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A CHARACTERIZATION OF PSp(2m,q) AND PQ@2m+1, q)
AS RANK 3 PERMUTATION GROUPS

ARTHUR YANUSHKA

This paper characterizes the projective symplectic groups
PSp(2m, q) and the projective orthogonal groups P2(2m-1, q)
as the only transitive rank 3 permutation groups G of a set
X for which the pointwise stabilizer of G has orbit lengths
1, q(¢*2—1)/(g—1) and ¢*™ ' under a relatively weak hypo-
thesis about the pointwise stabilizer of a certain subset of
X. A precise statement is

THEOREM. Let G be a tranmsitive rank 3 group of permu-
tations of a set X such that the orbit lengths for the point-
wise stabilizer are 1, q(¢"">—1)/(¢g—1) and ¢ ' for integers
g>1 and r>4. Let 2' denote the union of the orbits of
length 1 and q(q9"*—1)/(¢g—1). Let R(xy) denote N{z*: x, y€z'}.
Assume R(zy)+{z, y} for yex*—{x}. Assume that the point-
wise stabilizer of z*Ny* for y ¢ x* dees not fix R(xy) point-
wise. Then 7 is even, ¢ is a prime power and G is isomor-
phic to either a group of symplectic collineations of projective
(r—1) space over GF(q) containing PSp(r,q) or a group of
orthogonal collineations of projective r space over GF(q)
containing P2(r-+1, q).

1. Introduction. The projective classical groups of symplectic
type PSp(2m,q) for m = 2 are transitive permutation groups of
rank 3 when considered as groups of permutations of the absolute
points of the corresponding projective space. Indeed the pointwise
stabilizer of PSp(2m, q) has 3 orbits of lengths 1, q(¢"* — 1)/(¢ — 1)
and ¢*™'. In a recent paper [7], the author characterized the
symplectic groups PSp(2m,q) for m =3 as rank 3 permutation
groups.

THEOREM A. Let G be a transitive rank 3 group of permute-
tions of a set X such that G,, the stabilizer of a point wec X, has
orbit lengths 1, q(@"* — 1)/(¢q — 1) and q"* for integers q =2 and
r =5. Let z* denote the union of the G orbits of lengths 1 and
qlg"*—1)/(g — 1). Let R(xy) denote N{z': =x,yez'}. Assume
R(zy) + {x, y}). Assume that the pointwise stabilizer of z* is tran-
sitive on the points umequal to x of R(xy) for yeéx'. Then r is
even, q s a prime power and G is tsomorphic to a group of sym-
plectic collineations of projective (r — 1) space over the field of q
elements, which contains PSp(r, q). '
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We note that the orthogonal group PR@2m + 1,q) for m = 2
acts on the singular points of the orthogonal geometry of a projec-
tive 2m-space over the field of ¢ elements as a rank 3 permutation
group in which its pointwise stabilizer has the same orbit lengths
of 1, g(¢™* — 1)/(¢ — 1) and ¢*™* as PSp(2m, q) in its action on the
absolute points of the symplectic geometry. In the proof of Theo-
rem A, the possibility that G was an orthogonal group was elimi-
nated because of the hypothesis that a hyperbolic line R(zy) for
y ¢+ carried at least 3 points. It seems reasonable to expect that
with a change of hypothesis a characterization of the rank 3 groups
G in which the pointwise stabilizer has orbit lengths 1, ¢(¢"* — 1)/
(g — 1) and ¢**' is possible and that these groups will be subgroups
of the collineation groups of the symplectic geometry or of the
orthogonal geometry. We establish a result of this nature in the
following form.

THEOREM B. Let G be a transitive rank 3 group of permuta-
tions of a set X such that the orbit lemgths for G,, the stabilizer
of a point x in X, are 1, q(¢"* — 1)/(¢ — 1) and q"* for integers
g>1 and r > 4. Let x* denote the union of the G,-orbits of length
1 and q(@"* — 1)/(¢ — 1). Let R(xy) denote N{z*:z, y€z'}. Assume
R(xy)#{x, y} for yeaxt — {x}. Assume that the pointwise stabilizer
of xt Nyt for y¢axt does not fix R(xy) pointwise. Then r is even,
g is a prime power and G = H where either H is a group of
symplectic collineations of projective (r—1) space over GF(q) such
that H= PSp(r, q) or H 1s a group of orthogonal collineations of
projective r space over GF(q) such that HI= P2(r + 1, q).

