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THE SPECTRA OF ENDOMORPHISMS OF ALGEBRAS
OF ANALYTIC FUNCTIONS

HERBERT KAMOWITZ

Suppose 0 < R < 1, G is the open annulus {z \ R < \ z \ < 1}
and A (G) denotes the uniform algebra of functions analytic on
G and continuous on G. Each nonzero endomorphism T of
Λ(G) has the form Tf = f°φ for some φEΛ(G) with
φ(G)CG. In the main result of this note, the spectra of
endomorphisms of A{G) are determined for the case where the
inducing maps φ have a fixed point in G. In addition, further
results are discussed for other algebras of analytic functions.

Introduct ion. In [2] we determined the spectra of a class of
endomorphisms of the disc algebra A(D), the uniform algebra of
functions analytic on the open unit disc D and continuous on D. In this
note, other algebras of analytic functions are considered and the tech-
niques and results of [2] are used to prove a generalization of the
following theorem.

THEOREM A. If T is a nonzero endomorphism of A (D), then T has
the form Tf = / ° φ, for some φ E A(D) with ψ\D —» D. If moreover, the
inducing function φ has a fixed point z0 in D, then exactly one of the
following three possibilities holds.

(1) φ is a schlicht map of D onto itself and T is an automorphism of
A (D). In this case σ(T), the spectrum of T, is either the entire unit circle
or else σ(T) is a finite union of finite subgroups of the circle, or

(2) σ(Γ) = { λ | | λ | ^ l } , or
(3) TN is a compact operator for some positive integer N in which

case σ(T) = {(φ'(zo))n \n is a positive integer} U {0,1}.

The plan is to first prove that an analytic function φ which maps a
bounded (open) region into itself has at most one fixed point unless φ is
schlicht and onto. Knowing this, we consider an annular region G and
the uniform algebra A(G) of analytic functions on G which are
continuous on G and prove a theorem for A(G) similar to Theorem
A. Finally, we will indicate other regions for which similar results are
valid and also state some later results concerning endomorphisms of the
disc algebra.

1. Maps with two fixed points. In this section we prove
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that if φ is an analytic function mapping a bounded region Ω into itself
and if φ has two fixed points in Ω, then φ is a schlicht map of Ω onto Ω.

Throughout this section, Ω will denote a fixed bounded region (open
connected subset) in the plane, and if φ:Ω-^Ω, then φn will denote the
nth iterate of φ, i.e. ψx = φ and φn = φ °φn-x.

LEMMA 1.1. Suppose φ is an analytic function, φ:Ω—>Ω and
zQGil is a fixed point of φ.

(i) // φ'(zo) = 1, then φ(z) = z for all z G Ω.
(ii) If φ'(zo)

N = 1 for some positive integer N, then φN(z) = z for all
zEίl.

Proof (i) Suppose in a neighborhood of z0 the function φ has a
Taylor series representation φ(z) = z + cm(z - zo)

m + . Since
φ(z)— Zo — z — z() + cm(z — zo)

m + , the Taylor series expansion of φ2

at Zo is φ2(z) = z + 2cm(z - z())
m + and, in general, φn(z) =

z + rccm(z - zo)
m + . The rath derivative of φn at z0 is φ(

π

fn)(z0) =
nm! cm.

On the other hand, since Ω is bounded, {φn} is a normal family on Ω
and so there exist an analytic function Φ on Ω and a subsequence {φnk}
with φnk-*Φ uniformly on compact subsets of Ω. Since {φ^Xzo)} is
unbounded unless cm = 0 and limk^xφ

iZ)(zQ) = Φ(m)(z()), we conclude that
cm = 0 and hence φ(z) = z for all z in a neighborhood of z0. Since Ω is
connected, φ(z)= z for all z E Ω.

(ii) If φ'{zo)
N = 1 for some positive integer N, then φ'^Zo) = φ'(zo)

N =
1, so that ^A/(z) = z for all z G Ω.

LEMMA 1.2. Suppose φ is an analytic function, <p:Ω-*Ω and
z 0 E Ω /5 α fixed point of φ. If | φ'(z o) | — 1, ί̂ ^M φ is a schlicht map of Ω
onto itself

Proof By Lemma 1.1 we need only prove this for the case where
φ'(zo)= eιθ and eiθ is not a root of unity. For this case, let {nk} be an
increasing sequence of positive integers with eiΛkθ —> 1. Again, {φnk} is a
normal family on Ω and so there exist a subsequence {φnj and an analytic
function Φ on Ω with φnkj->Φ uniformly on compact subsets of Ω.

