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THE SCHUR SUBGROUP OF THE BRAUER GROUP

J. WILLIAM PENDERGRASS

Let K be a subfield of a cyclotomic extension L of the
rational field Q. The Schur subgroup, S(K), of the Brauer
group of K, B(K), consists of those algebra classes which
contain an algebra which is isomorphic to a simple component
of a group algebra QG for some finite group G.

In this paper we describe a set of generators for S(X).
We then use this theorem to determine the 2-primary part
of S(K) when L/K is cyclic and the fourth roots of unity
are not in K,

NoTATION. In this paper K is a field contained in Q(e,) where
€, is a primitive nth root of unity. The completion of K at a prime
P is denoted K,. If p is the integral prime dividing P, then the
residue class degree of P over p is written f(p) = f(p, K/Q). The
ramification index of p in Q(¢,) over K is e(p) = e(p, Q(¢,)/K).

If A is a central simple algebra over K, then [A] will denote
the class of A4 in B(K). A class [A] in B(K) is said to have uniformly
distributed invariants of values 0 or 1/2 if for each rational prime
p, [A] has the same Hasse invariant at each of the primes of K
which divide p, and these invariants are either 0 or 1/2. The
common value of the invariant of [A] at the primes of K dividing
p is called the p-local invariant of [A] and is denoted: inv, [A4].

If L is an extension field of K, then the Galois group of L over
K is denoted by Gal(L/K), and the Frobenius automorphism of a
prime p unramified in L over K is written [L/K, p]. Let a be a
factor set Gal (L/K) x Gal(L/K) into L. Then the crossed product
algebra made with L and « is denoted by (L/K, a). This is a central
simple K algebra having L basis {u,} for o< Gal(L/K) with multi-
plication given by

U U = (0, T)U,-
U,k = o(x)u, for o0,7e€Gal(L/K), zcL.
In case Gal (L/K) = (o) is cyclic, we shall write (L, g, a) for the
crossed product in which
() = upi 1 =1 < |0
=a 1=]0].
If p is a rational prime which splits into an even number of

primes in K over @, then 2(p) denotes the class of B(K) with
invariant 1/2 at each of the primes of K dividing » and invariant
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0 elsewhere. If p, and p, are rational primes which split into an
odd number of primes in K over Q, then 2(p, p,) denotes the class
in B(K) with invariant 1/2 at each of the primes of K dividing p,p,
and invariant 0 elsewhere.

Finally |m |, denotes the highest power of 2 which divides the
integer m, and t(q) = ¢ — 1 for all rational primes g.

2. The generator theorem. In this section we give a set of
generators for S(K). This is a useful refinement of a result by
Janusz [6].

LEMMA 1. Let K be a field contained in Q(c,) where n is odd.
Suppose that Gal (Q(e,)/K) = IIi., {¢:) and that Gal (Q(,.)/Q(E.)) = {0).
If [Q(e,)/ K, 2] = TI ¢%, then the 2-local index of an algebre (Q(c,,)/ K, @)
18 equal to 2 if and only if 3, gx; + 2f(2) is odd where u,u,, = eiuy u,
and u: = &,

Proof. Set 7 =[Q(,)/K, 2] and suppose that » has order s.
Then u,u, = eu,u, where

.
N= 0% .
i=1
If \ is even we have
wp(El*uy) = 7%eluu, = (61" u)u, .

Let 7= be a prime of K dividing 2, then
K.ex(@eaK, @) = 3,3 Quenluin]
= 31 5 Ke)Queus(el ",y

i=0 F=

= (S Koe)uf)(S Quen)(elus))
= (K,,(S,,), 0, u?’) @K" (Qz(en)» 7, (8}/2/“"7)8) .

Now (¢i*u,)* is a root of unity and @Q.(e,) is unramified over K,
hence by [1, Chap. V, Thm. 9.14] (Q.(c.), 7, (¢¥*u,)") has index 1.
Further

-

[(Kx(e), 0, €9)] = [K: @q, (R:(e), 0, €1)]

and (Q,(e), p, €i*) has index 2 if and only if z is odd, since —1 is
not a norm from Q,(¢,). Thus K. Q®x (Q(.,)/K, @) has index 2 if and
only if f(2)z is odd in the case that A is even.

Now suppose that A\ is odd. We have that
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uo((1 + edu,) = 1 + erf)eduu, = (1 + edun)u, .
Hence
[K: @« (Qe.)/ K, @)] = [(Kx(e), 0, u7) @x, (Q(E.), 1, (1 + eDu,)’)]

by the same reasoning used above. We have already seen that
(K(e,), o, u2) has index 2 if and only if f(2)z is odd; we must look
at (@u(c.), 7, (1 + edu,)?).

Let V. denote the exponential valuation in the 2-adic field L.
Then

V(L + edu,)® = %VK,(S,)«l + el)uy)’

= %Vxﬂ(ep(l + &)’ + _;_VK,‘.(Q)((U’?])

iVK,r(g)(l + &)

2

since u; is a unit in K.(¢,). Further, (1 + ¢}) is a prime element in
K.(e) since ) is odd. Thus Vg ,(1 +¢€f) =1 and

Vi (1 + eduy)® = s/2.
Hence, by the definition of the Hasse invariant,

inv (Que.), 7 (L + edun)) = Sé—z mod Z

= lmodZ.
2

Therefore, if A is odd, we have that the index of K, @ (Q(c..)/K, )
is 2 if and only if f(2)z is even.
This completes the proof of the lemma.

We will let S(K), denote the p-primary part of S(K), and W(XK, p)
denote the roots of unity in K with p-power order.

THEOREM 1. Let p be a rational prime. Then S(K), is generat-
ed by algebra classes which contain an algebra of the form
(R(e,)/ K, @) where the values of a are in W(Q(e,,), ), q is either
4 or an odd prime, and q does not divide n.

Proof. This is a refinement of Theorem 3 of [6]. In that
theorem Janusz showed the following:

1. If pisodd, or p =2 and 4 divides %, then S(K), is generat-
ed by classes which contain algebras of the following types:

(a) (Q(e,)/K, ), the values of @ in W(Q(e,), p) and ¢ a prime
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not dividing .

