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ON THE RADON-NIKODYM PROPERTY IN A
CLASS OF LOCALLY CONVEX SPACES

ELIAS SAAB

In an earlier paper we studied the Radon-Nikodym prop-
erty (RNP) for Frechet spaces. D. Gilliam continued the study
by examining the RNP for locally convex spaces with the strict
Mackey convergence property. The aim of this paper is to take
one more step by studying the RNP for the class of locally convex
spaces in which every bounded subset is metrizable. Although
this class strictly includes the class of spaces with the strict
Mackey convergence property, our goal is not a generalization
for the sake of generalization. Indeed, we shall prove a theorem
that reduces the study of the RNP for this class of spaces directly
to the study of the RNP for Banach spaces. This will provide a
quick and simultaneous extension of many of the basic
Radon-Nikodym theorems in Banach spaces to this class of
locally convex spaces. We hope that our technique will
eliminate some of the mystery that seems to surround the RNP
for locally convex spaces.

1. Definitions and preliminaries. Throughout this
paper (E, τ) will always be a quasi-complete locally convex Hausdorff
space in which every bounded subset is metrizable and r will denote its
topology.

Let (T,Σ,P) be a probability space and m:Σ—»JE be a vector
measure. For every continuous semi-norm q on E, the q -variation of m
over X in Σ is defined to be

X/}Γ=i disjoint, X, C X and X E Σ

for 1 S / ^

The function | m \q is an extended real-valued measure. The vector

measure m is said to be of bounded variation if | m \q(T) < + o° for every

continuous semi-norm q on E. Also m is said to be P-continuous

(denoted m < P) if m (X) = 0, whenever P(X) = 0 and X G Σ. It is

clear that m <P ύ and only if for every continuous semi-norm q on E we

have \m\q<P. The set

Am (Σ) = { | ^ g ; X G Σ, P(X) > θ}

is called the P'-average range of m.
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DEFINITION 1.1. A function /: T-+E is said to be P-integrable if
and only if there exists a sequence fn of simple functions such that:

(i) limn/n(ί) = /(0 P-almost everywhere (P.a.e.)

(ii) limj q(fn(t)- f{t))dP = 0 for every continuous semi-norm q

on E.

This definition allows us to define I fdP = limπ I fndP for each X in
Jx Jx

Σ, using the fact that E is quasi-complete.
It can be verified that this definition is independent of the choice of

the sequence (/n), and if F is another quasi-complete locally convex
Hausdorff space and U: E-+F is a continuous linear operator, then
U°F is also P-integrable and u(ί fdp) = ί U<>fdP for all X in Σ.

We adopted this definition because all the P-integrable functions we
will be dealing with take their values in a bounded metrizable set. This
definition is equivalent to the one used in [15] when the space E is a
Frechet space.

DEFINITION 1.2. Let C be a closed bounded convex subset of
E. The set C is said to have the RNP if for every probability space
(Γ, Σ, P) and every vector measure m : Σ-» E whose P-average range is
contained in C there exists a P-integrable function f: T-*C such that

m (X) = ί fdP for every X in Σ.
Jx

If every bounded closed convex subset of E has the RNP, then E is
said to have RNP.

Note that in this definition the boundedness of the set C insures that
any vector measure whose P-average range is contained in C is of finite
variation and is P-continuous.

For each subset B of E, let conv(β) denote the closed convex hull of
B and define s(B) to be the set

and Σ λHbn converges).
n = l J

The set s(B) is called the s -convex hull of JS. It is clear that
BCs(£)Cconv(£).

DEFINITIONS 1.3. A subset B of E is said to be deniable
(s-dentable) if and only if for every zero-neighborhood V in £ there
exists bEB such that b£ conv(B\(b + V)) (6g s(B\(b + V))).

A set B is said to be subset deniable (subset s-dentable) if every
subset of B is dentable (s-dentable).
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If A is a bounded subset of E, a slice of A is a subset of A defined
by

S(f,r,A) = {xEA ;/(x) ^ sup Λ /- r}

where / is in £*,/y 0 and r >0.

DEFINITION 1.4. A point x in A is said to be denting if for every
zero-neighborhood V in E x £ conv(A \(x + V)).

DEFINITION 1.5. A point x in A is said to be exposed if there exists
/ E E* such that f(x) = supA/ and f{z)<f{x) for all z ε A, z ^ x.

DEFINITION 1.6. A point x in A is said to be strongly exposed if
there exists f E E* such that for every zero-neighborhood V there exists
r >0 such that xES(f,r,A)=S and S - S C V.

Before proving the main theorem, we are going to give some
examples of locally convex spaces in which every bounded subset is
metrizable.