Clearly Φ(z0) =' lim^* ψ nki(z0) = z0 and Φr(z0) = lim^ x <p f

nkj(z0) =
limy-.oc einkiθ = 1. Now consider the normal family {φnkj° φnk}. A routine
calculation shows that (φnkj°φnk)

iι'Xzo)->(ΦoΦ)(ι')(z0) for each nonnega-
tive integer v. On the other hand, there is a subsequence which we also
call {φnki

oφnk} and an analytic function ψ : Ω - * Ω with φnkj°φnkj->ψ
uniformly on compact sets. Also ψiv)(z0) = \imj^x(φnkj

oφnk)
{v)(z0) for

nonnegative integers v. Thus Φ ° Φ = ψ near z0 and so Φ°Φ may be
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defined on all of Ω with Φ ° Φ: Ω —» Ω. In a similar way, for each positive
integer N, ΦN may be defined on Ω with range Φ N CΩ. Since Φ'(z0) = 1,
by Lemma 1.1, Φ(z) = z for all z G Ω. We have thus shown that
limy_xφn f c /(z)= z uniformly on compact subsets of Ω.

The function ψ is schlicht since if w, v E Ω and φ(u) = φ(v), then
u = Φ(M) = lim^x φnk](u) = linij^ φ nkj(v) = Φ(v) = v.

To show that φ is onto, suppose the contrary that for some c E Ω,
c g: range φ. Suppose r > 0, C = { z | | z - c | ^ r } C Ω and γ denotes the
circle {z \\z - c\ = r}. Since c £ range φ, for each positive integer n and

each zECί, ψn(z)/c. Consider [φ'n(t)/(φn(t)- c)]dt. Since
J y

ψn{t)^c for all t G C, ί [φ'n(t)/(φn(t)~ c)]dt = 0 for each n. On the

other hand, we have shown that there is a subsequence {φnk} with ψnk —> z

u n i f o r m l y o n C. H e n c e , 0 = ( [ φ ' n k { t ) l ( φ n k ( t ) - c ) ] d t ^ \ ( t - c ) l d t
Jγ Jγ

while I (t - c)~λdt = 2τri, a contradiction. Thus, for some ί Έ Ω and
Jγ

some positive integer n, φn(ί') = c and so c = φ(φn-ι(t')). Thus
c E range <p. Since c is an arbitrary element in Ω, we conclude that ψ is
onto.

Combining with Lemma 1.1, we have shown that if φ is an analytic
function from Ω to Ω with a fixed point z0 and if | φr(z())\ — 1, then φ is a
schlicht map of Ω onto itself.

LEMMA 1.3. Let φ : Ω - > Ω be analytic with fixed point z0 and suppose
Jjρ_^(zo)|<l. Then there exists a neighborhood U of z0 such that
\imn^x\φn(z)~ zo\

ι/n ^ |φ ' (z o ) | for z E U and consequently \\mn_+xφ(z) =
Zo for z E U.

Proof Choose e > 0 satisfying (| φ '(z0) | -f e) < 1. Then there
exists δ > 0 such that 0 < | z - z01 < δ implies

ψ

Hence, | φ ( z ) - z o | < ( |φ'(z o ) | + e ) | z - z o | for |z - z o | < δ . Then

for | z - z o | < δ and, by induction, | φn (z) - zQ | < (| φ '(z0) \ + 6 )n | z - z0 [
for all positive integers n and | z - z01 < δ. Thus limπ_^c \φn(z)- zo\

Vn =
|<p'(zo)| + € for all e > 0 , | z - z o | < δ and so l i m ^ j φn(z)- zo\

ι/n ^
| φ ' ( z o ) | for | z - z o | < δ.
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The statement concerning limn^xφn(z) = z0 follows immediately.

THEOREM 1.4. Let Ω be a bounded region in the complex plane and
φ an analytic function from Ω into itself. If φ has two fixed points in Ω,
then φ is a schlicht map of Ω onto itself.

Proof. Suppose z() is a fixed point of φ. As we have seen, if
\φ'(z{))\ = 1, then φ is schlicht and onto.

The remainder of the proof is in two parts. We first show that
| φ ' ( z ( ) ) | ^ l , and then show that if |<p'(zo)|< 1, then z{) is the only fixed
point of φ.