(b) (K(e,,)/K, B), the values of 8 in W(K, p) and ¢ and »
distinet primes not dividing .

2. If p=2 and » is odd, then S(K), is generated by classes
which contain an algebra of type (b), or of type (2") (Q(c..0)/K, @),
the values of @ in W(Q(e,), 2) and ¢ an odd prime not dividing .

In order to prove Theorem 1, we must look closely at algebras
of types (b) and (a’).

Let Gal (K(¢,,)/K) = (o) x {r) where (o) = Gal (K(¢,)/K) and
{t) = Gal (K(¢,)/K). Also let { be a pth root of unity, the highest
p-power root of unity in K. Consider the algebra

dir = (K(e)/K, B) = 3 K(egJu;  (Yelo) X (1))

where u,u. = *uu,, i =%, and ui' = . By [8, §1], the only
restrictions on x, y, and z are (£*)"' = ({®)¥® and ({¥) ! = ((TH)Y@
where N(g) =1 + ¢* + --+ + ¢'¥"'. However both o and 7= fix {, so
we get that p? divides both az(» — 1) and z(q¢ — 1).

Now 4,, can have nonzero invariant only at the primes of K
which divide ¢ and ». This is because these are the only primes
ramified in K(e,,.)/ K.

Suppose that q is odd. Let 77 = [K(¢,)/K, q], the Frobenius auto-
morphism of g in K(¢,)/K, and set ¢t = ¢7? — 1. We have that

(£220)" s

where ¢ = (¢ — 1)/p? and v = xg + y(¢/(g — 1)).

The inertia group of ¢ in K(¢,,)/K is{o), so [7, Thm 3] implies
that the g-local index of 4,, is max {p*°, 1} where p° exactly divides
V.

Now suppose that p* exactly divides f(g). Then p* divides ¢
since [K(e,)/K, q] = [K(¢,)/Q, ¢}?. Moreover, if p =2, f(q) is even,
and ¢ = 3mod 4, then 2*"' exactly divides ¢/(¢ — 1), otherwise p°
exactly divides ¢/(¢ — 1). In the case where p = 2, f(q) is even and
¢ = 3mod 4, we either have 2¢ > 2 so that z is even, or 2/ =2 go
that 4,, has g¢-local index 1.

Hence in all cases, max {p**, 1} takes its highest possible value
when p° exactly divides t/(g — 1).

Now consider the algebra (K(s,), 0, ). Applying [7, Thm. 3] we
see that the g¢-local index is max {p?°, 1} where »° exactly divides
t/(g — 1). Further, the local index of (K(s,), 0,{) at any prime
unequal to ¢ is 1. Note that (K(e,), o, {) inflated to Q(¢,,)/K has the
form described in Theorem 1. .

If » is even, then K(e,,) = K(¢,) so that the »-local index of 4,.
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is 1. Thus, in this case, some power of (K(¢,), g, {) has exactly the
same set of invariants as 4,,.

If » is odd, then we may replace ¢ by » in the above argument.
Hence, some power of (K(c,), 7, ) has the same invariants at primes
dividing » as 4,, does, and some power of (K(¢,), 0, {) has the same
invariants as 4,, at primes dividing q.

Thus [4,,] is contained in the group generated by the classes
described in the theorem.

Now suppose that p =2 and » is odd. Let G = Gal(Q(e,)/K)
be given by the direct product

G = (g X (o)X ==+ X L)

where {¢,> has order =,. Further, set (o) = Gal (Q(s,,)/Q(,)) and
(o) = Gal (Q(¢,,)/Q(e,)), were ¢ is an odd prime not dividing n. Let
{ be a primitive fourth root of unity.

Consider the algebra

dyy = (Q(qu)/K, @) = >, QEu)uy
where
Uy = CUUp ,  Uplhy, = LUy, U,
Uolhg, = CViUs Uy, Uy, Uy i = CYiiug g, ,
wy =8, wit=700, wip=L0,

for 4, =1,2,.--,k and % j. The conditions in [8, §1] imply
that

%, Y;, and y,; are even for ¢,5 =1,2, ---, k and ¢ # 7,

2z, = (¢ — 1) mod 4 ,

2z, =axm;mod4d for 1=1,2,---, k.

We have that 4,, can have nonzero invariants only at those

primes of K which divide 2, g, or some prime which ramifies in
Q(¢,)/K. Moreover, the invariants of 4,, can only be 0 or 1/2 since

the only 2-power roots of unity in K are {+1}.
Let

Aq = (Q(enq)/K, 7) = Z Q(an)v.—
be the algebra such that

,va/véi = va%vo ’ v¢iv¢j = v¢jv¢i ’

—- bl .
it =0, vp=1,

for4,7=1,2, ---, k where
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2 if ¢ =1mod4
2zF=0 if ¢g=3mod4 and f(g) is even
2, + 2,7 if ¢g=3mod4 and f(g) is odd

where

flay _
r“‘sqql—l-lmod4.

Note that the y, are all even, and that 2, + «,» is even when ¢ = 3
mod 4 and f(q) is odd. Thus the values of 7 are all +1 or —1, and
4, is in S(K).
Further, let
4, = (QEL)/K, V) = 3 Qe w.
be the algebra such that
WeWs, = CTWg,Wp , Wy, Wy, = LYW, Wy,

w%} = Cz. ’ 'WZ: = Czi

for4,7=1,2,--+,k and 7 # 7 where
=z 4 2 if ¢ =38 or 5mod8 and f(2) is odd

=2 otherwise .

Observe that both 4, and 4, belong to classes of the type
described in the theorem.

Claim. The algebra 4,, is equivalent to 4, @ 4, in B(K).

Proof of Claim. We will show that 4,, and 4,Q 4, have the
same set of invariants. This is the same as showing that the local
indices of these algebras are the same at ¢, 2, and the primes
ramified in Q(¢,)/K because the invariants can be only 0 or 1/2.

