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SOME RADICAL PROPERTIES OF RINGS
WITH (a, b, ¢) = (c, a, b)

DAVID POKRASS

A ring is an s-ring if (for fixed s) A°is an ideal whenever
A is. We show that at least two different definitions for
the prime radical are equivalent in s-rings. If R satisfies
(a, b, ¢c) = (¢, a, b) then R is a 2-ring. In this note we inves-
tigate various properties of the prime and nil radicals of R.
In addition, if R is a finite dimensional algebra over a field of
characteristic =2 of 3 we show that the concepts of nil and
nilpotent are equivalent.

In [1] Brown and McCoy studied a collection of prime radicals
and nil radicals in an arbitrary nonassociative ring. In light of their
treatment we will consider these radicals in rings which satisfy the
identity

(1) (@, b, ¢) = (¢, @ b) .

While these rings may be viewed as an extension of alternative
rings, they are in general not even power associative. Examples
of (not power associative) rings satisfying (1) appear in [2] and [4].

1. s-rings and the prime radical. Prime radicals for an arbitrary
ring R were treated in [1] in the following way. Let .% be the
set of all finite nonassociative products of at least two elements
from some countable set of indeterminates =z, @, %, ---. Then if
uwe.o” we call an ideal P wu-prime if u(4,, 4,, -+, 4,) & P implies
some A; & P for ideals A, A,, ---, A,. For example if w = (x,2,)2,
then P is u-prime if whenever (4,4,)4, & P we have one of the 4,’s
in P. The u-prime radical R* is then the intersection of all u-prime
ideals in R. It was shown that if w* is the word having the same
association as u, but in only one variable, then R* = R*. For ex-
ample if u = (x,x,)x, then u* = (xx)x, and R* is the intersection of
ideals P with the property that if (4AA)A < P for an ideal A, then
ACP.

Another theory of the prime radical was given in [9]. Call a
ring R an s-ring if for some fixed positive integer s, A° is an ideal
whenever A is. Call an ideal P prime if A,4,.-- A, £ P implies
some A, & P for ideals A4,, ---, A,. The prime radical P(R) of an
s-ring R is then the intersection of all prime ideals.

In the case of s-rings we see that these approaches are essentially

the same:
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THEOREM 1. Let R be an s-ring. Then for each u € & having
degree =s, R* coincides with P(R).

Proof. If A is an ideal of R, consider the two descending chains:
A9 = A, = A, A" = A™A™  and A,., = (4,)°. It is easily seen
that (A4,) is a chain of ideals in R and for each n, A, £ A™. Next
choose u € .9 We first show that there is an integer 7 such that
A" Cu*(4, A, -+, A). We induct on degu*. When u* = 2%, take
r=1. Assuming degu* > 2, write u* = v,v, where each v, has
degree less than that of u*. Then there exists 7, 7, such that A" &
v(A, A4, ---, A). Letting » = max {r, r,}, A" = AWA" & A™A" C
v,(A),(A) S u*(A4), which completes the induction. Now assume P
is prime (in the sense of [9]). Then P is also u*-prime. For if A
is any ideal with u*(4, A, ---, A) &£ P we may choose » such that
A, A" C u*(A) < P. Using repeatedly the fact that P is prime
we see that A & P. We have shown R* = R* & P(R).

To see the other inclusion, assume degu =s. Let P be w*-
prime. Then P is also prime. For if A is an ideal with A* S P it
follows that u*(A) & A*s** C A*C P, and so A < P. This shows
P(R) < R* = R*, which completes the proof.

COROLLARY. If R is a 2-ring, the u-prime radicols all coincide.

Rich has shown that in an s-ring the prime radical P(R) is the
intersection of all ideals @ such that R/Q has no nonzero nilpotent
ideals [5]. However, if R/Q has no nonzero nilpotent ideals it also
has no nonzero solvable ideals: For if A < @ for some ideal A,
then 4, & A™ C Q using the same notation as above. It follows
that A = Q. This shows that the word “nilpotent” may be replaced
by “solvable” in Rich’s characterization of P(R).

2. Nilalgebras. In this section we let R denote a ring satisfying
equation (1) and having characteristic not equal to 2 or 8. Outealt
showed that if R is simple then it is alternative (and hence a Caycley-
Dickson algebra or associative) [3]. Sterling extended this result
by showing that if R has no nonzero ideals whose square is zero
then R is alternative [8].

We see that rings B which satisfy (1) are 2-rings. For if A is
an ideal with a,, a,€ A4, then (a,a,)x = (a,, @, ) + a,(ax) = (a,, %, a,) +
a(a,x) € A%.. In fact, it is easily shown that A" is an ideal for each
n = 2.

Next recall that an element a is nilpotent if there is some as-
sociation u* such that u*(a) = 0. An ideal A is a nil ideal if each
element in A is nilpotent. We call A solvable if A (defined above)
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is zero for some n. Finally, A is right nilpotent if the sequence
A, A* A’A, (A*A)A, --- reaches zero in a finite number of steps.

LEMMA. Let R be a ring satisfying (1). Then R ts milpotent
if and only if R s right nilpotent.

Proof. The proof of this lemma, which appears in [4], only
required identity (1) and is therefore valid.
We will need the following identity [8, eq. 4] which holds in R

(2) (e, , 2), x, 2), 7, ) = (@, (2, 2, ¥), (2, T, X)) .

LEMMA. Let R be a finite dimensional algebre, satisfying (1),
over o field F of characteristic #2,8. If R is solvable then R 1s
nilpotent.

