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TORSION FREE ABELIAN GROUPS QUASI-PROJECTIVE
OVER THEIR ENDOMORPHISM RINGS II

C. VINSONHALER

Let R be a commutative ring with 1, and X an R-module.
Then M = X @ R is quasi-projective as an FE-module, where
E is either Hom; (M, M) or Homg (M, M). In this note it is
shown that any torsion free abelian group G of finite rank,
quasi-projective over its endomorphism ring, is quasi-isomor-
phic to X @ R, where R is a direct sum of Dedekind domains
and X is an R-module.

Introduction. If R is a ring with identity, an R-module M is
said to be quasi-projective if for any submodule N of M, and R-map
f: M — M/N, there is an R-map f: M — M such that f followed by
the factor map M — M/N is equal to f. Results on quasi-projective
modules appear in [3], [6], and [7]. In this note, we will be con-
cerned with the case where M = G is a torsion free abelian group
of finite rank and R = Hom, (G, G) = E(G), and call G “Egp” if G
is quasi-projective as an E(G)-module. The strongly indecomposable
Eqgp groups have been characterized in [6], so we will focus on those
groups G (always torsion free abelian of finite rank) such that nG <
G, PG, S G for some integer n = 0 and subgroups G, # 0, G, = 0
of G. In fact, any group G can be quasi-decomposed into a direct
sum of strongly indecomposable summands, ®"GC G PG L --- P
G, C@G. It is well-known that such a decomposition is unique up to
order and the quasi-isomorphism class of the summands. It is there-
fore desirable to work with a slightly more general notion of quasi-
projectivity which is invariant under quasi-isomorphism:

DEFINITION. An R-module M is almost quasi-projective (agp) if
there exists an integer n # 0 such that given any submodule N of
M, and R-map f: M — M/N, there is an R-map f: M — M such that
f followed by the factor map M — M/N is equal to nf.

In case M is a group G and R = E(G), G is called almost E-
quasi-projective (aFEqp).

PRrOPOSITION 1. Let G and H be quasi-isomorphic groups (nota-
tion: G ~ H). If G is aEqp, then H is aEqp.

Proof. Assume that mG S HC G for some integer m #= 0. Then
if acKEG), ma|pc E(H); and if Be E(H), Bme E(G), so we say
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mE(G) S E(H) and mE(H) < E(@). Now let K be a fully invariant
subgroup (E(H)-submodule) of H, and f: H— H/K. Then K* =
E(G)K) satisfies mK*Cc KC K* and f induces f*:G— G/K* via
f*(x) = f(mz) + K*. By assumption this lifts to a map g€ E(G)
such that Tg=mnf*, where 7: G—G /K * is the natural factor map. Let
y€ H. Then g(y¥) = nf*(y) mod K* = nf(my) mod K* = nmf(y) mod K*.
This implies mg(y) = nm*f(y) mod K, so that mg is a lifting of nm?*f
and H is aEqp.

By the preceding proposition we may, without loss of generality,
work with a group G =G, PG, P --- PG, where each G, is strongly
indecomposable. The following notation is also used:

E = E(G) = Hom, (G, G).

E, = E(G)).

J, = J(E,) = Jacobson radical of E..

EG, = E(G)G,; = E-submodule of G generated by G,.

Now, a sequence of lemmas leads to the main result.

LEMMA 2. Suppose G is E-indecomposable. Then any E-map
of G into G (any map in the center of F) is either monic or wmil-
potent.

Proof. Let f be an E-map of G into G. Then f = @@L, f; where
fi: G,—G,; is monic or nilpotent (see [4]). Let H,= G.f; is nilpotent
and H, = @ G;f; is monic. Since G is E-indecomposable, there is
a nonzero map between H, and H, (or H, and H,), say h: H,— H,,
h # 0. Letting g, = @ f; f; nilpotent and g, = P f; f; monic, we
have g,h = hg, so that g%h = hg* for all k£ > 0. Since g, is nilpotent,
g°h = 0 for some k > 0. Since g, is monie, this says h =0, a con-
tradiction.

LEMMA 3. Let G be aEqp and E-indecomposable. Then for any
- nontrivial decomposition G = H K, either EH ~ G or EKNH ~ H.

Proof. Suppose the conclusion is false. Then the map given by
the identity on H/EK N H and zero on K/K N EH is an E-map and
can be quasi-lifted to an E-endomorphism of G. But the lifting can
be neither monic nor nilpotent, contradicting Lemma 2,

PROPOSITION 4. Let G be aFEqp and E-indecomposable. Then
for each G, either G|/EG, is bounded or there is a j +* i such that
G,/EG; N G, is bounded.

Proof. Without loss of generality, assume 7 = 1. By Lemma
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8, either G/EG, or G,/E(@:.,G,) N G, is bounded. In the latter case,
let H,=EG NG, and H,=E@;.G)NG. Then (H NH)P
[E@®:G)NG,]D (EG, N BL; G;) = K is an E-submodule of G, and
if G/H,N H, has a nontrivial quasi-decomposition, then the. quasi-
projections can be extended to E-maps of G/K into G/K which can
be quasi-lifted to E-endomorphisms of G. Again, the liftings can
be neither monic nor nilpotent, contradicting Lemma 2. Therefore,
G/H,N H, has no nontrivial quasi-decompositions, so that either
H NH,~H, or H N H,~ H, since G,/H, + H, is bounded.

Case I. If H, N H, ~ H,, then H, ~ G, and we are done.

Case II. If H, N H, ~ H,, then H, ~ G,.