First consider the g-local indices of 4,, and 4,® 4,. Let the
Frobenius automorphism for ¢ in Q(s,,)/K be 7, = 0°II ¢%, and set
t=¢q’? —1. Then

(o, NI\ - (g—1)vp/4
o) w=e

where
Yo = g%, + £ X, 9:Y: + 2(t/(g — 1))

where
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r=-1 if g=1
=1 if g=0.
By [6, Thm. 3], the g-local index of 4,, is given by

q—1 _1 if v,=0modZ
@ —1a—-1) 2 if y=1/2modZ.

Now ¢ does not ramify in Q(c,,)/K, so the g-local index of
4,R 4, is equal to the g-local index of 4,.

The restriction of 7, to Q(¢,) is the Frobenius automorphism of
g in Q(s,)/K; we will denote this by 7.

We have that

7(0, 77:1) (a-nse -1 — (g—=1)vg
(“/(71;, rf)) v e

where
v, = %{2 g + 2 (tg — V)] .

Hence the g-local index of 4, 4, is given by

qg—1 _1 if vy=0modZ
g —1a-1) 2 if yy=1/2modZ.

il

Now if ¢ = 1mod4, then g =0 and 2§ = 2, 80 Y, =y, and 4,
has the same g¢-local index as 4,® 4,. If ¢ =3 mod4 and f(q) is
even, then g = 0 and 4 divides ¢/(¢ — 1), so that v = y;mod Z. Thus
again 4,, and 4, @x 4, have the same g-local index. Finaliy suppose
that ¢ = 83 mod 4 and f(q) is odd. In this case g = 1 so that

g%, + 24(t/(@ — 1)) = z¥(¢t/(@ — 1)) mod 4 .

Hence v, = y,mod Z and 4,, has the same g¢-local index as 4, R 4,.

Now let I be a prime which ramifies in Q(c,)/K. We will com-
pare the l-local indices of 4,, and 4,® 4,. Let (@) be the inertia
group of ! in Q(¢,)/K where w = [] ¢, and let 7, = 0?0 ] ¢%¢ be a
Frobenius automorphism of ! in Q(c,.,)/K. Then 7; = oI ¢% and
N = 0]l ¢ are Frobenius automorphisms of ! in Q(e,)/K and
Q(¢,,)/K respectively. Let ¢ be the ramification index of ! in
Q(¢,)/K. Then we have v; =1 and w; = u:. Moreover

a(@, 7) _ (@, 7)) V(@ 7)
a@/,w) Y0, @) V(7, )

Hence, by [7, Thm. 3], we see that 4,, and 4, 4, have the same
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I-local index.

Finally, we must compare the 2-local indices of 4,, and 4, R 4,.
Let o9 ]] ¢% be the Frobenius automorphism of 2 in Q(¢,,)/K, then
Lemma 1 implies that the 2-local index of 4,, is 2 if and only if
Y= g% + >, 9% + (2/2)f(2) is odd. Further, the 2-local index of
4,Q@x 4,, which is the 2-local index of 4, is 2 if and only if
Vv =3 2,9, + (2%/2)f(2) is odd.

If f(2) is even, then g, is even since

[Q(an)/K’ 2] = [Q(enq)/Qy 2]f(2) .

Thus v = v mod 2 and 4,, has the same 2-local index as 4, ® 4,. If
f() is odd and ¢ =1 or Tmod8, then 2 is a square modulo ¢, so
that g must be even. Hence, once again ¥ = v mod2 and 4,, and
4,& 4, have the same 2-local index. Finally suppose that f(2) is
odd and that ¢ = 3 or 5mod8. Then ¢ is odd and 2* =2, + @, so
g%, + (2/2)f(2) is equivalent to (2*/2)f(2) modulo 2. Thus againy =y’
mod 2.
This completes the proof of the claim and of the theorem.

3. S(K), when Q(,)/K is cyclic. In this section we will
completely chararacterize the classes in S(K), by the behavior of
of their invariants in the case where Gal (L/K) is cyclic. Before
beginning these calculations we need to prove the following lemma.

LEMMA 2. Suppose that KC F are subfields of a cyclotomic
field and that [F: K] is not divisible by the rational prime p. If
there are no p-power roots of unity in F which are not in K, then

S(F), = F @ S(K),.

Proof. Clearly S(F), 2 F @, S(K),. We need to show contain-
ment in the other direction.

Let L be the smallest cyclotomic field containing F, and let
G = Gal (L/K) be given by

G = I <0 x 1wy

where the order of each {¢,> is a power of p and the order of each
{ab;>, mj, is relatively prime to p. It follows that H = Gal (L/K) is
given by

H =110 x T

where [I;-, {v;> is a subgroup of TIi, {v}).
By Theorem 1, S(F'), is generated by classes containing algebras
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of the form
(L(e)/F, @) = Z L(e,) U,

where q is either 4 or an odd prime and the values of « are p-power
roots of unity.

Suppose that Uyl = (* where { is a primitive p’th root of unity.
The order of +; is prime to p, so +;({) = £ unless { is not in F, in
which case S(F), = F@QxS(K),=1. Set 7= —z;/n; modulo p°
Now replace Uy, by (*Uy, in (L(s,)/F, @). This gives an equivalent
algebra, but now

@Up)i=0=1.

Hence we might as well have started with z; =0 for j=1,2, .-+, s.
Now suppose that Uy, U. = {*U. Uy, for some z in Gal (L(s,)/F),
7 not in {¥;>. Then

L= U3 = (U2 Uy, U = 1 4i(C)
= {*3% |

However n; is prime to p, so «; must be 0. Thus Uy, U. = U.Uy,
for all v € Gal (L(¢,)/F). This is true for all ;, 7 =1,2, ---,s.
Therefore :

L)/ F, )] = [(B\/F, @) @r (B/F, ;)]

where E, is the field fixed by II:-, (¢, and E, is the field fixed by

II5-. <vj). Moreover «, is the trivial factor set, so [(E,/F, a))] = [F].