The proof of Theorem B actually yields the following corollary
which distinguishes between the two cases.

COROLLARY. Assume the hypotheses of Theorem B.

(i) Assume that the pointwise stabilizer of a* is montrivial.
Then r 1S evem, q ts a prime power and G = H where H is a
group of symplectic collineations of projective (r — 1) space over
GF(q) such that H=PSp(r, q).

(ii) Assume that the pointwise stabilizer of x* s trivial and
that the pointwise stabilizer of x* Ny* for y¢x' does not fix R(zy)
pointwise. Then r is even, g is a prime power and G = H where
H is a group of orthogonal collineations of projective r space over
GF(q) such that H= P2(r + 1, q).

Note that Corollary B(i) is a stronger result than Theorem A.
We consider this paper a continuation of [7] and note that the
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proof of Theorem B is similar to that of Theorem A. In §2 we
will prove Theorem B. At times we will refer the reader to [7] for
the proofs of several statements. There are other characterizations
of the rank 8 classical groups, due to D. Higman, W. Kantor and
D. Perin [3, 4, 5].

2. The proof of Theorem B. In this section assume that G
is a rank 3 permutation group on X which satisfies the hypotheses
of Theorem B. Let D(b) denote the G,-orbit of length q(¢" % — 1)/
(g — 1) and let C(b) denote the G,-orbit of length ¢"~'. Let v, denote

(@ — D/(g—D.

LemMmA 2.1. (i) G is primitive of even order.
() p=N+2=0v,,
(iii) e N bt # R(ab) for be D(a).

Note that 2.1 (iii) eliminates problems with generalized qua-
drangles.

LEmMMA 2.2. (i) |a* NC®)| =q* for be D(a).
(ii) G, 1s transitive on the points of a' N C(b) for be D(a).

For the proofs, see Lemmas 3.1 and 3.2 of [7].

NotaTION. If {x, @, ---, x;} is a set of 7+ = 2 distinet points of
X, then let R(%,, %, -+, %, denote

N{ztr @y, By oo+, 2,620 for z2zeX} = R, %y, +++, %) .

LEMMA 2.3. (i) yeR(®®,---2,) of and only iof y* 2 N{zf::1=
Jj =1}

(ii) gR@w,---®)) = R(g(@)g(®@,)---9(x,) for geG.

(iii) R, -x) = R(y,y, -y, of and only if

Nljilsj<i=nhlsji<i).

REMARK. This lemma is valid for any permutation group G on
X and for any self-paired orbit D(z) of G, where z* = {x} U D(%).

Proof. In the proof the intersections are taken from j=1 to 1.

(i) Assume y€ R, --2,). Let we Nx}. Thenx, ,, +--, x, €
w* by Lemma 2.1 (vi) of [7]. Since y € R(%,2,- - -x,) and R(,%,+++2,)<
w*, it follows that y e w' and wey*'.

Conversely assume y*2Nxf. Let z,, -, x,ew. Then
weNarSyt. So yew* and y € R(wx,- - -2,).
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(i) By () ze R(g@)g(@,)---9(®)) iff 22N g(®)" iff (97(2))* =2
Nz iff g7'(2) € R(@,@,- « - 2,) iff z € g(R(2.2,- - - 2,)).

(iii) Assume R(@.%,---2,) = RY,Y,---y;). For 174, z;¢
Ry, --y). By (i) 2f2nyi for 17t So Na;j2ny:. It
follows that N} = Ny;i.

Conversely assume Nz; = Ny). Then ze R(@z,---x,) iff 222N
2y = Ny; iff z2e Ry, --y,). This completes the proof of the
lemma.

DEFINITION. A l-clique is a set {x} for xe X.