Obviously every Frechet space and every locally convex space with
the strict Mackey convergence property [10] belong to this class. The
space V with its w *-topology belongs to this class but does not have the
strict Mackey convergence property.

It can be shown that this class is sequentially closed under strict
inductive limits: in particular every LF-space belongs to this class.

The results of this paper were announced in [16].

2. The space (JEM, JV): properties and consequences.
Let C be a closed bounded convex subset of (E, r), let M =
conv(C U - C) and let EM - U "βlwM. Then we have the following
theorem.

THEOREM 2.1. There exists a norm N on EM such that the topology
induced by (EM, N) on M coincides with the topology induced by (E, τ)
on M.

Proof. There exists a sequence Vn of closed absolutely convex
zero-neighborhoods in {E, τ) such that

(1) Vn+1+ Vn+ι C Vn for every n S 1.
(2) {Vn Π ( M - M)}n^j forms a fundamental system of zero-

neighborhoods in (M - M, r).
Let τi be the topology on E that has {Vn}n 1̂ as a fundamental system
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of zero-neighborhoods. The topology τx is not in general Hausdorff but
the restriction of τλ on EM is Hausdorff and τλ induces on M the same
topology as r. To see this, let JC G M and let V be a τ-zero-
neighborhood in E it is enough to show that (JC + V)Γ)N contains
(x + Vn) ΓΊ M for some n.

To this end, note that there exists n such that

vn n (M - M) c v n (M - M).

Let y G (JC + Vn) Π M, then one has y - JC G Vn Π (M - M), accord-
ingly y - j c G V Π ( M - M); hence y G (JC + V) Π M.

Thus (JC + Vn) Π M C(JC + V) Π M. This proves that the restriction
of r to M is coarser than the restriction of τλ to M. On the other hand, it
is clear that r restricted to M is finer than τλ restricted to Aί. Thus r and
τi agree on M.

We now turn to the construction of the norm N. Since M is
bounded, for every n there exists an ^ 1 such that M CanVn. Let pn be
the gauge functional of Vn. For every x G J5M define

It is clear that N(x)< + oo for every x G EM. If N(x) = 0 then pn(x) = 0
for every n, this implies that x = 0 because τ2 is Hausdorff on EM. It
follows that N is a norm on EM, let τ2 be the topology defined by N
on EM.

To complete the proof it is enough to show that τ2 restricted to M is
the same as τx restricted to M. Evidently τx restricted to M is coarser
than τ2 restricted to M Conversely let x EM, let

and let

βfc(x, 6) = {y G M;/7k(x - y ) ^ e}.

It is enough to prove that:

To this end, let yEB k (x, 1/2*). Note that p^jc -y)^/?2(Λ: - y)^
^ pk (JC — y) ^ l/2fc. From this we obtain



ON THE RADON-NIKODYM PROPERTY 285

N(x -y)= Σ—2^rPn(* - y ) + Σ ^~2"'P»(JC~y)

^ 1 A 1 , ^ 2αn

λfl+iyi
2k ^ 1 " ' I k " On

One can also easily check that the uniform structure induced by N
on M coincides with the uniform structure induced by r on M and
consequently M is complete in (EM,N) because it is complete in
(£, r). Let (JEM, N) be the completion of (f?M, N).

As a corollary of Theorem 2.1 we have:

COROLLARY 2.2. Let C and M be as in Theorem 2.1. Then:
(i) The set C is deniable (s-dentable) in (E, τ) if and only if C is

deniable (s-deniable) in (EM,N).
(ii) A point x E C is denting in (E, τ) if and only if x is denting in

(EM,N).

Before establishing the relations between dentability, s-dentability
and the Radon-Nikodym property we need the following theorem.

THEOREM 2.3. Let (T, Σ, P) be a probability space and let C and M
be as above. Then:

A function f: T-> C is P-integrable in (EM,N) if and only if f is
P-integrable in (Eyτ).

In this case fdP in (EM, N) is the same as fdP in (£, T) for every
Jx Jx

X in Σ.