Indeed, suppose \φ'(z{))\ > 1. If {φnk} is a subsequence converging
uniformly on compact sets to the analytic function Φ, then
φ'nk(z())->Φ'(z{)). But {ψnXza)} is unbounded since φ'nk(z{)) = (φ'(z{))Yk.

For the other case, suppose | φ'(zo)\ < 1. If Φ is analytic on Ω and
φnk —>Φ uniformly on compact sets, then for each z E Ω, limfc^*<pΠk(z) =
Φ(z). But Lemma 1.3 implies that for z near z(), \imk^φn(z) =
z(). Hence Φ(z) = z(, in a neighborhood of z(, and so Φ(z) = z0 on
Ω. This implies that z() is the only fixed point of φ, since φ(b) = b
implies b = Φ(b) — z().

REMARKS. (1) More is known if Ω is conformally equivalent to the
disc. Then the only analytic map of Ω into itself with two fixed points is
the identity. This can easily be proved by reducing to the case that Ω is
the unit disc and using Schwarz Lemma.

(2) In the case of an annulus G = {z | r, < | z | < r2}, it can be shown
using, for example, the Hadamard three circles theorem, that the only
analytic maps of G onto itself are linear fractional transformations which
are either rotations about the origin (no fixed points unless the identity)
or those of the_form φ(z) = eierλr2lz. In the latter case the fixed points
are ±e^ e Vr,r 2 and φ' at each fixed point is— 1.

(3) The conclusion of Theorem 1.4 holds for any region which is
conformally equivalent to a bounded region.

2. T h e a n n u l u s a lgebra. We now specialize and let G be
the open annulus G = {z | R < \ z \ < 1} where 0 < R < 1, and let A (G)
denote the uniform algebra of functions analytic on G and continuous on
G. For this algebra, too, every nonzero endomorphism T is a composi-
tion operator of the form Tf = f°φ where φ(ΞA(G) and
φ: G —> G. In this section, the spectrum of T is determined in the case
φ has a fixed point in the open set G.

LEMMA 2.1. // T is a nonzero endomorphism of A(G), then Tf —
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/ o φ where φ =_Tz, z the identity "function on G. The function φ is in
A(G) and φ:G->G.

Proof. Since T is a nonzero endomorphism of a uniform algebra, it
follows that || Γ | | = 1 . Hence || Tz | | , ^ || Γ|| | |z ||, = 1. Thus, if φ =
TztΞA(G\ then sup,e G | φ(z)\ = ||φ ||, = || Tz \\x^ 1. Also, R/zGA(G)
and ||Λ/z||oo=l. Therefore, \\T(R/z)\\x^l. But T(R/z) = R/φ(z).
Thus, suρzeG \R/φ(z)\^ 1 and hence infz_EG |φ(z) | ^ R, i.e. for z E G,
we have i? ^ | φ (z) | ^ 1 and so φ: G -> G.

Further, each / E Λ (G) is a uniform limit of rational functions of the
form ΣjL_mαkz\ But for such a function g: g(z) = Σn

k=-makz
k, we have

(Tg)(z)=τ(± akz
k)= ± ak(Tz)k= ± ak(φ(z)f = g(φ(z)).

\k=-m / k=-m k=-m

Hence Tf = f°φ for all f<ΞA(G).

Conversely, for each φ E A(G) with φ\G—>G, the map f—*f°φ,
for / E Λ (G), is a nonzero endomorphism of A (G). Henceforth in this
paper we will show the dependence of this endomorphism on the
inducing function φ by denoting the endomorphism by Cψ. Thus
(Cψf)(z) = f(φ(z)). It should be remarked that this is also standard
notation for a composition operator. [4]

LEMMA 2.2. Let φ E A(G), φ: G —> G and /ef zQϊΞ G be a fixed
point of φ. Then the following hold.

(i) Suppose λ ^ O , 1, (<p;(z0))n, n a positive integer and that f g E

A ( G ) vWf/i λf — foφ = g. Ifg has a zero of order v at z0, then f has a zero

of order at least v at z0.

(ii) //λ^ 0,1, (<p'(zo))
π, n a positive integer, f£A(G) and λ/(z) =

f(φ(z)) in some neighborhood of z0, ί^en / = 0.
(iii) The only possible eigenvalues of Cψ are 0,1 or (<p'(zo))n, n a

positive integer.
(iv) l E σ ( Q ) , and /or each positive integer n, (φ'(zo))nE

σ(Q). //<p is not schlicht and onto, then Cψ is not an automorphism and

Proof (i) This is essentially Lemma 3 in [2].
(ii) Evaluating the successive derivatives of λ/(z) = f(φ(z)) at z0

gives that fiv)(z0) = 0 for all nonnegative integers v which implies that
/ = 0.