Further, [(E,/F, a,)] = [F @« (E./K, a;)] where «, restricted to

¢, {4,y equals a, and a; is trivial on Gal (F/K). This makes a; a

factor set by the same reasoning we used to ascertain that «a is
equivalent to a factor set with nontrivial values only on JJi., (¢,>.

This completes the proof of the lemma.

Notice that this lemma implies that an algebra class [A] in S(F),
has g¢,-local index p* for some sets of primes ¢, ---, ¢, if and only
if there is an algebra class [D] in S(K), with exactly the same local
indices. Hence, if we can find the possible local indices for classes
in S(F'),, then we have found them for classes in S(K),.

In the following theorems we assume that [K: Q] is even. We
may do this because S(K) consists of all classes in B(K) with uni-
formly distributed invariants of value 0 or 1/2 if [K:Q] is odd.
This follows from [2].

A. S(K), when #» is odd.

THEOREM 2. Let K be a field contained in L = Q(s,) where n
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s odd such that Gal (L/K) is cyclic and [K: Q] is even. Then the
2-primary part of S(K) consists of those classes [A] in B(K) with
untiformly distributed invariants of wvalue 0 or 1/2 which satisfy
the following conditions.

(I) For a prime p which divides n, inv,[A] =0 if e(P) 1s
odd or if [L: K]/e(P) is even.

(II) For any prime q, inv,[A]l =0 +f flg) is even and a
Frobentus automorphism of q is a square in Gal (L/K).

(III) Let p be a prime which divides m to which (I) does mnot
apply. Suppose that f(p) is odd and that |(p — 1)/e(p)|, = |p" — 1|,
for every prime p' which divides n and is unequal to p. Then
the invariant of [A] is 1/2 at an even number of primes in the set

{p} U {primes ¢: (¢/p) = —1 and (g, ») = 1}
where (q/p) is the Legendre symbol.

Proof. Let G = Gal(L/K) be {¢) and have order m = 2°¢,
@2, c)=1.

Step 1. We need to determine the invariants of the generators
of S(K), given in Theorem 1.

(a) Let 4, = 4,2, v, z) be an algebra
Aq = (L(sq)/K’ a) = Zl_: L(Eq) Ur

where ¢ is an odd prime not dividing » and the values of « are in
{+1}. Let (v) = Gal(L(s,)/L). Then the factor set « is determined
by the integers x, ¥, and z where

U.U, =(-1)°U,U,,
(U = (=1,
(U™ = (=1).
The restrictions given in [8, §1] reduce to:
x=0 if m is odd.

Suppose that the Frobenius automorphism of ¢ in L/K is 4°.
Set t(g) = ¢ — 1. Then

CZ(’Y, ¢y)>(q—1)/t(q) Ut = (8 )((q—l)/2w
a(g, ) ' “

where v = xg + y(¢(q)/(¢@ — 1)). The inertia group of ¢ in L(¢,)/K is
{7, so [8, Thm. 3] implies that the g-local index of [4,] is given by
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g1 =1 if v is even
(e —1)/2,q—-1)
=2 if v is odd.

Now t(q)/(g — 1) is odd if and only if f(q) is odd, so we get
8.1) inv,[4,] =1/2 = 29 + yf(g) is odd.

Now suppose that p divides n. Let 7*¢* be a Frobenius auto-
morphism for p in L(s,)/K, and let {4¢*) be the inertia group of p
in L(¢;)/K. Then

ala®, Tre ) \e@ /e e R o
<—ag§’h,¢h' q;.,;) (T ® = (eym) '™
b

where V' = xah + pz(t(p)/e(p)),

where r=0 if a=0
=1 if a#0.

Thus the p-local index of [4,] is given by

-—L =1 if V' is even
(Ve(p)/2, e(p))
=2 if v is odd .

Hence

3.2) mthdm=mMH%§%> is odd .

(b) Let 4, = 4=, y, 2) be the algebra
4, = (LK, @) = X L(e) U.
where the values of a are in {*+1, *+¢}. If {p) = Gal (L(¢,)/L), then
the factor set « is determined by the integers =, ¥, and z where
| UU, = () U, U, ,
(o) = (),
(U™ = (e .
The restrictions on x, %, and 2z are

Yy is even

(3.3) xm + 22 = Omod 4 .

Let [L/K, 2] = ¢°. Then by Lemma 1,
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3.4) inv, [4,] = 1/2 = zy + (y/2)f(2) is odd .

Now let p be a prime dividing n. Let 0%* be a Frobenius
automorphism of p in L(g)/K, and let {4*) be the inertia group of
» in L/K. Then

(g%, 0" )\ PP e — (e(p) /2y’
— (U?) (E401)

a(o*s", ¢°)
" 402
here V' = zak + pr{ =~
w Tar + z( p (p)>
3 ©=20 if a=0
where .
=1 if a+#0.
Thus
= ; — 159 vak |tz t(p) :
3.5) inv, [4] = 12 — 2 4 ‘?7<Tp)> is odd .

Finally observe that if [ is a finite prime which does not divide
nq, then [ does not ramify in L(¢,)/K and so inv,[4,] = 0.

Now assume that [L: K] is odd. Then S(K),= K @,S(Q) by
[5, Cor. 2]. This means that there is an algebra class [A] in S(K),
with inv,[4] = 1/2 if and only if the order of the decomposition
group of ¢ in K/Q, f(g)e(q, K/Q), is odd.

For each prime p which divides », we must have that e(p, K/Q)
is even and e(p) is odd. Thus condition (I) of the theorem applies,
and is satisfied. Further, every element in Gal (L/K) is a square,
so condition (II) reduces to: For any prime ¢, inv,[A] = 0 if f(q)
is even. Hence this condition is satisfied. Condition (III) is trivially
satisfied since condition (I) applies to each prime p which divides n.

Suppose now that ¢ is a prime not dividing % such that f(q) is
odd. Then the decomposition group of ¢ in K/Q has odd order.
Thus the algebra K @, (Q(s,), ¥, —1) has invariant 1/2 at ¢ and
invariant 0 elsewhere, where {(7v) = Gal (Q(c,)/Q) and ¢’ = ¢ unless ¢ is
even, in which case ¢’ = 4. Note that K cannot be a real field in
this case, so that the invariants of any algebra in B(K) are 0 at
the infinite primes of K.

