the term integrated, and obtain

(36) ()| = ngkf |F|*¥(k — 1)(D,F)*+ FD3F|,

where

(37) F(o)=f(e”)exp(—iA(o)), for all o.
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Choose 6 >0 so that (2), (4), (32) and (33) hold on the rectangle
V = (- 8, 8) and so that the convergence of the series in (33) is absolute
on V. Write I, the integral in (36), as the sum of integrals over V and
CV:

(38) In = Iv + Icv.

Since f is a polynomial it follows from (37) and (32) that all partial
derivatives of F are continuous and hence bounded on II. From (37),
(32) and (1) one obtains for some vy in (0, 1) that | F| =y on CV. Thus,
(39) Iov = o(y*), as k — .

From (37) and (2) it follows that F =exp(— ¢) on V so that the
integrand off equals
v

(40) |F|“|k(D.¢) — kD3|
on V. From (37), (32) and (4) one obtains that
(41) |F|=|f|=exp(~bé)

on V. Since the convergence of the series in (33) is absolute on V, (33)
and (34) imply that

IDy | <c|Dib|, j=1,2,

on V. Using this inequality and (41) to estimate the expression in (40),
which is the integrand of I,, one obtains

vE cj exp(— bko)(k*(D.p) + kD3¢).
\%4
Using (34) to substitute for ¢ gives

(42) I, = cZ f koo 2 exp(— bk (o' + ")),
A%

where the sum is over all (y, ) in Z* such that y belongs to the set {1, 2}
and 0=a=y.

Let S ={o € V:|0o,| <k 8} and write f , given in (42), as
\'4

@) Jo=l+)
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Taking supremums over S one obtains that

J

Substituting k *u for o, in the last integral yields

= ck%f exp(— kao*).
N

(44) US ’: O(k*), as k —> .

Estimate the integrand of f by applying the inequality
V\S

(45) exp(—w)=Aw? w>0, p>0,

first with w = bko*, p = a and then with w = bko}’, p = y — a to obtain

J _S_J’ o exp(— kba?)
V\S V\S
= k%f exp(— kbo*).
V\S

By substituting u for ko, in this last integral and applying Lemma 1(ii)
one obtains that

f = ck*log k.
V\S
This and (42)-(44) imply that

v = cvitk*log k,

which with (36), (38) and (39), yields a similar estimate of | (f*),. |, valid for
all m in S,.

Since |v,| <1 for each m in S, it follows for each k that the set
{m,: (m,, m,) € S;} has at most two elements. So

52 [(F)m | = ckilogk > v3*= O(log k),

[valzk ¢

as k — . This proves (35) for j =1. The proof for j =2 is similar.
Let

Ni={mES3I 1/(l+1)<pzél/l}, =12,
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From the fact that the cardinality of N, is less than or equal to
ck*(logk)/i(i +1),i=1,2,-- - and from Lemmas 2 and 6 it follows that

2 |(f)nl = cllogk)(log(i + D+ D/i(i+1), i=1,2,---.
N,
Since §;C U, .. N, this last inequality implies that

SE [(Ff*)m | = clog’k ;k (log(i + )+ 1)/i(i +1)

= O(logk), as k — .

This proves (35) for j = 3.
To prove (35) for j =4 it suffices to prove that

(46) [(F*)m | = ck*(v,v,)™ for all m in S,

since the sum of (v,v,)? over the set {m € S,: |y, |=k} is O(k™?), as

k — =, and over its complement in S, is O (k ‘log k), as k — . For the

last estimate one uses that 1=|v|; 1=p =|v,1,|k™ for all m in S,
To prove (46) integrate by parts the integral defining (f*),, twice

each with respect to o, and o,, each time taking e”” to be the term
integrated and obtain

(f)m = Qmvivy)~° f e PF*do,

where F is defined by (37) and & is the differential operator
D;Dji. Since m belongs to S,, v,v, # 0.
Let H=F -exp(—¢) on R*>. Then

(47) (f)m Qmvv)y = 21 J,
where

lef ) ‘QF‘(L
JZ=J | 9F* — H*@ exp (— k)],
1= | 1 =D exp (- ko)),

J.= Uv e ’PDexp(— ke)|.
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Since F and its derivatives are continuous and since |F|=1 on II
with equality only at the point (0, 0) there exists some & in (0, 1) such that

(48) sup J, = O(8*%), as k — .
To estimate J, notice that on V
4
DF* — H* exp (— k) = (Z k’s,) F*,
=1

where for 1=j =4 s, is a double power series in o, and o, absolutely
convergent on V, with no terms of degree less than 8j —3. Using (41)
and (34) to estimate F on V yields

4
A kff s, exp (— bko*) do.
j=1 v
Substituting 7k~ for o yields
| L= ck™® exp(— br')dr
kv

since s, is continuous on V with terms of degree at least 8 —3. So by
Lemma 1(ii),

(49) sup | L] = O(k"logk), as k —oe.

To estimate J; let W, be defined as in (10), with ¢ =1, and write
(50) r=([ ] i - noexp(- ko)l
Wi V\ Wi
By (14),
sup |H* = 1|=O((logk)™), as k — .
Wy
So

ka éc(logk)‘lfn Dexp(— ko).