(iii) This follows from (ii).
(iv) This is essentially Lemma 2 in [2]. The proof consists in
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showing that for each nonnegative integer v there is no / E A(G) with

(φf(z0)yf-foφ=(z-Zoy.

LEMMA 2.3. Suppose f and g are defined on G, φ:G-^G and
\f - foφ = g. Then the following hold for every positive integer n.

(i) f(z) = f(φn(z))λ-» +Σn

kZ
ιog(φk(z))λ-k-1 for all z E G.

(ii) // {jCfcίfc oe has the property that φ(xp) = xP+ι for all integers p,
and φp(x0) = xp, p > 0, then

(*) λ "/(*_„) = f(xn)λ~n + Σ
n-\

Σ

. The proof by induction of (i) is in Lemma 5 in [2].

As for (ii), suppose {xnYn=-~ has the property that φ(xp) = xp+ι for all
integers p and φp(x0) = xp, p > 0 . Then, from (i),

2 n - l

fc=O

Thus if we let z = JC_Π, we obtain

• 2π-fc- l

Hence

which is equivalent to (*).

LEMMA 2.4. Suppose T is a bounded linear operator on a Banach
space with the property that for some number a , | a | ^ 1, we ftαi e

(i) or(T) D{an\n is a positive integer} U {0,1}, and
(ii) for some positive integer N, σ(TN) = {aNk |k is a positive

integer} U {0,1} and σ(TN+ι) = {aiN+1)k \k is a positive integer} U {0,1}.

Then σ(T) = {an | n is a positive integer} U {0,1}.

Proof Suppose O ^ λ E σ ( T ) . Then A N G σ ( Γ ) and AN + 1G
σ(TN + 1), and so (ii) implies there exist positive integers / and k for which
λN = aN> and λN + 1 = aiN+ι)k. Therefore, |λ | = \a \j and | A | = \a \k show-
ing that / = k. Hence λ = ak for some positive integer k.
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Thus σ(T) C{ak | k is a positive integer} U {0,1} which, together with
(i), implies that σ(T) = {ak \ k is a positive integer} U {0,1}.

The main result will be proved in three parts, Theorems 2.5, 2.6 and
2.7.

It was observed at the end of §1 that the only schlicht analytic maps
of the open annulus G onto itself have the forms φ(z)= eιaz, a real, or
φ(z) = eiaR/z, a real. Further, if T is any automorphism of a com-
mutative semi-simple Banach algebra, then it has been shown ([1], [3])
that either TN = I for some positive integer N in which case σ(T) is a
finite union of finite subgroups of the circle, or else σ(T) = {A | | λ | = 1}.
Thus we have the following.

THEOREM 2.5. // 0 < JR < 1, G = {z | R < \ z \ < 1} and T is an

automorphism of A (G), then T = Cφ where φ E A (G) is a schlicht map of
G onto G. Such φ take the form φ(z) = eιaz, a real, or φ(z) = e"*R/z, a
real. In the first case c(Cψ) = closure {eina \n is a nonnegative integer},
while if φ(z)=eιaR/z, then σ(Cφ) = { ~ 1, + 1}.

For more general theorems concerning spectra of automorphisms of
Banach algebras see [1] or [3].

Now suppose φ G Λ ( G ) , φ:G->G and φ is not schlicht and
onto. Let 5 = Π^= 1φn(G). A straightforward topological argument
shows that 5 is a nonempty compact connected subset of G and that φ
maps S onto itself. Suppose zQ E G is a fixed point of φ. The results of
§1 show that this point is unique. Clearly z0 E S and if S-έ {z0}, then the
connected set S is infinite. In this case there is a sequence {xn}"=_xCS
with φ(xp) = xp+ι for all integers p. To construct such a sequence, let
ZO^XQESΠG and define xn = φn(x0) E S Π G for n ^ 0 and for n > 0
let x_n E S satisfy ψ(x-n) = X-n+x. Although x_n need not be unique, we
can find such *_„ since φ maps 5 onto itself.

THEOREM 2.6. Let 0 < R < 1 and G = {z | R < \ z | < 1}. Suppose
φ E Λ(G), φ: G —> G, φ(z0) = zQE. G and S = Π"=i φΛ(G) is infinite. If
Cψ is not an automorphism of A (G), then σ(Cφ) = {A 11 λ | ^ 1}.

