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CHOQUET SIMPLEXES AND σ -CONVEX FACES

K. R. GOODEARL

The purpose of this paper is to present a simple charac-
terization of the split-faces in a Choquet simplex K, i.e., those
faces F such that K is a direct convex sum of F and its
complementary face. It is shown that a face F is a split-face if
and only if it is σ-convex, i.e., closed under infinite convex
combinations. This is proved by means of a measure-theoretic
characterization of the σ- convex faces of K. As a consequence, it
is shown that the lattice of σ- convex faces of a Choquet simplex
forms a complete Boolean algebra.

It is well-known that infinite convex combinations are always
available in a compact convex subset K of a locally convex, Hausdorfϊ,
linear topological space: given points JCI, JC2, * in K and nonnegative real
numbers au α2, * * * such that Σαfc = 1, the series Xakxk must converge to
some point in K. We refer to Xakxk as a σ-conυex combination of the
xk. We define σ-conυex subsets of K and σ-conυex hulls in K in the
obvious manner. A face of K which happens to be σ-convex is called a
σ-conυex face, and we note that given any subset X QK, there is a
smallest σ-convex face containing X, called the σ-conυex face generated
by X. We also note that if F is any face of K (σ-convex or not), and if
we have a σ-convex combination Xakxk GF with all ak >0, then all
xk E F. (This follows from the defining property of a face, since

a}Xj + (1 - αy) Σ akxk/(l - a,) = Σa kx k E F
LM] J

for all /.)

DEFINITION. Let F be a face of a compact convex set K. Then F' is
defined to be the union of those faces of K which are disjoint from
F We say that F is a split-face of K [2] provided F' is a face and for
each x E K — (F U F') there is a unique convex combination x =
αy + (1 — a)z with y E F, z E F'. In this event, F' is a complement for F
in the lattice of faces of K.

THEOREM 1. Let Fbe a face of a Choquet simplex K. Then F' is a
face of K. For any x E K - (F U F'), ί/ιβre /s αί most one conυex
combination x = ay + (1 — a)z with y E F α/trf z E F'.

Proo/. [1, Theorem 1 and Proposition 2].
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COROLLARY 2. Let F be a face of a Choquet simplex K. Then F is
a split-face of K if and only if the convex hull of F U F' is K.

DEFINITION. For any compact Hausdorff space K, we use M+

λ(K) to
denote the set of all probability measures on K, equipped with the vague
(weak*) topology. There is also a natural norm topology on M\{K),
obtained from the identification of the space M{K) [of all signed regular
Borel measures on K] with the dual Banach space C(K)*. If K is a
compact convex set, then for any μ E M\(K) we use xμ to denote the
resultant (barycenter) of μ in K. If K is a Choquet simplex, then for
any x E K we use μx to denote the unique maximal measure in M*{K)
whose resultant is x.

The existence of σ-convex combinations is more straightforward in
Mΐ(K) than in general compact convex sets. Given measures μl9 μ2,
in M\(K) and nonnegative real numbers au α2, * such that Σαfc = 1, we
may define a Borel measure μ on K by setting μ(A) = Hakμk(A) for all
Borel sets A C K. It is clear that μ E M^(K). Observing that μ (/) =
Σαfcμk(f) for all / E C(K), we see that Σakμk converges to μ in the
vague topology. Therefore μ coincides with the σ-convex combination
Xakμk in M+λ{K).

PROPOSITION 3. Let K be a compact Hausdorff space, μ E M\(K),
X C M\{K). Then μ lies in the face generated by X if and only if there
exists v in the convex hull of X such that μ^kav for some a > 0.

Proof Analogous to [4, Proposition 1.2].

THEOREM 4. Let K be a compact Hausdorff space, μ E M\(K),
X QM\{K). Then the following conditions are equivalent:

(a) μ lies in the σ-convex face generated by X.
(b) μ lies in the σ-convex hull of the face generated by X.
(c) There is some v in the σ-convex hull of X for which μ <v.

Proof, (a) => (c): Let F denote the set of those measures μ ' E
M\(K) which are absolutely continuous with respect to some v' (depend-
ing on μ') in the σ-convex hull of X. We claim that F is a σ-convex face
of M\(K).

First consider a σ-convex combination μr = Σαkμfc in M\(K) such
that each μk E F. For each k, there is some vk in the σ-convex hull of X
such that μk < vk. Then vf = Σ akvk lies in the σ-convex hull of X, and we
infer that μf < v\ whence μ'E.F. Thus F is σ-convex.