Proof Suppose that / is P-integrable in (EMy N), then there exists a
sequence /„: T -» C of simple functions such that

(i) limnN(/π (0 - f{t)) = 0 P.a.e. and

(ii) limnί N(fn(t)-f(t))dP = O.
JT

By Theorem 2.1 fn(t)->f(t) P.a.e. in (JB, r). Thus to complete the proof

we must show that limn q(fn(t)-f(t))dP = 0 for every continuous
JT

seminorm q on (£, r). For note that although the injection
(EM,N)->(E,τ) is not necessarily continuous, its restriction to M is
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continuous by Theorem 2.1. Consider the sequence hn(t) =
q(fn(t)- f(t)). This sequence is a real valued sequence of uniformly
bounded integrable functions which tends to zero F.a.e. By an appeal to

the bounded convergence theorem, we have limn q (fn(t) - f(t))dP - 0.
JT

Conversely, suppose that /: Γ->C is P-integrable in
(JB, T). Consider the sequence pn which defines the topology τλ on EM

(see Theorem 2.1) with the help of ([9], p. 241), choose for every n S 1 a
sequence (φl)k^i of simple functions from 7" to C such that

limpn(φl(t)-f(t)) = 0 P.a.e.

By the bounded convergence theorem, we have

limί pn(φn

k(t)-f(t))dP =
k JT

for every n S 1.
By ([9], p. 254), one can find a sequence fk:T^C of simple

functions such that limk I pn{fk(t)-f(t))dP = 0 for every n g 1. Now

use the diagonal process to choose a sequence gn: T ̂ C of simple
functions that converges to fP.a.e. for the topology τi. This proves that
gn converges to /P.a.e. in (EM, N), and thus proves that / is P-measurable
in (EM,N). Since / is bounded in (EM,N) this proves that / is P-
integrable in (EM, N).

COROLLARY 2.4. Let C and M be as above. Then C has the RNP
in (E, T) if and only if C has the RNP in (E, N).

Now Corollary 2.2 and Corollary 2.4 together with results of Riefϊel
[14], Maynard [12], Davis-Phelps [4] and Huff [11] (see [5] and [6]) for
Banach spaces prove the following result:

THEOREM 2.5. Let C be a closed bounded convex subset of E, then
the following assertions are equivalent:

(i) The set C has the RNP.
(ii) The set C is subset deniable.
(iii) The set C is subset s-deniable.

We now pass to the discussion of the existence of denting points in a
closed bounded convex subset of E.
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Phelps [13] showed that if F is a Banach space such that every subset
of F is deniable then every closed bounded convex subset of F is the
closed convex hull of its strongly exposed points. Phelps's argument is
global in nature and does not seem to give local information about subset
deniable closed bounded convex sets in arbitrary Banach spaces. J.
Johnson and J. Bourgain have independently shown that the following
theorem is a consequence of a recent paper of Bourgain [1].

THEOREM 2.6. Let F be a Banach space and C be a closed convex
bounded subset of E having the RNP then C is the closed convex hull of its
strongly exposed points.

Now using this theorem together with Corollary 2.2 and Corollary
2.4 we can prove the following theorem.

THEOREM 2.7. Let C be a closed bounded convex subset of
(E, τ). Then the following assertions are equivalent:

(i) The set C has the RNP.
(ii) Every closed convex subset of C is the closed convex hull of its

denting points.

Proof (i) Φ (ii) Let M = conv(C U - C) and consider
M C(EN, N). Let CΊ be a closed convex subset of C. Then d has the
RNP in (E, τ) and therefore CΊ has the RNP in (EM, N). By Theorem
2.6, Ci is the closed convex hull of its strongly exposed points in (EM, N)
and in particular of its denting points in (JBM, N). An appeal to Theorem
2.1 and Corollary 2.2 finishes the proof.

The other implication is immediate from the definitions and
Theorem 2.5.

It is natural to ask whether one can replace denting points by
strongly exposed points in Theorem 2.7.

The answer is no. Consider

The set C is a convex compact set in the Frechet space F, but from the
fact that F* consists of the finitely nonzero sequences, it is easily seen
that C does not even have any exposed points.

3. The Radon-Nikodym theorem, Dunford-Pettis-
Phillips theorem, Liaponouv-UhΓs theorem and Edgar's
theorem. Now we will use the well known results in Banach spaces
and what we did before to deduce the following Radon-Nikodym
theorem. Before doing this let us recall one definition.
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DEFINITION 3.1. Let (Γ, X, P) be a probability space and m: X -* E
be a vector measure. The measure m is said to have a locally relatively
compact (relatively weakly compact,...) P-average range if and only if
for every e > 0 there exists TeCT such that P(Γ\Γ € )^e and the set

is relatively compact (relatively weakly compact,...).

THEOREM 3.2. Let (Γ,Σ,P) be a probability space and
m: X —> (E, r) 6β α sector measure with bounded P-average range then the
following assertions are equivalent:

(i) The measure m has a locally relatively compact P-average range.
(ii) The measure m has a locally relatively weakly compact P-

average range.
(iii) The measure m has a locally deniable P-average range.
(iv) The measure m has a locally s-deniable P-average range.

