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A COMMUTATIVITY THEOREM FOR
NON-ASSOCIATIVE ALGEBRAS OVER A
PRINCIPAL IDEAL DOMAIN

JiaNG LuH AND MoOHAN S. PUTCHA

Let A be an algebra (not necessarily associative) over a
principal ideal domain R such that for all a, b € A, there exist
a, B € R such that (o, B) =1 and aab = Bba. 1t is shown that
A is commutative.

Throughout this paper N will denote the set of natural numbers and
Z" the set of positive integers. A will denote an algebra with identity 1
over a Principal Ideal Domain R. If a, b € A then [a,b] = ab — ba. If
a, B € R, then (a, B) denotes the greatest common divisor of a and
B. If a € A, then the order of a, o(a) is the generator of the ideal
I={a|a ER, aa =0} of R. o(a) is unique up to associates. As a
generalization of concepts in [1], [2], [3], [4], [S] we consider the
following:

(*) For all a, b € A, there exist a, 8 € R such that (o, 8) =1 and

aab = Bba.

We will show that if A satisfies (*), then A is commutative. This

generalizes [3; Theorem 3.5].

LEMMA 1. Let p be a prime in R, m € Z" such that p"A = (0). If
A satisfies (*), then A is commutative.

Proof. Let C denote the center of A. Let x € A, o(x)=p*,

k € N. We prove by induction on k that x € C. If k =0, then
x=0. Solet k>0. Let y€&A. First we show

1) [x,y]#0 implies [yx,y]=0.

If yx =0, this is trivial. So let yx# 0. Now for some «,, @, € R,

a;xy = a,yx, (a, a,) =1

@ Bix + 1)y = Bey(x + 1), (BiB2) = 1.

So a,Bi(x +1)y = a;B,y(x +1). Thus substituting the above, we get

(3) (@21 — a1 Bo)yx = (@)~ a1 B1)y.
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We claim that (a,B8;— @;8,)yx#0. For otherwise (a,B,— a\B))y =
0. Since y# 0, we get p|a,8,— a,8:.

Also  (a;B8:— a:B)yx =0. Since (a,B:i— aB)yx =0, we get
(aa— a)Biyx =0. Since yx#0, p|Bi(as— a)). So

plai(B.— By, plBi(a:— ay).

Case 1. p & «,. Then since a,(B,— Bi)y =0, we get (B.— B))y =
0. So by (2), Bi[x,y]=0=B,[x,y]. Since [x,y]#0, we get p|B,
p|B,, contradicting (2).

Case 2. pla,. Thenp & a,andsop 4 a,—a,. Thusp|B,. So
p A Byp A B.—Bi. Since a)(B.— B)y =0wegeta,y=0. Soaxy=
0. By (2), a,yx =0. Since yx# 0, we get p|a,, a contradiction.

Hence by (3)

(a:B1— a,By)yx # 0.

In particular

B~ a,B; #0.
So
azﬁl— a1[32= p,S, te N, 8 (S R, (8,p)= 1.

If t = k, then (a,B:— a1B;)yx =0, a contradiction. So t <k. Hence

p“*(a1B.— aiBy)y = p“~'p'8yx = 0.

Let o(y)=p', i€EN. If i<k, then y € C, a contradiction. So i=
k. Hence

p lp'|p* (B~ aiBy).

So p'lasB;—aB; and a,B8,— a;B,=p'y, YyER. Then p'dyx =
p'vy. Hence p'(8yx —yy)=0. By induction hypothesis, dyx — yy €
C. So[8yx —yy,y]=0. Thus 8[yx,y]=0. Since (§,p)=1, [yx,y]=
0. This establishes (1).

Now let u€&€A and suppose [x,u]#0. Then also
[x,u+1]#0. By (1), [ux,u]=0=[(u+1)x,u]. So [x,u]=0, a
contradiction. So x € C and the lemma is proved.

LEMMA 2. Suppose A satisfies (x). Let a,b€ A,o(b)=0. If
ba =0, then ab = 0.
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Proof. Suppose ab# 0. Then there exist B, 8, vi,y.€ R such

that
Bi(a+1)b=p.b(a+1), (B, B) =1,
*) via(b+1)=v.b(a+1), (vi,7)=1.
So
©) Biab=(B.— )b and (y.—vi)a = y.ab.

If B,=pB, then pB,B, are units and by (5) ab=ba=0, a
contradiction. So B,— B,#0. Similarly y,— vy, #0. Since o(b)=0,
we get by (5) that o(ab)=0. So o(a)=0. Hence by (5), B, #0,
y:#0. Also by (5) [B,ab, b] = 0.

So

(v2= v1)Biab = y,Bi(ab)b
= 7:B:b(ab)
= Bi(y.— y)ba
=0.

So o(ab) # 0, a contradiction. This proves the lemma.

LEMMA 3. Suppose A satisfies (). Let b€ A, o(b)=0. Then
b € C, the center of A.

Proof. Let a € A. There exist a,, a,, B1, B € R such that

a,ab = a,ba, (a), ay) =1,

©) Bi(a+1)b=B.b(a+1), (B B) = 1.

Multiplying the second equation by «, and substituting the first we obtain
b[(a2B1 —aB)a — (B~ a;By)- 1] =0.

By Lemma 2,

[(e.B— a:Br)a — (B~ aiBr) - 1]b = 0.

aiuba = a,pab.  So
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(az_ al)al(Bz_ Bl)b =(.

Since o(b) =0, we obtain by (6) that either a, = a, is a unit, B, = 3,
is a unit or else a;=0. The first two cases imply by (6) that ab =
ba. So let «;=0. Then a,ba =0 and «, is a unit by (6). So ba
0. ByLemma2, ab=0. Thusinanycase ab = ba and we are done.

Il

THEOREM 4. Suppose A satisfies (). Then A is commutative.

Proof. Suppose A is not commutative. We will obtain a
contradiction. There exists x € A such that x& C, the center of A. So
x+1€C. By Lemma 3 o(x)#0 and o(x+1)#0. Hence
0(1)#0. Let 0o(1)=d#0. Then d is not a unit and hence d =

fr---py for some primes p,,---,p, €A and some positive integers
a, -, a. Let A,={ala€ A,p*a=0}. Then each A, is a nonzero
subalgebra of A and A = A, ---P A. Being subalgebras of A, the
A.’s also satisfy (). Being homomorphic images of A, all the A,’s have
identity elements. By Lemma 1 each A, and hence A is commutative, a
contradiction. This proves the theorem.
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