A NOTE ON EDELSTEIN'S ITERATIVE TEST AND SPACES OF CONTINUOUS FUNCTIONS

JACK BRYANT AND T. F. McCABE

In this note a question posed by Nadler is answered. It is shown that if *X* **is a compact Hausdorff space that con tains a sequence of distinct points that converge then there** exists a linear contractive selfmap f of $C(X)$ such that, for some x , the sequence of iterates $\{f^n(x)\}\$ does not converge. **In particular, the iterative test is not conclusive for** *c.*

Our setting is a metric space *(X, d)* and a contractive selfmap $f: X \rightarrow X$. In [1], Nadler introduces and motivates the following terminology: the *iterative test* (of Edelstein) *is conclusive* (for con tractive maps) provided that if f is a contractive selfmap of X with a fixed point then, for all $x \in X$, $\{f^{n}(x)\}$ converges. Nadler shows that the iterative test is conclusive (ITC) for finite dimensional Banach spaces, but that the iterative test is not conclusive (ITNC) for the spaces $l_p (1 \leq p < \infty)$ and c_p (the space of sequences convergent to zero). The technique used there does not seem to apply directly to the space *c* of convergent sequences, and part of Nadler's Problem 1 is exactly the question of whether *c* has ITC.

LEMMA 1. *The iterative test is not conclusive for c.*

Proof. Let $\{\alpha_n\}$ be an increasing positive sequence with (infinite) product 1/2. Define $f: c \rightarrow c$ by $f(\lbrace x_n \rbrace) = \lbrace y_n \rbrace$ where

> $y_{\scriptscriptstyle 1} = 0, \quad y_{\scriptscriptstyle 2} = -y^{\scriptscriptstyle 2} = \alpha_{\scriptscriptstyle 1} x_{\scriptscriptstyle 1}$, $y_{2n} = -y_{2n+1} = \frac{\alpha_n}{2}(x_{2n-2} - x_{2n-1}), \quad n = 2, 3, \cdots.$

Since f is linear, f has fixed point 0, and it suffices to show f is contractive at 0; if

$$
\{z_n\} \in c, \ \{x_n\} \neq 0, \ d(f(\{x_n\}), 0) = \sup\{|y_n|\} = |y_{n_0}|,
$$

since $y_n \to 0$. If $n_0 = 1$ or 2 then it is easy to see that

$$
d(f(\{x_n\}),\,0)
$$

If $n_{\text{o}} = 2k(k>1)$, we have

$$
|y_{n_0}| = \frac{\alpha_k}{2} |x_{n_0-2} - x_{n_0-1}| \leq \frac{\alpha_k}{2} |x_{n_0-2}| + |x_{n_0-1}|\n\n\leq \alpha_k d(\{x_n\}, 0) < d(\{x_n\}), 0).
$$

Let e_k be the sequence $\{\delta_{kn}\} = \{0, 0, 0, \dots, 1, 0, \dots\}$ (1 in the *k*th coor dinate). We have

$$
f^{j}(e_{1}) = \left(\prod_{i=1}^{j} \alpha_{i}\right)(e_{2j} - e_{2j+1}).
$$

In particular, $d(f^{j}(e_i), 0) = \prod_{i=1}^{j} \alpha_i \rightarrow 1/2$, and so $\{f^{j}(e_i)\}\)$ does not converge. (If ${f^{j}(e_1)}$ converges, then, since f is contractive, $f^{j}(e_1)$ must converge to the fixed point 0 of f .)

It is of definite interest that the map $f: c \rightarrow c$ constructed above is linear. It would seem to be easier to solve Nadler's Problem 1 (if a Banach space has ITC then it is finite dimensional) when re stricted to linear maps.

LEMMA 2. *Let Y be a normed space and let X be a subspace of Y. Let P be a projection of norm* 1 *from Y onto X. Then if the iterative test is not conclusive for X, it is not conclusive for Y.*

Proof. Let $f: X \rightarrow X$ be a contractive map with fixed point such that, for some x_0 , $\{f^*(x_0)\}$ does not converge. Define $g: Y \to Y$ by $g = f \circ P$. Since f is contractive and $||P|| = 1$, then g is contractive. Also, $g^{n}(x_{0}) = f^{n}(x_{0})$ (since $P(x_{0}) = x_{0}$), and so $\{g^{n}(x_{0})\}$ does not con verge.

If *X* is a compact Hausdorff space with a convergent sequence of distinct points, a projection *P* of norm 1 can be constructed from $C(X)$ onto a subspace that is linearly isometric to c .

Let *{xⁿ }* be any sequence of distinct points of *X* that converges and furthermore $x_n \to \bar{x}$. Let $P_i: C(X) \to c$ be defined as follows: if

$$
f\in C(X), P1(f) = \{y_n\} \text{ where } y_n = f(x_n).
$$

Since f is continuous $y_n \rightarrow f(x)$ and $P_i(f) \in c$. P_i is nonexpansive for

$$
||P_1(f)|| = \sup_n |f(x_n)| \leq \sup_{x \in \mathcal{X}} |f(x)| = ||f||.
$$

An isometric linear map *Q* is now constructed from *c* into *C(X)* such that $P_1 \circ Q(x) = x$. Let $\{U_i\}$ be a sequence of open sets such that $x_i \in U_i$, $U_i \cap U_j = \emptyset$ if $i \neq j$, and $\bar{x} \notin U_i$ for all *i*. For each *i* define f_i to be a function such that $f_i(x_i) = 1$, $f_i(X - U_i) = 0$ and $0 \leq f_i(x) \leq 1$ for all x. If $\{y_n\} \in c$ and $y_n \to y$ then define $Q(\{y_n\}) = f$ where

$$
f(x)=\sum_{n=1}^\infty f_n(x)(y_n-y)+y
$$

It is easily verified that f is continuous, $f(x_i) = y_i$ and $||f|| =$ $||{y_n}||.$ Hence $Q: c \to C(X)$ is a linear isometry and

$$
(P_1\circ Q)(\{y_n\})=P_1(\{y_n\})=\{y_n\}.
$$

Define $P: C(X) \longrightarrow C(X)$ as $P = Q \circ P_1$. Since P_1 is onto and Q is an isometry then $||P|| = 1$ and P is a projection, for

$$
P^{\scriptscriptstyle 2} = Q {\scriptscriptstyle \circ} P_{\scriptscriptstyle 1} {\scriptscriptstyle \circ} Q {\scriptscriptstyle \circ} P_{\scriptscriptstyle 1} = Q {\scriptscriptstyle \circ} P_{\scriptscriptstyle 1} = P \ .
$$

Thus P is a projection of norm 1 from $C(X)$ onto $Q(c)$.

Combining this construction with Lemmas 1 and 2 we have:

THEOREM. *Let X be a compact Hausdorff space that contains an infinite sequence of distinct points that converge. Then the iterative test is not conclusive for C(X).*

In each of the above, there is a linear selfmap for which the iterative test fails.

REFERENCE

1. S. B. Nadler, Jr., *A note on an iterative test of Edelstein,* Canad. Math. Bull., to appear.

Received November 11, 1971.

TEXAS A AND M UNIVERSITY COLLEGE STATION, TX 77843 AND PAN AMERICAN UNIVERSITY EDINBURG, TX 78539