(v) There exists f: T^E P-integrable such that m(X) = I fdP for
Jx

every X E X.

Proof. We reduce the proof to the case of Banach spaces by
considering

M = conv(Am(X)C/ - Am(X))

and everything can be studied inside M considered as a subset of the
Banach space (JBM, N). With this in mind apply Theorem 2.1, Corollary
2.2, Theorem 2.3 and the results in Banach spaces [6] to complete the
proof.

Before proving a theorem of Dunford-Pettis-Phillips type we need
the following proposition which can be proved using Smulian's theorem,
([7] p. 433) and Theorem 2.1.

PROPOSITION 3.3. Let C and M be as in the Theorem 2.1. Then C
is weakly compact in (E, r) if and only ifCis weakly compact in (EM, N).

The following result shows that the Dunford-Pettis-Phillips theorem
is valid in the class of spaces E under consideration in this paper.

PROPOSITION 3.4. For every weakly compact operator
W\Lι[0,\]^{E,τ) there exists g: [0,1]->(£,r) λ-integrable (λthe
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Lebesgue measure of [0,1]) such that W(f) = \ fgdλ for every f in L *[(), 1],
Jo

and in particular W sends weakly relatively compact sets into relatively
T'Compact sets.

Proof. Let M be the τ-closure of the image of the unit ball of
!/[(), 1] by Wj now M is weakly compact in (E,τ) and therefore it is
weakly compact in (EM,N) by Proposition 3.4. By the
Dunford-Pettis-Phillips theorem there exists g: [0,1] —>M λ-Bochner

integrable in (EM, N) such that W(f) = | fgdλ for every / in L *[0,1]. It
Jo

is easy to see that the function t-*f(t)g(t) is λ-integrable from
[0,1] -* (£, r) and W(f) = [fgdλ in (E, r).

Jo

The following theorem was proven by Uhl [18] in the case of Banach
space. It is a Liapounov type theorem.

THEOREM 3.5. Let E have the RNP and let m: Σ-^E be a non

atomic vector measure with bounded P-average range, then the closure of
the range of m is convex and compact.

Proof Let M = conv(Am(X)l/- Am(X)). As usual we consider
M as a subset of (EM,N). Note that m:Σ-*M is a vector measure
when M is considered as a subset of (EM, N). Since M has the RNP in
(£, r), then it has the RNP in (EM, N) by the Corollary 2.4. Therefore

there exists /: T—>MP-integrable such that m(X) = I fdP for every X
Jx

in X. As in Uhl [18] we obtain that the closure of m (Σ) is convex and
compact in (EM, N). But this closure is a subset of M. Thus it is also
compact in (E9τ) by Theorem 2.1.

In [8] Edgar established a representation theorem of Choquet type
[3] for a bounded convex separable subset C of a Banach space when C
has the RNP. We are going to show that Edgar's theorem is also valid in
the locally convex spaces under consideration.

We refer the reader to [8], for the notations and terminology used in
the sequel.

THEOREM 3.6. Let Cbea bounded closed convex separable subset of
(E, r) having the RNP. Then for every a EC there exists a probability
measure μ on the universally measurable subsets of C such that

μ(Ext(C))= 1 and I xdμ = a in (E,τ) (Ext(C) is the set of extreme
Jc

points of C).
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Proof. Let M = conv(C U - C) and consider C in (JBM, N). Since
C has the RNP in (E, T), the set C has the RNP in (JBM, N). Now by
Edgar's theorem there exists a probability measure μ defined on the
universally measurable subsets of C such that μ (Ext(C)) = 1 and

I xdμ = a in (EM, N). Therefore by Theorem 2.3 I xdμ = α in (£, r).
Jc Jc

The uniqueness theorem (see [17] and [2]) can also be deduced using
the space (£M> N) to obtain:

THEOREM 3.7. Under the same hypothesis as the above theorem: the
following assertions are equivalent:

(i) The set C is a simplex.
(ii) For every a E C there exists a unique probability measure μ on the

universally measurable subsets of Q such that I xdμ = a and

μ(Ext(C))=l.

We finish by asking the following:

Problem. Let F be a locally convex Hausdorff space and let C be a
bounded closed convex metrizable subset of F, is M = conv(C U - C)
metrizable?

If the answer is yes, then Theorem 2.1 and consequently Theorem
2.5, Theorem 2.7 , Theorem 3.6 and Theorem 3.7 will be true if we
suppose only that C is a metrizable subset of an arbitrary quasi-complete
locally convex Hausdorff space.

The author is happy to acknowledge helpful discussions with
Professor J. J. Uhl.
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