Next consider a proper convex combination μ' = aμx + (1 - a)μ2 in
such that μf £Ξ F. There is some v' in the σ-convex hull of X such
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that μ' < v1. Since μx ^ a~ιμ' and μ2 = (1 — a)~λμ\ we find that μu μ2<
v\ and consequently μuμ2GF. Thus F is a face of MJXX).

Clearly X CF, hence F must contain the σ -convex face generated
by X. Therefore μ E F.

(c) Φ (b): There is a σ-convex combination ^ = Σα f cn with each
ϊ/k E X. Renumbering if necessary, we may assume that ax > 0. For each
fc, set ak = **!+ + αfc and i>£ = (α^i 4- + akvk)/a'k, and note that v'k
is a measure in M1(K) which lies in the convex hull of X.

For each positive integer n, take a Hahn Decomposition of the
signed measure na'nv'n- μ. This gives us a Borel set KnCK such that
μ (A) ^ na'nv'H(A) for all Borel sets A C #„ and nα X ( A ) ^ μ (A) for all
Borel sets A C ί ί - Kn.

Since 2a'2v'2{Kx - K2)^μ(Kλ - K2)^a[v\{Kλ - K2)^a'2v2(Kλ - K2%
we see that μ{Kλ- K2)= v2(Kx- K2) = 0. Thus we may replace K2 by
Kx U K2, so that now Kx C X2. Continuing in, this manner, we see that we
may assume that Kn C Kn+ι for all n.

Set / = K - (U Kn), and note that α >;(/) ^ μ (J)/n for all n. For
all k^n, a'kvk(J)^ μ(J)/k ^ μ(J)/n, hence i/(/) = limk-»a'kv'k(J)^
μ(J)/n. Since this holds for all n, we obtain v{J) = 0. Since ι^^ v\a'n and
μ<v, it follows that i^(/) = 0 for ail n and μ(/) = 0. Thus we may
replace each Kn by iCn U /, without affecting the properties obtained
above. As a result, we now have U Kn = K.

Now set L{ = Kλ and Ln = Kn- Kn-X for all n > 1, so that Lu L2,
are pairwise disjoint Borel sets whose union is K. Set I = {n\μ(Ln)>
0}. For nGί , define μn G M^K) by setting μn(A) = μ(AΠ Ln)/μ(Ln)
for all Borel sets A CK. For such A, we have A Π Ln C Ln C Kn and so

μn(A) = μ(A Π Ln)lμ(Ln)^ na'nP
r

n(A Π Ln)/μ(LH)^ na'nv'n{A)lμ{Ln).

Consequently, μn ^ [nα7μ(LM)]^^, whence Proposition 3 shows that μn

lies in the face generated by X.
We have Σ n e / μ ( L n ) = l and μ(A) = XnGIμ(A Π Ln) =

XnGIμ(Ln)μn(A) for all Borel sets A CK. Therefore μ = ̂ n^μ{Ln)μn is
a σ--convex combination of the μn, hence μ lies in the cr-convex hull of
the face generated by X.

(b) => (a) is clear.

In particular, Theorem 4 shows that a measure μ E M\{K) lies in
the (7-convex face generated by a measure v E Mt(K) if and only if
μ <v. The corresponding statement for norm-closed faces is given in [4,
Proposition 1.3]: μ lies in the norm-closure of the face generated by v if
and only \ί μ <v. Thus the σ -convex face generated by v coincides with
the norm-closure of the face generated by v. In general, the σ-convex
faces in M\(K) coincide with the norm-closed faces, as the next theorem
shows.
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THEOREM 5. Let K be a compact Hausdorff space. For any face F of
M\(K), the following conditions are equivalent:

(a) F is a split-face.
(b) F is norm-closed.
(c) F is σ-convex.

Proof, (a) <=> (b) follows from [3, Corollary to Theorem 1], and also
appears in [4, Theorem 2.4].

(b) => (c) follows from the observation that infinite convex combina-
tions in M\(K) must also converge in the norm topology.

(c) φ (b): Suppose that μu μ2, * * * Ξ F and μ E M\{K) such that
|| μn - μ II-* 0. It follows easily from Urysohn's Lemma and the regularity
of the measures that μn(A)—»μ(A) for all Borel sets ACK. Setting
v - X"=1 μn/2", we thus see that v ELF and μ <v. According to Theorem
4, μEF

DEFINITION. AS in [2], any compact convex set K (in a locally
convex, Hausdorff, linear topological space) is affinely homeomorphic to
a weak*-compact convex subset of the dual space A(K)* (where A(K)
denotes the Banach space of all real-valued affine continuous functions
on K). Because of this, K inherits a norm topology from A(K)*.