148 CHARLES H. HEIBERG

To estimate this last integral notice that

(1) @ exp(— k¢>=§ K'p,(0)exp(~ k),

where p, is a polynomial in two variables, each term of which is of degree
at least 8j —4. By replacing @ exp(— k¢) in the last integral with the
equivalent expression given in (51) and then by substituting 7k ™ for o
one obtains that

<c(logk )“kif exp(— kr*)dr.
kl/ﬂn

Wi

Applying Lemma 1(ii) then yields
(52) f = O(k%), as k — o,
Wi

To estimate f , as given in (50), note that |[H|=1 since H =

VWi

F -exp(— ¢) and hence that

(53) fvm ngw | D exp(— ko).

From (51) obtain that on V
| D exp(— k)| = ak*exp(— ko).

But W, is defined by (10) with ¢ =1 so

sup exp(— k)= ak™.

V\ Wi
From these last two inequalities and (51) conclude that
f =0(k™), as k >,
V\ Wi

which with (52) and (50) implies that

sup J;= O(k?), as k — oo,
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From this estimate and (47)-(49) conclude that to prove (46) and
hence Theorem 2 it suffices to show that

(54) sup J,= O(k?), as k — .

mela

For this write
2
65 = |(- [+« Jxerdexn-ks)|.
S D 1=1JEUS

where S, D, E, i =1,2 are defined in the proof of Lemma 2.
Using the identity in (51) to substitute for P exp(— k¢) in f and
S

then substituting 7k ~"* for o obtain

|

Since the area of S equals 4p?| v,v,|™', which by 7(ii) is O(k™*), as k — o,
we deduce from the last inequality that

(56)

= ck*[ exp(— br¥).
kl/KS

57) HS != O(kY), as k — o,

In the same way that inequality (56) was derived obtain

),

Since exp(— br?) is integrable on (1,®)’ conclude that

= ckif exp(— br?).
kl/HD

UD |=O(ki), as k — oo,

From this estimate, (57) and (55) conclude that to prove (54) and
hence Theorem 2 it suffices to show that

(58) sup

meSa

[ e mep(-ke)| = 0h, as ke,
E.US

fori =1,2. The proof of (58) is given for i = 1, the proof for i =2 being
similar.

Since xv-Pexp(— k¢) is an even function of o, and of o, the
integral in (58) equals
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pllvyl [
(59) 4 f f Xv - cos (v,0,)cos (v,0,) D exp(— k) do, do,.
0 0

Using (34) to express ¢ in terms of o and then calculating 9 exp(— k@)
conclude that for some & in (0, 1)

f |Dexp(—kp)|= O(8"), as k >,

and that & exp(— k¢) can be expressed as a finite linear combination of
terms of the form

kL+P+O(o_{.a_§’)100,4O—Zexp( — kd)):

where P, Q, L are nonnegative integers satisfying 10 min(L, P)+4Q —
2=0. Therefore, letting E(o)= oi® ™ ?exp(— ko),

nm /2|y,
L(0)) =L cos(v,00)E (o) do,,

for all positive integers n, and I.(o,)=lim,_.I,(0;) conclude that to
prove (58) it suffices to show that

(60) Sup kL+P+O

meESa

/v,
f T 08 (102) P2 () dars | = O (KD,
0

as k — x, since the integral in (5§9), which equals the integral in (58), can
be written as a finite linear combination of integrals of the type given in
(60) plus a term that is O(8*), as k — o, where 0< 6 <1.

To prove (60) first fix o, in (0, p/| v,|), consider E to be a function of
the one variable o, and estimate I.(0;). E has at most one critical point
on (0, ) since ¢ is as in (34) and since 10L +4Q —2=0. In any case
there exists a smallest nonnegative integer r such that the function E is
monotone decreasing on (0, 7 (4r +1)/2| v, ).

Since E is monotone decreasing on (w(4r + 1)/2| v,|,) it follows
that I.— I,,., and I.— I,,., are of opposite signs so that

(61) L= L, = | Lo — Lo | = 7S/ v,
where
(62) S=sup |E]|.

a1€(0,%)
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If r <3, then |L,.,|=97S/2|v|.
If r = 3, then E is monotone increasing on (0, 7 (4r — 5)/2| v,|) so that
I, ;— 1, and I,,_s— I; are of opposite signs. Thus,
II4,—7" Il, = I I4r—5 - I4r—7+ Il - Is,-
So, in the case r = 3,

,I4r+1' —S—ll4r+1“ 14,—7, + ’I4r—5“14r—7| + 'I3—Il|+|[l|

=137S/2| v,

where S is defined by (62). These two estimates of |I,,.,| and the
inequality (61) imply that |I.|=15%S/2|v,|. Thus, to prove (60) it
suffices to show that

(63) kerOsup (p/| vws[)sup (a1 *9E () = O(k?),
meSa Rz

as k — oo,
For all m in S,, p =1 which with (7) implies that

(64) sup p/|vivy|=p 'k =k

meESa

To estimate the second supremum in (63) and thereby prove (63) in the
case L = P use (34) to express exp(— k¢) in terms of o and apply
inequality (45) first with

w=ko!, p=(10P+40Q -2)/4
and then with
w=ko!', p=L-P

to obtain that the second supremum in (63) is less than or equal to
ck="?. This fact with (64) proves (63) in the case L = P. By inter-
changing the roles of L and P in estimating the second supremum in (63)
one obtains a proof of (63) in the case P = L.

The author wishes to thank his doctoral advisor, Professor Bogdan
Baishanski, for his guidance and the referee for his helpful suggestions.
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