We have now shown that the theorem holds if [L: K] is odd.
For the rest of the proof we shall assume that [L: K] is even. By
Lemma 2, we may assume that [L: K] = 2° for ¢ = 1.

Suppose that K is a real field. Pick a prime p such that
f(p)e(p, K/Q) is even. This can always be done since [K:Q] is
assumed to be even. Consider the algebra K @, D, where [D,] € S(Q)
has invariant 1/2 only at p and the infinite prime p... Then [K ® D,]
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has invariant 1/2 just at the infinite primes of K. Hence 2(p.) is
in K. This settles the case with respect to the infinite primes since
B(C) = {1} where C is the complex numbers. For the remainder of
the proof, “prime” will mean “finite prime.”

Step 2. Condition (I) is satisfied.

Suppose that p is a prime which divides %, and that e(p) = 2.
Then « is even where (4¢*) is the invertia group of » in L/K. Hence
(p — 1)/e(p) is even because it is divisible by a if e(p) 1. Thus (3.2)
implies that inv,[4,] = 0 for all odd primes ¢ which do not divide
n. Now consider 4,. If ¢ = 0, then (3.5) implies that inv,[4,] =0
since £t =0. If a0, then 2 >4 so that »p = 1 mod4. Hence
[Q(E)/Q, Pl =1, so in (38.5) we have that £ = 0. Moreover, (3.3)
implies that z is even, so inv,[4,] = 0.

We have shown that each of the generators of S(K), has 0
invariant at p. Hence inv, [A] = 0 for all [4] in S(K), and condition
(I) is satisfied.

Step 3. Condition (II} is satisfied.

Suppose that p is a prime dividing n such that f(p) is even and
condition (I) does not apply to ». Note that the identity element
in Gal (L/K) is a Frobenius automorphism for p in L/K in this case,
so condition (1I) does apply to p.

Observe that #(p)/e(p) is even, and in the case where ¢(p) = 2,
t(p)/e(p) is divisible by 4. This is so because f(p) is even and
e(p) = 2 must divide p — 1.

Let I be either 4 or an odd prime not dividing %, and suppose
that v* is a Frobenius automorphism for p in L(¢;)/K where {(7v) =
Gal (L(e))/L). If I is an odd prime then 2 must be even since
f(p) is even. If [ =4, then h=0. Further, by (3.3), z is even
when e(p) = 4. Thus (3.2) and (38.5) imply that inv,[4,] =0 where
I!'=1if lis odd or I' =2 if [ = 4.

Hence, for p, condition (II) is satisfied on the generators of
S(K),. Therefore condition (II) is satisfied for all primes which
divide =.

Now suppose that ¢ is a prime which does not divide » such
that f(q) is even and [L/K, q] = ¢° is a square in Gal (L/K). Then
g is even so that gz + f(Q)y, or gz + f(q@)y/2 in the case of ¢ =2, is
even for all permissible values of 2 and y. Thus, by (3.1) and (3.4),
inv, [4,] = 0.

Classes of the type [4,] are the only classes amongst the
generating classes given by Theorem 1 which might possibly have
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nonzero invariant at primes of K dividing ¢. Hence inv,[4] =0
for all [A] in S(K),, and condition (II) is satisfied for primes which
do not divide n.

Step 4. For each prime ! to which conditions (I) and (II) do not
apply, there is a class [A] in S(K), such that inv,[A] = 1/2.

First suppose that q is a prime which does not divide n. If
flg) is odd, then the algebra

L =4,0,20 if ¢g=2
=4,01,00 if q#2

has invariant 1/2 at q and invariant 0 elsewhere. Hence 2(q) = [4]
if f(g) is odd.

Suppose that f(q) is even and that [L/K, q] = ¢° where ¢ is odd.
By (3.1) and (3.4), the algebra

4y = 4,1,0,1) if ¢g=2 and 2°=2
= 4,1, 0, 0) otherwise

has invariant 1/2 at q.

Now let p be a prime which divides » such that neither condi-
tion (I) nor condition (II) applies to p. Hence, f(p) is odd. Pick an
odd prime ¢ not dividing » such that [Q(e,,)/Q, q] = ¥ Where {(y) =
Gal (Q(¢,)/Q). There exist infinitely many such ¢ by the Tchebotarev
density theorem. This choice of ¢ insures that ¢ = 1mod4 and that
(¢/») = —1. Hence, by quadratic reciprocity, (p/q) = —1. Thus h
must be odd where v* is a Frobenius automorphism of p in L(e,)/ K.
Then by (38.2) inv, [4] = 1/2 where 4 is the algebra described above.
This is because a is odd if condition (I) does not apply.

Step 5. If condition (III) does not apply, then 2(}) is in S(K),
for every prime [ to which conditions (I) and (II) do not apply.

Let p be a prime which divides » such that condition (I) does
not apply to p. This means that p is totally ramified in L/K.
Hence p is the only prime which is ramified in L/K, and so p is the
only prime dividing % to which condition (I) does not apply.

Now suppose that condition (II) does not apply to ». We saw
in Step 3 that this means that f(p) is odd. Further suppose that
[(p — 1)/e(p)], < |p’ — 1], for some prime p’ % p which divides n.
Pick an odd prime g, which does not divide »n such that [L(c,)/Q, q,] =
Jra’ where + generates Gal (Q(¢,)/Q) and ' generates Gal (Q(e,)/Q).
Now f(q,) is divisible by the same power of 2 as p’ — 1 is, hence
[L/K, q] = ¢° where g is even. Thus inv, [4;]=0. However our
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choice of ¢, insures that ¢, = 1mod4 and that (q,/») = —1. Thus
the argument at the end of Step 3 gives inv, [4;] = 1/2. Since p is
the only prime dividing »n at which 4 can have nonzero invariants,
we have that 2(p) = [4;,].