PROPOSITION 6. Let K be a Choquet simplex, and let K* denote the
set of maximal measures in M\(K). Then K* is a σ-convex face of
M\(K), and the rule φ(μ) = xμ defines a continuous affine isomorphism φ
of K* onto K. The maps φ and φ~ι both preserve σ-convex combinations
and norms.

Proof. It is well-known that K* is a face of M\{K), and that φ is a
continuous affine isomorphism. The σ -convexity of K* follows easily
from Mokobodzki's characterization of maximal measures [2, Proposi-
tion 1.4.5].

Since φ is continuous and affine, it must preserve σ-convex combi-
nations, hence so does φ~\

According to [4, Lemma 2.6], φ1 preserves norms, hence φ does
also.

With the help of Proposition 6, Theorems 4 and 5 imply the
corresponding results for arbitrary Choquet simplexes.

THEOREM 7. Let K be a Choquet simplex, x E K , Y CK. Then the
following conditions are equivalent:

(a) x lies in the σ-convex face generated by Y.
(b) x lies in the σ-convex hull of the face generated by Y.
(c) There is some y in the σ-convex hull of Y such that μx < μy.
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COROLLARY 8. // F is a face of a Choquet simplex K, then the
σ-conυex hull of F is also a face of K.

THEOREM 9. // F is a face of a Choquet simplex K, then the
following conditions are equivalent:

(a) F is a split-face.
(b) F is norm-closed.
(c) F is σ-conυex.

The equivalence (a) O (b) of Theorem 9 has appeared in [3,
Corollary to Theorem 1] and [4, Theorem 2.8]. We note that the
characterization (a) <έ> (c) has an apparent advantage, in that it depends
only on the topology intrinsic to K, rather than on the (external) norm
topology. While we have utilized the norm results as the fastest means of
proving Theorems 5 and 9, it is also possible to prove the equivalence
(a) <=> (c) in these theorems without any use of norms.

THEOREM 10. The lattice 2F of σ-conυex faces of a Choquet simplex
K forms a complete Boolean algebra. For {Ft}C&, Λ F,•= Π Fh For
F,GG^FvGis the conυex hull of F U G.

Proof. Obviously & is a complete lattice in which arbitrary infima
are given by intersections. For F, G E SF, we see from Theorem 9 and [2,
Corollary II.6.8] that the convex hull of F U G is a σ -convex face of K.
(This is also easy to prove directly, using [1, Proposition 3].) Thus the
convex hull of F U G equals F v G.

Given F, G, H E 5ξ we automatically have (F Λ G) V (F Λ H) C
F Λ(G v H). Now consider any JC E F Λ (G V H). Inasmuch as G v H is
the convex hull of G U H, there must be a convex combination x =
ay + (1 - a)z with y E G, z E H. If a = 0 or 1, then either X G F Λ H O Γ

x E F Λ G. If 0 < a < 1, then since F is a face we obtain y E F Λ G,
z E F Λ H. Thus x E (F Λ G) V (F Λ H) in any case, whence
F Λ (G v H)=(F Λ G) v (F Λ H). Therefore $> is a distributive lattice.

Given F E f , we see from Theorem 9 that F' E ^ as well (which is
also easy to prove directly). Obviously F' is a complement for F in 3F,
whence 3F is a complemented lattice.

Therefore ^ is a complete, complemented, distributive lattice, i.e., a
complete Boolean algebra.

DEFINITION. Let K be a Choquet simplex, let {*,} C K, and for each
/ let F, be the face generated by xt in K If F, and Fy are disjoint for all
ΪV/, we shall say that the points xt are facially independent (in K).

COROLLARY 11. Any σ-conυex face F in a Choquet simplex K can
be generated by facially independent points of K.
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Proof. Let SF denote the lattice of σ-convex faces of K, and let &0

be the set of those faces in SF which can be obtained as the σ-convex face
generated by a single point of K. Note that every nonempty face in 9
contains a (nonempty) face from &>0. Thus, since 9 is a complete
Boolean algebra, there exists a family fF]} of pairwise disjoint faces in ίF0

such that F = v Ft in &. For each ί, F, is the σ-convex face generated by
some JC, E K Then the x, are facially independent points of K, and F is
the σ-convex face generated by {*,}.
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