Proof Since Cφ is not an automorphism, the inducing function φ is
not schlicht and onto and so it follows from Lemma 1.2 that | φ'(zo)\ < 1.

We will show that if v is a positive integer, then σ(Cφ)D
{λ\\φ'(zo)\"<\λ\<l}. To this end fix v and let g' g(z) =
(z - zoy. Further, suppose x0^ z0, x0GSΠG and that {xn}n=-~ is a
sequence in 5 satisfying φ(xn) = xn+λ for all integers n, and xn = φn(jc0) for
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n ^ 0. Assume, too, that JC0 has been chosen close enough to z0 that

limπ^«φπ(x0)= z0.
Since g has a zero of order v at z(), if / G A ( G ) and λf-f°φ = g,

then by Lemma 2.2(i), /(z) = cv+p{z - z())"+p + <?(| z - z 0 Γ P + 1 ) near z0 for
some integer p ^ O and complex number cv+p. Hence f(φn(z)) =
cv+p(φn(z)- zoy

+p + O(L<pn(z)- zo\
v+p+ί) for z near z0. Moreover, from

Lemma 1.3 we have lim,,^ | φn (z) - z0 |
1/n ^ | φ '(z0) | for z near z0. Thus,

for such z, if |φ '(z o ) | " < | A |, then

Now assume that σ(Cψ) does not contain {A | \φr(z0)\v < | A | < 1} and
that A o£ <τ(Cφ) with |<p'(zo)|ι; < |λ o | < 1. Let U be a neighborhood of
λ0 with I7C{A | | φ ' ( z o ) | " < | λ | < l } , and U n{(φ'(zo))n\n is a positive
integer} = 0 and such that for each A G [/, (A - Q ) " 1 exists. Then for
each A G 1/ there exists a function /λ G A ( G ) with A/λ — fλ °ψ = g.

By Lemma 2.3(ii), for each positive integer rc, we have

Also, since the map A - ^ ( A - Q ) " 1 is analytic on (7, there exists a
positive number M such that ||(λ - Cφy

ι\\^M for all A G [7. Hence
||/λ II, = II (A - Cφ )

ιg \\x % M || g ||, for all A G (7. Therefore, for A G 17,
limn^ocA"/λ(jc_n) = 0. Since we have already shown that
limbec Λ (xn) A ~n = l i m n ^ /λ (φn (xo))λ ~n = 0, we have from (*) that
Σx

k=^g(xk)λ-k = 0 for all A in the open set £/C{A | \φ\zQ)\v < \ A | < 1}.
However, the function w -^ΣΓ=-=cg(jcfc)

vv k i s analytic in the annulus
{w\\φf(z0)\v <\w\<l} since l im n _|g(x_ π ) | 1 / n - 1 and

lim f c_ I g (φk (jc0)) 11/fc = l im k _ | (φk (x0) - zo)
v \υk^\φ '(z0) \ \

But, Σk=_ocg(jck)λ"k = 0 for A G U. Hence Σl^gix^w^ =0 for all w
with Iφ^Zo)!" < I w I < 1. This implies that g(xk) = 0 for all integers /c,
which is a contradiction to the assumption that g(xo) = (x0- zoy and
JCO / z0. Hence σ-(Q) D {A 11 <p'(zo)|p < | A | < 1}. Since this holds for all
positive integers v, we conclude that σ(Cφ) = {A 11A | ^ 1}, as desired.

For an arbitrary region Ω we let A(Ω) = {f\f is analytic on Ω and
continuous on Ω}. If Ω is a simply connected Jordan region (a region
whose boundary is a Jordan curve), then A (Ω) is isomorphic to the disc
algebra A(D). This follows from the fact that if β is a conformal map
of Ω onto D, then β extends to a homeomorphism of Ω onto
D. Further, if T is a nonzero endomorphism of A(Ω), then Tf = f°φ
for some φEA(Ω), < p : Ω ^ Ω . Moreover, if ψ = β°φ°β~\ then
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φ E A (D) with ψ(D)CD and it is easy to verify that if Cφ and CΦ are the
linear operators induced by ψ and ψ on Λ(Ω) and A(D) respectively,
then σ(Cφ)=σ(Cφ).

THEOREM 2.7. Let 0 < R < 1 and G = {z \ R < \ z \ < 1}. //

φ:G->G, φ<ΞA(G) and S = Πx

n^ φn(G) = {z0} CG, then σ(Cφ) =
{(φ'(zo))n \n is a positive integer} U {0,1}.