Now let ¢ be a prime which does not divide » such that condition
(II) does not apply to q. We saw in Step 3 that 2(qg) is in S(K),
if f(q) is odd. Further, if f(g) is even, we have that inv,[4}] = 1/2.
Thus, if inv,[4)] = 0, we have 2(q) = [4i]. If inv,[4}] =1/2, then
2(q) = [4]1 ®, 2(p).

Step 6. Condition (III) is satisfied.

Let » be a prime dividing % to which condition (I) does not
apply. Further suppose that f(p) is odd and that |(p — 1)/e(p)|, =
|p" — 1|, for every prime p’ # p which divides #. This hypothesis,
and the assumption that [K:@Q] is even, forces »p = 1mod4. We
also have that {(¢) is the inertia group of p in L/K.

Let ¢ be a prime not dividing % such that inv,[4;] = 1/2 where
4, is one of the generators of S(K), given in Theorem 1. Let
[L/K, q] = ¢° and let 7* be a Frobenius automorphism of » in L(s,.)/K
where (7> = Gal (L(¢,)/K), ¢' = q if ¢ is 0dd, and ¢’ =4 if ¢ = 2.

(a) Suppose that ¢ is odd. Then by (3.2), hx must be odd.
However, h is odd if and only if (p/q¢) = —1 since f(p) is odd. So,
by the law of quadratic reciprocity, (¢/p) = —1 and so f(q) is divisi-
ble by the same power of 2 as (p — 1)/e(p) is. This implies that g
is odd. Hence inv, [4;] = 1/2.

(b) Suppose that ¢ =2. Then h =0 since [Q(c,)/Q, p] = 1.
Thus z/2(t(p)/e(p)) must be odd. This means that #(p)/e(p) = 2 mod 4
and z is odd. By (3.3), this can only occur when z is odd and
e(p) =2. Thus p = 5mod8, so that (2/p) = —1. This implies that
f(2) is even and that ¢ is odd. Hence, by (3.4) inv, [4] = 1/2.

Now let ¢ be a prime not dividing » such that (¢/p) = —1 and
inv, [4;] = 1/2 where 4; is one of the algebras described in Theorem
1. Let [L/K, q] = ¢° and let 7* be a Frobenius automorphism of »
in L(e,)/K where (v) = Gal (L(¢,/)/K) and ¢’ =¢q if ¢ isoddor ¢’ =4
if ¢ =2,

By (8.1) and (8.4), g is odd. If ¢ is odd, then % is odd so
that inv,[4;] = 1/2. So suppose that ¢ = 2. Then we must have
p=5mod8. This implies that ¢(p)/e(p) =2mod4, and, by (3.3),
that z is odd. Hence (3.5) implies that inv, [4;'] = 1/2.

We have now shown that

inv,[4,] =12=inv,[4,] =1/2 and (¢/p)= —1.

Since every algebra class [A] in S(K), is generated by classes of
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this form, we have shown that condition (III) is satisfied.

Further, this proves that Q(q) is in S(K), if (¢/») =1 and
condition (II) does not apply to ¢. This is because [4,] can have
nonzero invariants only at p and ¢; we saw in Step 3 that we could
arrange for nonzero invariants at ¢ and we have just seen that we
cannot get nonzero invariants at p.

This completes the proof of the theorem.

B. S(K), when n is even.

Now suppose that L = Q(¢,) is a cyclotomic field containing £, a
primitive 2°th root of unity for s = 2. Further suppose that K L
does not contain a fourth root of unity, and that Gal (L/K) = {(¢)
has order 2°¢, (¢, 2) = 1.

Let Gal(Q(Q)/Q) = (o) x () where p({)=C" and () =7
Then we may assume that ¢ = p*" "z where the order of {(y* *)=
2:~" divides the order of (z). Thus ¢({) = {™* where h = 5", We
will keep this notation for the rest of this section.

We must determine the invariants of the generators of S(K),
given in Theorem 1.

Let 4, = 4,(z, y, z) be the algebra

4, = (L(Eq)/Ky a) = > L(ey) U.

where ¢ is a prime not dividing » and the values of a are in (C).
Let (7> = Gal (L(e,)/L). The factor set a is determined by the
integers z, y, and 2z where

UrU¢ = CZquUr ’

Ug-l = v,
U =10
The conditions in [8, §1] require that

(i) C=@y=0c"

(ii) @) =@y
— (C—r)N(T)
— C—x(q—l)

(iid) 1= (@) = ()

where N(z) =1+ 7z + - + 7"t for a group element 7.
Hence
3.6) (a) 201 divides z,

(b) y(h +1) — 2(¢g — 1) = Omod 2°,

(c¢) 2 divides z if c=s — 7.
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Now suppose that [L/K, q] = ¢°. Then

)\ (g—1)/¢(g)
(SN _

where

- ML) ().

Thus the g-local index of 4, is given by

g—1 =1 if y=0modZ
(@ =1y, q-1)

= 2 if v=1/2modZ.

Hence

3.7 inv,[4,]=12=v=1/2mod Z .

493

Now suppose that p is an odd prime which divides n. Let 7*¢%
be a Frobenius automorphism of p in L(¢,)/K, and let (4°) be the

inertia group of p in L(¢,)/K.

Then
o d, ryb b5’y \ e(p)/t(p) . etpw
(S -
where
___1_[ 1 — pe pf(p)_]_jl
KT ”b<1 T h> + e o) )
where
r=20 if a=0
=1 if a#0.
Hence
(3.8) inv,[4] =1/2=—yv,=12mod Z.

Finally suppose that 2 is ramified in L/K. Our assumption that
the order of (4*"*) divides the order of (r) implies that in this

case Gal (L/K) = {p).