Proof. We induct on dim R. When dim R =1 the result is
obvious, so assume dim R > 1. By the previous lemma it is sufficient
to show that R is right nilpotent. Let S, denote the right multiplica-
tion operator # — xza. Let R be the subalgebra of the multiplication
algebra R* which is generated by {S,|a € R}. Note that R is right
nilpotent if and only if R is nilpotent. Now by the solvability of
R we may write R = B + Fx where B is an ideal containing R? and
B < R. Since dim B < dim R, B is nilpotent by the induction assump-
tion. Suppose B* = 0. We claim (R)** = 0.

Treating e as the independent variable and expanding (2) it
becomes apparent that (S,)® may be written as the sum of 15 terms
each containing S, S,2,, or S,,.. These factors are in (R*)* & B*.
This implies that (S,)** can be expressed as a sum of terms each
containing at least k factors from B*. Since B” is as ideal for each
n, it follows that (S,)* = 0. Now choose Te(R)*. Then T is a
sum of terms each containing a factor of the form

(Sﬂlsﬂz ce Sﬂek)<szlszz cee Szek) et (Swlswz cec Sw6k) ’

where each subscript is either equal to x or is a member of B. Note
there are k “blocks” each having length 6k. If k& of the S’s have
elements from B attached to them then the above expression is 0
since B” is always an ideal. On the other hand if there are not k
such S’s, then one of the blocks must be of the form S,S,---S,,
or (S,)* =0. In any case T =0, so R is nilpotent completing the
proof.

THEOREM 2. If R is a finite dimensional nilalgebra, satisfying
1), over a field of characteristic #2, 3, then R s nilpotent.
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Proof. We induct on dim R. Assume dim R >1. If R is alterna-
tive we are done. If not, by Sterling’s result [8], there exists an
ideal J # 0 such that J* = 0. Then R/J is solvable by the induction
assumption. Since J is solvable it follows that B must be. By the
previous lemma R is nilpotent.

3. Radicals. If v is a word in one variable, then « is called
v-nilpotent if the sequence a, v(a), v(v(a)), --- ends in 0. An ideal
is w-nil if each of its elements is v-nilpotent. Every ring has a
maximal v-nil ideal N, and a maximal nil ideal N[1]. We shall call
N, the v-nil radical and N the nil radical. The Jacobson radical J
is the set of all elements which generate quasi-regular ideals. It
is shown in [1] that for each word u* = v we have

R*S N, S Nc J.

THEOREM 3. Let R be a ring of characteristic #=2, 3 and satis-
Sfying (1). Then all of the u-prime radicals coincide and each of
the v-nil radicals coincides with N.

Proof. The first statement follows from the corollary to Theorem
1 and the fact that R is a 2-ring. The second statement follows
from Sterling’s theorem: The ring R/R* contains no nonzero ideals
whose square is zero (since A* < R* implies A £ R*). Hence R/R*
is alternative, and so R/N, is alternative. Since R/N, is power
associative, N/N, is a v-nil ideal in R/N,, and so N must be a v-nil
ideal in R. This means N, = N.

THEOREM 4. If R is a finite dimensional algebra, satisfying
(1) over a field of characteristic #2,3, then the Jacobson radical
R 1is milpotent.

Proof. By the reasoning in the proof of Theorem 3 we may
conclude that R/N is alternative. A result of Slater’s says that in
an alternative ring with d.c.c. on right ideals, the nil radical equals
the Jacobson radical ]7]. Hence 0 = N(R/N) = J(R/N). It follows
that J & N so J is nilpotent.

We will add one final note. If R is a ring the attached ring
R* is the ring where multiplication is redefined by a-b = ab + ba.
Rich has shown that if R is alternative and having characteristic
#+2, 3, then the (Jordan) ring R* has the same prime radical as R
[6]. That is, P(R) = P(R") using the notation of §1. This result
may be generalized slightly: If R satisfies (1) and has characteristic
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#2, 3, then the prime radical of R coincides with each of the u-prime
radicals (R*)* in R*. This is interesting because while Jordan rings
are 3-rings, it does not seem likely that in general R* will be an
s-ring. The proof (which we omit) is similar to the one found in [6].

REFERENCES

1. B. Brown and N. McCoy, Prime ideals in monassociative rings, Trans. Amer. Math.
Soc., 89 (1958), 245-255.

2. E. Kleinfeld, Assosymmetric rings, Proc. Amer. Math. Soc., 8 (1957), 983-986.

3. D. L. Outealt, An extension of the class of alternative rings, Canad. J. Math., 17
(1965), 130-141.

4. D. Pokrass and D. Rodabaugh, Solvable assosymmetric rings are nilpotent, Proc.
Amer. Math. Soc., 64 (1977), 30-34.

5. M. Rich, Some radical properties of s-rings, Proc. Amer. Math. Soc., 30 (1971),
40-42.

6. , The prime radical in alternative rings, Proc. Amer. Math. Soc., 56
(1976), 11-15.

7. M. Slater, Alternative rings with d.c.c., I, J. of Algebra, 11 (1969), 102-110.

8. N. Sterling, Rings satisfying (x, ¥y, 2)=(y, 2, ), Canad. J. Math., 20 (1968), 913-918.
9. P. Zwier, Prime ideals in a large class of nonassociative rings, Trans. Amer. Math.
Soc., 158 (1971), 257-271.

Received December 6, 1976.

EMORY UNIVERSITY
ATLANTA, GA 30322,