In this case, let H] = EG, N G, and H, = E@!.G.) NG, and let
K = H;OH; EB E($?=4 Gz) N EG3n Gz @ E(@?:d Gi) n G3 EB EG3ﬂ @?:4 Gi-
Then it is straightforward to check that K’ is fully invariant and
that, as in the first paragraph, quasi-projections of G,/H;N H; can
be extended to E-maps of G/K' into G/K’, which quasi-lift to maps
in E. (It follows from Lemma 8 that E@:,G,) NG, ~G,.) Thus
as before, either HiNH;, ~ H;, or HiNH,~ H;. In Case I we are
done, and in Case II we may repeat the above argument with slight
modifications to eventually get G,/G, N EG; bounded for some j.

COROLLARY 5. There is a G, such that G/EG, s bounded.

Proof. By the preceding proposition, either G/EG, is bounded
or EG, NG, ~ G, for some 4. Then either G/EG, is bounded or
EG,NG, ~ G, for some i,. Inductively obtain a sequence 1,1, 1,
-+, t,_, such that EG, NG, _, ~G,,_,. (Unless the process stops, in
which case G/EG,, is bounded for some k.) It follows that G/EG
is bounded.

Henceforth the G; of Corollary 5 will be denoted by G,. That
is, G/EG, is bounded.

in—1

LEmMmA 6. If G,/EG, NG, 1s bounded, then either G, ~ G, or
EG, NG, € JG,.

Proof. Consider G, f-» @, LR G, If gf is monic, then kg'"f has an

inverse in E(G, for some 0 < ke Z. Then G, EX G, g, G, el )", G,
gives a quasi-splitting of G,. Since G, is strongly indecomposable,
GO ~ Gi'

On the other hand, if gf is nilpotent for all possible g and f,

then EG, N.G, S JG, since EG,N G, is of bounded index in G,.

Lamma 7. G,/J.G, ~ E,/J,
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Proof. Let E,= E,/J,, Then Q@®,E, is a division ring. Let
Z, = + J,Gy +++, T, = x, + J,G, be a maximal E,-independent set in
G,/J,Gy = G,. Then A = G,/>;_, E %, is torsion and furthermore must
be bounded. If A were unbounded it would have uncountably many
endomorphisms which would have to be induced by different endo-
morphisms of G. Now consider G./EZ, N S, EF,. If r =2, this
group has a nontrivial quasi-decomposition, and the quasi-projections
can be lifted to maps in Z which are neither monic nor nilpotent,
a contradiction. Thus » =1 and G, ~ E,;Z, = E,.

LeEMMA 8. Let Z, be the center of KE,. Then Z,+ J, = E,.

Proof. For any z <€ E,, right multiplication by 2z is an E;-map

Eo/J.,—x—? /Jo. Using the previous lemma, x, quasi-lifts to an E, map
of G,, #,, which is in Z, since it is an E-map. Clearly %, — x € J,.

The next lemma is well-known but is included for completeness.

LEMMA 9. Let E be a ring with tdentity and wnilpotent ideal
J. Let M be an E-module and L a submodule such that L-+JM=DM.
Then L = M. (This says JM is small in M.)

Proof. JL+JIM)=JM=JM<ZL + J)M=M =L + J:M =
M=L+J*M for all ¥ >0 by induction. Since J is nilpotent,
M = L.

PROPOSITION 10. G, s strongly irreducible, and hence G, ~
E, = Z,.

Proof. Choose a subring S of E, maximal with respect to
(1) Snd=0 (2) ScZz, (3) @NE,CS.

Note that S is a pure subgroup of E, and is an integral domain.
Suppose z, &S + J, for some z,€ Z,. Then S[z,] properly contains S
and satisfies (1), (2), and (3), a contradiction. Thus Z,c S + J,=
S J, = E,.

Now from the proof of Lemma 7 it follows that G, ~ Ex, +
J,G, for some x,¢G, Hence, by Lemma 9, G, ~ Ex, and K =
Ker (E,— Ex,) = J,. Thus G,~ E/K =S® J,/K. Since G,is strongly
indecomposable, G, ~ S. Therefore G, is strongly irreducible, and
hence G, ~ E, = Z, by the results of [5].

It now follows from Lemma 6 that for any G, either G, ~ G,
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or Hom (G,, G,) = 0. Thus, up to quasi-isomorphism and relabeling,
G=@._ H ®.- G, where H; =G, 1< j <k and Hom (G, G,) =0,
1531

In the following, let G' = @i.; G;, an E-submodule of G. For
any map ¢¢c E, = E(G,), ¢D -+ D ¢ is an E-map of G/G’ into G/G’

k time

and hence can be quasi-lifted to ;n E-map, +, of G. The map 4 is
unique, since if 4" were another lifting (y» — ¥')(@%., H;) = 0, so that
A — ' = 0 because EH; N G; ~ G, for all 4, j. Since ¢ commutes
with projections, ¥(G;) < G; for each ¢. Thus a ring isomorphism
0 — E,— E(G,) is obtained via ¢—r|;. This yields a unitary E,-
module structure on G,.

Now if R, is the ring of integers in @ ® E, then G, ~ E, ~
R, QR E, and R,Q E, is a Dedekind domain.

We are now ready for the main result.

THEOREM 11. If G s a torsion free abelian group of finite
rank, then G is a Egqp if and only if G ~ RP X, where R is a
direct sum of Dedekind domains, and X s a unitary R-module.

Proof. The “if” direction has been demonstrated.

If G is E-indecomposable, let R = R, Q@i  E, and X =R, ®
!_. G, in the notation of the preceding lemma and remarks. The
general case follows by taking direct sums.

REMARK. If G =R X in the above, it is clear that G is
actually Egp. It would be nice to know exactly which quasi-iso-
morphic images of G were also Egp.
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