For ¢ =2, an <t-clique is a set {x, ®,, ---, %} of points of X
such that {x, @, -+, 2,_,} is an (¢ — 1)-clique, #,€ D(z;) for 1 <5 <
1 —1 and %, ¢ R(2,---2,_,) where R(z,) = {z,}.

If {x, %, -+, 2} is an 4-clique, then we will call R(x2,---2,) an
“4-space.”

Note that a “2-space” is a totally singular line of [2] and a
“3-space” is a “plane” of [7]. Eventually an “i-space” will corres-
pond to a totally singular subspace generated by ¢ linearly inde-
pendent singular points of a classical geometry.

NoTATION. Let T(xy) denote the pointwise stabilizer in G of
- Nyt for yeC(x). Thus
Txy) = N{G,:zex* Ny*}.

PrROPOSITION 2.4. T(xy) < Gruy ond T(zy) is transitive on the
points of R(zy) for y¢xt.

Proof. First we prove that Gy, is primitive on the points of
R(zy). Indeed if | R(zy)| > 2, then G, is 2-transitive on the points
of R(xy) by a lemma in [2]. If R(zy) = {z, y}, then |G: Gz,y| =
nl/2 if y¢x* and |G: G,,| = nl. Therefore |Gy Griy.|=2 because
Grians = G:HI’

If g€ Gruy, then

9(R(zy)) = R(g(2)9(y)) = R(zy)
and
gl@)  Ngly) =a Ny
by Lemma 2.3. But
T@y)y = N{G,m:zea Ny'} = T(g@)9(y))
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and so T(wy)’ = T(xy). Therefore T(xy) is a normal subgroup of
the primitive group Gg,,. Since T(xy) does not fix R(xy) pointwise
by hypothesis of the theorem, it follows that T(xy) is transitive on
the points of R(xzy).

Note that Gz, 18 a doubly transitive group on the points of
R(xzy) and has a normal subgroup I(zy). By familiar classification
theorems not needed here, |R(xy)| — 1 is usually a prime power.

Note that if T'(x), the pointwise stabilizer of z*, is nontrivial,
then T(xy) does not fix R(xy) pointwise for y ¢ x* because T(z) is
semiregular off * by a lemma in [2] and T(x) < T(xy).

Denote the group generated by T(xy) for all z,yeX with
y € C(z) simply as K. Thus

K=(T(y):x,yeX,yecCx)) .

ProposiTION 2.5. (i) If {x, o, ---, %} 98 a set of © distinet
points of X, then K,,,., 18 transitive on the points of
N{zi: 1 =5 =9} — B@®, - -2).

(11) K 1s transitive on i-cliques.

Proof. (i) In the proof the intersections are taken from
j=1 to i. Let ¢ and h be distinct points of N} — R(®.2,:--2,).
Rither ¢eC(h) or ce D(h). If c¢eC(h), then R(ch) is a hyperbolic
line in N#}. Since |G| is even, @, @, -+, 2, €c* N h* and so T(ch)
fixes @, %, ---, ;. By Proposition 2.4, there exists te T(ch) <
K, ., ., such that ¢(c) = h.

Assume now that ¢ e D(k). Since ¢, h ¢ R(x.x,---2,), there exists
by Lemma 2.3 (i) ve Nz; NC(c) and ve Naf N C(h). There are 3
possible cases to consider:

(1) weCh), 2) veClc) and () we D) and v e D(c).

(1) If we Nz NCl)nCh), then R(cu) is a hyperbolic line in
Nxj. By Proposition 2.4, there exists t e T(cu) = K,,,,...., sSuch that
t(¢c) =u. The line R(uh) is hyperbolic and lies in Nz}. By Proposition
2.4, there exists s € T(uh) = K, ,,...., such that s(u) =h. Thus st(c)=h
and ste K, ..y,

(2) If venzfNCle)NnC), then a proof similar to that of
case (1) yields the desired result.