Proof. Let Gx and G2 be two overlapping simply connected Jordan
regions with Gλ U G2 = G. Specifically, let ax = \π + argz 0 and a2 =
-\ΊT + argZo and let δ = τr/100. For fc = l,2, let Gfc be the region
bounded by Jordan curves each consisting of the following four arcs.

yκ, = radial segment from Re'α" to e'a\

Ύk, 2 = clockwise circular arc from e"*k to e~'(27Γ~αk~δ),

yκ3 = radial segment from e~
(27Γ"αk~δ)' to Re~

(27Γ ^~δ)',

γfc,4 = counterclockwise circular arc from Re~ι(27Γ~α"~δ) to Re'αk.

Choo_se 6 > 0 so that U = {z \\ z - zo\ < e} C Gλ Π G2. Since S =
Π"= 1 φn(G) = {z0}, there exists_a positive integer N for which φN+i(G)C
φN(G)CU. For this N, φNίGOCl/CG! and φN(G2)C U CG2. The
operator CΨN= CN

φ is then an_endomorphism of both A(Gλ) and A(G2)
and, further, since Π ^ ! φN](Gk) = {z0}, fe = 1,2, it follows that cr(C^) =
{(<PN(zo))k I A: is a positive integer} U {0,1} as an operator both on- A ( d )
and A(G2).

Thus, given g E A (G) and Λ £ {(φ'(zo))Nk \ k is a positive integer} U
{0,1} there exist /, E Λ(G0 and/2G Λ(G2) with λ/1_(z)-/1(φN(2)) = g(z)
for z E Gi and λ/2(z)- f2(φN(z)) = g(z) for z E G2.

Now, on U C Gλ Π G2,

Then Lemma 2.2(ii) implies that fι(z) = f2(z) on the component of
Gx Π G2 which contains z0.

On the other hand, for all z E Gi Π G2 we have by Lemma 2.3(i) that

and
N-l

z))λ + 2>

Since φN(z)E (7, it follows that f^N(z)) = fi{ψN{z)) and so ^(z) = /2(z)
on all of Gλ Π G2. Since fλ is continuous on Gu f2 is continuous on G2
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and/, = / 2on GλΓ\G2, we have that / = /, U/ 2E A{G) and λf-foφ =
g. Therefore, if Λ f£ {(φ U,zo))k \ k is a positive integer} U {0,1}, then
( λ - Q ) " 1 exists on A(G\ i.e. σ(Cφj C{(φ'(zo))Nk \k is a positive
integer} U{0,1} as an operator on A(G). However, Lemma 2.2(iv)
implies that the opposite inclusion holds, and so σ(CφJ= {(φ'(zo))Nk \ k is
a positive integer} U {0,1}.

On the other hand, a similar result holds for σ(CψN+) since φN+ι(G)
is also a subset of U. That is, σ(C ΨN+) = {{φ\zo)){N+x)k+\k is a positive
integer} U {0,1}. Therefore, by Lemma 2.4, we conclude that σ(Q) =
{(φ (zo))n I n is a positive integer} U {0,1} as required.

To summarize, Theorems 2.5, 2.6 and 2.7, combined, show that
Theorem A is valid for the annulus algebra.

3. Final remarks. The theorems in §2 can be extended
further to composition operators on uniform algebras of analytic func-
tions on regions other than the disc or the annulus. The analogues of
Theorems 2.5 and 2.6 can be proved in exactly the same manner as the
originals. In Theorem 2.7, a crucial part of the proof was to express G
as a union of two overlapping simply connected Jordan regions. Thus if
Ω is conformally equivalent to any bounded region which can be written
as a union of two overlapping simply connected Jordan regions and if
φ E A (Ω), φ: Ω —> Ω and if φ (z0) = z0 E Ω, then Theorems 2.5, 2.6 and
2.7 hold with G replaced by Ω.

A final remark relates to the disc algebra and the case where φ has
all its fixed points on the circle. In this case the spectrum of Cφ need not
have the same form as the operators in Theorem A. Indeed, if φ is the
linear fractional transformation φ(z) = (z + l)/(3- z), then D. J. New-
man (personal communication) has shown that σ(Cφ) = [0,1], the unit
interval. A slight modification of this example can be constructed for
which σ(Cφ) is the spiral {0} U {e'at |0 ^ ί}, a fixed with Re a > 0. This
arises from the linear fractional transformation φ(z) —
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