Let 7 = 7* be a Frobenius automorphism of 2 in L(s,)/K. Let

S be the order of (7). We have
UL +E0) =1+ MU,
=1+ 0,0,
=[Q + U, .
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Let @ be a prime of K which divides 2. Then
1 f—1 . .
K. ®4,= %%K,,(@)KAE,,) u:t;

= S KK U + £ UV

1=0 j=0

= 3K U3 @, 3 KoL + LU
= (K.(e), 0, U) @, (Kle), 7, [(L + C)ULL) -

Now [(Ki(e), 0, Up)] = K. @q, (Que)), 0, &). Hence inv (Ki(e), 0, Up)
may be assumed to be 0, since otherwise ¢(2, K/Q) would be odd
which would mean that K = Q(s,,). The Schur subgroup of a
cyclotomic field is given in [5].

Now let V' and V be the exponential valuations of K.(¢,) and
K. respectively. Since e(K.(¢,)/K) = 2, we have

Vm+wwm=§ma+www

= 2V + & + VI(U))
_.1 ’ zb
_EfV(lJrC ).

Now V'A + ¢**) is odd if and only if zb is odd since 1 + {* is a
prime element of K.(¢) when b is odd. Thus from the definition
of the Hasse invariant we get
inv(K,® 4,) =0 if xb is even
=1/2 if b is odd.

Thus
(3.9) inv, [4,] = 1/2 = pab is odd
where

Ht=0 if 2 is unramified in L/K
=1 if 2 is ramified in L/K .

Observe that ¢ and the primes which divide n are the only
primes which might ramify in L(e,)/K. Hence, these are the only
primes at which 4, can have nonzero invariants.

THEOREM 3. The 2-primary part of S(K) consists of all classes
[A] in B(K) with uniformly distributed invariants of value 0 or
1/2 which satisfy the following conditions.
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(I) For a prime p which divides n, inv,[A] =0 if any of
the following hold:

(a) e(p) s odd;

(b) f(p) is even;

(¢) [L: K({)]/e(p) is an even integer.

(II) For q a prime which does not divide n, inv,[A] =0 if
either

(a) t=s—1r and f(q) is even, or

(b) t#s—7r, flqQ) is even, and ¢'* = (—h)° mod 2°** where
[L/K, q] = ¢°.

(III) Let p be a prime which divides n such that condition (I)
does mot apply to p. If |e(p, K/Q)|, = |e(p’, K/Q)|. for every prime
P’ #+ p, then the invariant of [A] is 1/2 at an even mumber of primes
in the set

{p} U {primes q¢: (p/q) = —1, (g, n) = 1}

where (p/q) is the Legendre symbol.

Proof. We have assumed that {¢) has even order. Hence, by
Lemma 2, we may assume that [L: K] = 2°.

First suppose that K is a real field. Pick an odd prime of ¢
such that f(q)e(q, K/Q) is even. There will always be such a prime
since [K:Q] must be even. Then the algebra K @, (Q(s,), 7, —1)
where {7) = Gal (Q(¢,)/Q) has invariant 1/2 only at the infinite primes
of K. Thus 2(p.) is in S(K), when K is real.

For the rest of the proof, “prime” will mean “finite prime.”

Step 1. Condition (I) is satisfied.

Let » be a prime which divides n. If e¢(p) =1, then p is un-
ramified in L(s,)/K for any prime ¢ not dividing ». Hence
inv,[A] = 0 for all [A] in S(K),. Now suppose that e(p) is even.

If p 2 and {¢*) is the intertia group of p in L/K, then 2"
divides a, or if s = r, 2 divides a. Since the power of 2 dividing @
must divide (p — 1)/e(p), we have that &(p)/e(p) is even. Further
h = 5" so (h* — 1)/(h + 1) is not divisible by 2° if and only if 2"+
does not divide @, or if s = », if and only if 4 does not divide a.
However this happens if and only if [L: K] = 2* "e(p), or if s =7,
if and only if [L: K] = 2¢(p). Thus we have

h" — 1 5 e . i
W1 %= 0 mod 2 [L: K()]/e(p) is odd .

Let ¢ be a prime which does not divide » and let 7’6" be a
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Frobenius automorphism of p in L(e,)/K where {v) = Gal (L(¢,)/L).
Then we may rewrite (3.8) to read

(3.10) inv, [4,] = 1/2 = ([L: K(Q)]/e(p))xd is odd

since 2°7* divides z. Since b is even if f(p) is even, (3.10) implies
condition (I) for p +# 2.

If v* is a Frobenius automorphism for 2 in L(¢,)/K, then b is
even if f(2) is even. Thus (8.9) gives condition (I)(b). Since
Gal (L/K) = {p) when 2 is ramified in L/K, we see that condition
(I) (¢) never applies to 2.

Step 2. Condition (II) holds.

Let ¢ be a prime not dividing » and let [L/K, q] = ¢°. We
consider the invariants of algebras of the form 4, = 4,(x, ¥, 2). We
have

¢9(C) —_ C(—h)ﬂ — Cqﬂq, .

Hence ¢/@ = (—h)* + V2° for some integer V.
Further, by (3.6) (b), we have

2(q — 1) + W2
1+h

for some integer W. Thus we may rewrite (3.7) to read

. . W qf(q)_l xV _
@3.11) inv, [4,] = 1/2 (1+h>( — )+ A =12mod 2.

Now t(q)/(g — 1) is even if f(q) is even. Moreover z is even if
t=s—r and V is even if ¢/? = (—h)’ mod 2°*', Hence condition
(II) is obtained directly from (3.11).

y:

Step 3. For each prime ! to which conditions (I) and (II) do
not apply, there is a class [4] in S(X), such that inv,[4] = 1/2.

Suppose that ¢ is a prime which does not divide # such that
condition (II) does not apply to g. If f(q) is odd, then the algebra
45 = 4,0, 27, 0)

has invariant 1/2 at ¢ since W = (k + 1)/2 is odd.

If f(q) is even, t # s — 7, and ¢*? %= (—h)? mod 2°*, then consider
the algebra
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We have that t(¢)/(¢ — 1) is even and that V is odd, thus (3.11)
implies that inv, [4;] = 1/2.