(8) uenazfNCle)N DH) and ve Nz N D) N Ch). Since ce
D(h), there exists w e R(ch) — {¢, h} because by hypothesis | R(ch)|>2.
Note w e C(u), for if wew*, then ¢e R(ch) = R(wh) Zu', a contra-
diction in case (3). Now weR(ch)S Nxf. But we¢R@®2z, -z,
because ue Nz NCw). So uenzf NC)NCw). By case (1)
there exists t¢ K,,...,, such that #(c) = w. Note weC(v), for if
wewt, then he R(ch) = R(wh) = v*, a contradiction. Now ve NzfN
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C(w) N C(h). By case (1) there exists se K, ,....,, such that s(w)=h.
So st(c) = h and ste€ K, ,,....,.

(ii) Let {z, 2, ---, 2} and {y, ¥, ---, ¥;} be 2 i-cliques. The
proof is by induction on 4. First note that K is transitive on X
because K is a normal subgroup of the primitive group G. If 1=1,
then there exists ke K such that k(x,) =y,. Assume ¢ >1. By
the induction assumption there exists g € K such that g(z;) = y; for
j=1,2+--,7—1. From Lemma 2.8 (ii) and the definition of -
clique, it follows that {y, ¥, ---, ¥:uy, 9(2,)} is an i-clique because
(@, @ +++, Ty, %} is an i-clique. Since

9@), vy, e N{y/:1 =71 -1} — RWY*Yi_r) »

by (i) there is h e K, ,,...,,—, such that h(g(z,)) = y,. Thus hg(z;)=vy;
for j=1,2, ---,4. This completes the proof of the proposition.
Note that 3-cliques exist by Lemma 2.1 (iii).

PROPOSITION 2.6. G, is a rank 3 permutation group on the set
of totally simgular lines through a. For be D(a), Gipwy has mon-
trivial orbits

{R(ac):cca* Nb* = R(ad)}
and
{R(ac): cea* N C(O)} .
The proof is similar to that of Proposition 3.4 of [7]. This
proposition follows from Lemmas 2.2 and 2.8 and Proposition 2.5 (i)

for ¢ = 2 just as Proposition 3.4 of [7] follows from Lemmas 3.2
and 2.2 and Proposition 3.3 of [7].

PROPOSITION 2.7. Totally singular lines carry q + 1 points.

PropoOSITION 2.8. If be D(a), the X = U{c*: ¢ € R(ab)}.

PROPOSITION 2.9. X together with its totally singular lines
forms a mondegenerate Shult space of finite rank = 3 in which

lines carry q + 1 points.

The proofs of the above three statements are identical to the
proofs of Propositions 3.5, 3.6, and 3.7 of [7].

LEMMA 2.10. If {z, 2, <+, x;} s an i-clique, then R(xx,---%;)
18 a Shult subspace of X.
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Proof. In the proof the intersections are taken from j=1 to 3.

Let d,eec R(z®,---x;). By definition of i-clique, z,€ N2} for
1 <%k < j and so by definition of “i-space” and by Lemma 2.8 (i) it
follows that

deR@m, ) S NafSet .

Thus any two points of R(x,2,---x;) are adjacent. Let the line
R(zy) meet R(x,2,---®;) in {u, v}. Then R(zy) = R(uv) and 2* Ny'=
wt Nvt. If ze R(xy), then

ZL;xJ ﬂyl=uLﬂvi;ﬂx}

since wu, v e R(x.%,+++-%;) by Lemma 2.3. Thus ze R®2%, --2,) and
R(xy) < R(x,2,-+ +®;). Therefore R(x,---x;) is a Shult subspace of
X, as desired.

PrOPOSITION 2.11. (i) ¢ ts a prime power and r is even.

(ii) Either X 1is isomorphic to the polar space S associated
with an alternating form f defined on a projective space P of
dimension r — 1 over GF(q) or X is isomorphic to the polar space
S associated with a symmetric form f defined on a projective
space P of dimension r over GF(q) for q odd.

For the proof see Proposition 3.9 of [7].
Since 7 is even and r = 5, there exists a natural number m =3

such that » = 2m.

PRrOPOSITION 2.12. (i) G s 1isomorphic to a subgroup of
Pru(y), the group of collineations of P which preserve the form f.

(ii) For ze X, ¢(x*) = {weP: f(w, w) =0, f(w, (x)) = 0} where
¢: X— S is a polar space isomorphism.