Now let p be a prime which divides # such that condition (I)
does not apply to ». Pick a prime ¢ which does not divide » such
that [Q(c,,)/Q, ¢] = +,, where +r, generates Gal(Q(e,,)/Q(c,)). This
choice of ¢ insures that ¢ = 1mod4 and that (¢/p) = —1. Hence,
by quadratic reciprocity, (p/q) = —1 so that b is odd where 7’¢* is
a Frobenius automorphism of p in L(s,)/K and <{7) = Gal(L(s,)/L).
Hence, by (3.10) and (3.9) inv, [4;] = 1/2.

Step 4. If condition (III) does not apply, then 2(I) is in S(K),
for every prime ! to which conditions (I) and (II) do not apply.

Let p be a prime dividing » to which condition (I) does not
apply. Then p is totally ramified in L/K({). Further, since the
inertia group of a prime in @(¢,)/K must be a subgroup of its inertia
group in Q(¢,)/Q, we have that p is the only prime which is ramified
in L/K. Thus p is the only prime dividing # to which condition (I)
does not apply.

Suppose that |e(p, K/Q)|, < |e(p’, K/Q)|, for some prime p' = p
which divides n. Let 2% = |e(p, K/Q)|,.

(a) Assume that p’ is odd.

Pick a prime ¢, not dividing n such that [L/Q, q,] = 4,4, where
Py = Gal (Q(e,)/Q) and o, = ¢ if p =2 or {y,) = Gal (Q(¢,)/Q) if
» # 2. There are infinitely many such ¢, by the Tchebotarev density
theorem. Our choice of ¢, insures that ¢, =5mod8 if p=2 or
(g/p) = —1if p = 2. Thus (p/q,) = —1 since ¢, = 1 mod 4 by choice.
Let v generate Gal(L(e,)/L) and let 7’¢"” be a Frobenius auto-
morphism for p in L(g,)/K. Then b must be odd. Thus inv,[4,] =
1/2 by (3.9) and (3.10). On the other hand, f(q,) is divisible by
|p' — 1|, since [L/K, q,] € Gal (L/K()) if p+#2 and [L/K,q]=1 if
p = 2. Hence ¢{“ and A’ where [L/K, q,] = ¢°, are both equivalent
to 1 modulo 2***, This is clear if p = 2; if p # 2, then ¢, = 1 mod 2°
and ¢° must be a square in Gal (L/K({)) by our choice of ¢,, Thus
condition (II) applies to q,, so inv, [4,] = 0. Hence 2(p) = [4,].

(b) Assume that p' = 2, that is that 2°7* > 24,

Pick a prime ¢, not dividing » such that [L(e;s+1)/Q, ¢'] =
o0 " %, where o, is the generator of the Sylow-2 subgroup of
Gal (Q(¢,)/Q) such that 2" *(¢,) = ¢(¢,), and ¥, is the automorphism
sending &;s+1 to €h+1. Now

[L(eet1)/K, q.] = (b2 )
for some g, 2 < g < 2°7". Hence [L/K, q,] = ¢°. Further,
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’31’37_29(523“) = (&)’ = (823+1)‘11f(‘11) ,

so h? = q¢{““mod2°*'. This implies that inv, [4,]=0 since we
arranged for f(q,) to be even.

On the other hand, we picked ¢, so that ¢, =1mod4 and
(¢./p) = —1. Hence (p/q)) = —1. Thus, by (3.10), inv,[4; ] = 1/2.
Therefore 2(p) = [4,,]-

Now let ¢ be a prime which does not divide n such that condition
(II) does not apply to ¢q. By Step 3, there is an algebra 4} such
that inv, [4}] = 1/2. If inv,[4¥] = 0, then 2(q) = [4}]. If inv,[4}] =
1/2, then 2(g) = [47] Qx 2(p).

Step 5. Condition (III) holds.

Suppose that p is a prime dividing % to which condition (I) does
not apply. Further suppose that |e(p, K/Q)|, = |e(v’, K/Q)|, for every
prime p’ = p which divides =.

Let g be a prime not dividing ». Let {(7v) = Gal(L(¢,)/L) and
7’4" be a Frobenius automorphism for p in L(e,)/K.

First suppose that inv,[4}] = 1/2 where 4} is an algebra of
the form 4,. From (3.9) and (3.10) we see that this implies that zb
is odd. Thus b is odd, which means that (p/¢) = —1. Further, if
» # 2, then our hypotheses insure that » = 1 mod 4. Thus (¢/p) = —1
if p#2, or ¢q =3 or 5mod8 if p»p=2. Suppose p #* 2, then
le(p, K/Q)/2° "], > 27% so the full 2-part of e(p, K/Q) is equal to
| (@) 2 Hence ¢’ =1mod2™ and [L/K,q]=4¢"". Since
h*" # 1mod 2™, we have by (3.11) that inv,[4}]=1/2. In the
case where p =2, |fl@)l,=2"? so ¢’? % 1mod2". However
[L/K, q] = 1. Thus, by (3.11), inv, [4}] = 1/2.

Now suppose that (p/g) = —1 and inv,[4}] = 1/2. Since
(p/q) = —1 we have that b is odd. Further, (¢/p) = —1 if p # 2 or
g=3o0r5mod8if p=2. Hence f(q) is divisible by |e(p, K/Q)/2°""|,
if p=2 or by 2° " if p = 2. This means that f(q) is even so that
xv is odd. Thus xb is odd. Hence (3.9) and (3.10) imply that
inv, [4}] = 1/2.

We have just shown that

inv, [4,] = 1/2 = inv,[4,] =1/2 and (¢/p)= —1.

Since every algebra class [A] in S(X), is a product of classes of the
form [4,], this gives condition (III).

In addition, this shows that £2(q) is in S(K), where ¢ is a prime
not dividing » such that (¢/p) = 1 and condition (II) does not apply
to q. This is because there is an algebra [4}] with inv, [4¥] = 1/2
by Step 3, and we have just seen that inv, [4}] = 0.
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This completes the proof of the theorem.

We have now determined the Schur subgroup of all fields K,
not containing a fourth root of unity, which have a cyclic extension
of the form Q(¢,). Observe that subfields of Q(c,¢) are included as
special cases. The Schur group of these fields was first found by
Yamada [8].
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