(iii) For an i-clique, |R(x,2,---2,)| = v, and | N{z;:1 = j<i}|=
Ve

(iv) X contains m-cliques but does mot contain (m + 1)-cliques.

Proof. For (i) and (ii) see Proposition 8.10 (i) and (ii) of [7].
(iii) From (ii) it follows that

(R, %)) = N{(2)": (@), 6(2s), -, $(w,) € 4(2*))

which equals the set of singular points in the intersection of all
the hyperplanes containing ¢(x,), #(2,), ++-, ¢(%;). But this set is the
projective subspace generated by &(z,), (x,), ---, ¢(x,) since o(x,) L
#(z;) for all k, j. Thus |R(@®,:--2,)| = v,.

From (i) |N{zf:1 <5< 4 = v,
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(iv) Since 7 = 2m, (iv) follows from (iii).

Now let {x,, @, -+-, 2} be a fixed m-clique of X. Then
2, C R(z.2,) C R(x,2,2,) C ++» C R(X,%,°  +2,,)

is a chain of Shult subspaces of X of length m = 3. Define sub-
groups K, of K as follows:

K, =K
K, = K., N Kpapogeoon,,) for 2=ct=m+1.
Note the choice of the fixed ¢-clique is arbitrary since K is transi-
tive on ¢-cliques.
PROPOSITION 2.18. (i) K, is transitive on the set of “i-spaces”
containing R(xx,--x,_), for 2< 1 < m.
(i) |K: Kpiil = II721 0350

Proof. (i) Let Rz, --x,_,d) and R(xa,---x,_.¢) be “i-spaces”
containing R(z,%,+--2,_,). Then

7—1
d,ec ﬂ1 2y — R(@®se» o 2,_,)
=

a set on which K,,,...,., is transitive by Proposition 2.5. There
exists k€ K, ;,...,,_, such that k(d) = e. By Lemma 2.3 (iii), it follows
that

k(R(‘,'leZ. * 'mi—ld)) = R(x1x2' ° 'xl—ie)

and that k€ K,.
(ii) For 2=7=m the number of “i-spaces” containing R(x,&, + *%;_,)

(

So |K;: K| = Ystm-ti—y by (). Since K is a normal subgroup of
the primitive group G, K is transitive and |K,: K,| = v,,. Now (ii)
follows.

is

— |R@ay--0.)| ) [( R@a, - -2)| — | Ry --0.0)])

i—1
No:
i=1

= (Vom—ti—y — Vi) (Vs — Vicy) = Vgimetimny »

PropOSITION 2.14. (i) (K) is a flag-transitive subgroup of
PGU(f), the group of projective transformations of P which pre-
serve f.

(ii) If X is symplectic, then (K) = PSp(2m, q).
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(iii) If X is orthogonal, then (K) = PR(2m + 1, q).

Proof. Let z,y€ X with yeC(z). Since T(xy) is the pointwise
stabilizer in G of z* N y*, it follows that «(T(xy)) is the pointwise
stabilizer in (@) of ¢(x)* N4(y)t. If t is a nontrivial element of
T(xy), then (t)e PI'U(f) and fixes ¢(x)* N é(y)* pointwise. This
implies that (t) € PGU(f) and so (K) < PGU(Y).

Now (K, fixes the flag

{¢<x1)7 <¢((I71), ¢(x2)>y Tt <¢(x1); ¢(£U2), °t ¢(xm>>} .

If B is the subgroup of PGU(f) which fixes the above flag, then
B is a Borel subgroup of PGU(f) and BN ¥(K) = 4(K,..,). There-
fore by Proposition 2.13 (ii)

| By(K)| = | Bl [ $(K): 4(Kops)|
= ™ — D™ [L v = |[PGU()| -

Thus By(K) = PGU(f) and +(K) is a flag-transitive subgroup of
PGU(f). By a theorem of Seitz [6], it follows that

¥(K) =z PSp(2m, q)
if X is symplectic and
w(K) = PR(2m + 1, q)

if X is orthogonal, as desired.
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