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DISTRIBUTION ESTIMATES OF BARRIER-CROSSING
PROBABILITIES OF THE YEH-WIENER PROCESS

C. PArx aAND D. L. Skouc

Let @ =1[0,S] X [0, T] be a rectangle and {X(s,?):s,t = 0}
be the two-parameter Yeh-Wiener process. This paper finds
probabilities of X(s, f) crossing barriers of the type ast + bs +
¢t + d on the boundary 0Q. These probabilities give lower
bounds for the yet unknown probabilities of X(s,t) crossing
ast +bs+ct+d on Q. The paper also discusses sharper
bounds for the latter probabilities.

1. Introduction. Let {X(s, t):s, ¢t = 0} be the standard Yeh-
Wiener process of two parameters such that it is a separable real
Gaussian stochastic process satisfying:

1.1) X(s,t)=0a.s. if sor tis 0,
1.2) the expected value E{X(s, t)} = 0 at every s,¢t =0,
1.3) E{X(s, t)X(s', t')} = min (s, s)-min (¢, t') .

Further properties of the process are found in Yeh’s [8] and [9].
For the square D = [0, 1] x [0, 1] and its boundary 6D, Paranjape
and Park [6] showed that the probability

(1.4) P{saup X(s, ) = x} — BN(—\) — ¢ N(—3\), A =0,
D
where N(-) stands for the standard normal distribution function.
This probability is a lower bound of the yet unknown probability,
P{sup, X(s, t) = \}. It is known (see [4] or [7]) that
(1.5) P{sup X(s, t) = )\;} < 4P{X(1, 1) = A} = AN(—)N) .
D

Recently Chan [1] showed that, for every ¢ > 0,

(1.6) P{sup X(s, t) = x} < N(e)P {sup X(s,8) = © — s} .
D D
By the same technique as he used in his paper, the upper bound can
easily be improved to N(e)"Pf{sup X(, ) =2 N —e 0=t <1} =
2N(—\ + ¢)/N(e). However it turns out to be that even this improved
upper bound is not as good as 4N(—\) for any ¢ > 0. In fact
AN(—) < N(s)-IP{sgp XLOZN—¢ } L €>0,
0st=1
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and
lim N(s)“‘P{ sup X(1, 8) =\ — s} = AN(—)) .
et 0St=1

More recently Goodman [3] showed that for » = 0,

@ 2{N<~x> NN SjN(—s)ds} < P{sgp X(s, )z 0 -

Obviously the left-hand side of (1.7) is a much better lower bound
of P{sup, X(s, t) = A} than (1.4). He subsequently proves that

2AN(—N) + 1 SWN(—s)ds
(1.8) lim ; ~1,
PR 4N(—N)

thus showing that both 2{N(—x) Y S:’N<~s>ds} and 4N(— ) are very

good approximations of P{sup, X(s, t) = \} for all sufficiently large .
The main purpose of this paper is to generalize the above results
for more general barriers, namely, to find a formula for

P{sup)«s, t)—<ast+bs+ct+d)go}, a,b¢,d=0,
aD

and then find a lower bound for P{sup, X(s, t) — (ast + bs + ¢t +d) =0}
for which (1.7) is a special case. Itisapparent that for all a, b,¢,d =0

1.9) P{sup X(s, t) — (ast + bs + ct +d) = 0} < AN(—d) .

In addition we obtain a formula for
Pfsup;, | X(s, t)| — (ast +bs +¢ct +d) =0}, a,b,c,d=0.
Some results on two-parameter Brownian bridge are also included.
2. Some lemmas. To avoid unnecessary repetitions in the
proofs of the theorems, the following lemmas are given. Throughout

this paper W(t) and X(s, t) will denote the standard Wiener process
and the Yeh-Wiener process, respectively.

LEMMA 1. (Doob [2:p.398]). Ifa=0,0>0,a=0,8>0, then

P{ sup [W(t) — (at + D] 20 or inf [W(t) + at + 6] < o}

= 2 exp {—2[m’ab + (m — 1YaB + m(m — 1)(aB + ab)]}
+ exp {—2[(m — 1)’ab + m*aB + m(m — 1)(aB + ab)]}
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— exp {—2[m*(adb + aB) + m(m — L)ag + m(m + 1)ab]}
— exp {—2[m*(ab + aB) + m(m — 1)aB + m(m — 1)ab]} .

LEmMA 2. Let f(t) be a Borel measurable function. Then for
each Borel set E of real numbers,

P{W(i) — f(HeE, 0<t=1IWQ) = u}

=P{W(t)+u~(t+1)f<til>e%E,0<t<oo}.

@2.1)

Proof. The basic technique used here is the same as the one
used by Malmquist in [5]. Observe that W(t) and ¢W(1/t) are equi-
valent processes for ¢ > 0. Thus, the left-hand side of (2.1) reduces
to

P{W(-i-) — %f(t) e%E’, 0<tx 1’ W(l) = u}
- w20
e%E,0<t < 1|W(1)=u}.

Upon using the fact that W(1/¢ — 1) and W(1/t) — W(1) are equivalent
processes for t > 0, and W(l/t) — W(1) and W(1) are independent for
1=1¢t> 0, we have the result by the transformation 1/t — 1 — ¢.

LemMA 2.a. If f(t) is a Borel measurable function on [0, 1],
then
P{sup | X(L, )] = F(1) 2 0|X(L, 1) = u}
0st=1

= P{sup | X1, ) + ul — (¢ + 1)f<2%1> =0},

and the same holds for X(t, 1).

LEMMA 3. Let f(s, t) be a Borel measurable function on D. Then
for each Borel set E of real numbers,

P{X(s, t) — f(s, ) e B, (5, 1) € (0, 1| X(1, 1) = u}
= P{X(s +1,t+1) — X1, 1)

e ne+ vr(cEr ) -u e 6ne@ <}
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Proof. This lemma is a two-parameter analogue of Lemma 2,
and it can be proved similarly by observing that X(s, £) and
stX(1/s, 1/t) are equivalent processes for s, ¢ > 0.

LeMMA 4. Let f(t) and g(t) be any Borel measurable functions
on [0,1]. Then for any Borel sets E, and E, of real mumbers,

P{X(Sy 1) - f(S) € Eu X(ly t) - g(t) € Ezy (S, t) € D|X(1: 1) = u}

(2.2) = P{X(s,1) — f(s)e E, 0 =s = 1| X1, 1) = u}
-P{X(1, 1) —g(t)e B, 0=t =1|X(1, 1) = u}.

Proof. Observe first that X(s,1) and sX(1/s, 1) are equivalent
standard Wiener processes for s > 0, and so are X(1, ¢) and tX(1, 1/t)
for £ > 0. Now s[X(1/s,1) — X(1, 1) + u] and £[X(1, 1/t) — X(1, 1)+u]
are independent processes for 1 =s,¢ > 0, and they are also inde-
pendent of {X(s, t): (s, t) € D}. Hence (2.2) gives:

P{X(s,1) — f(s)e B, X1, t) — g(t) e E,, (s, t) e D| X1, 1) = u}
(2.3) = P{s[X(1/s, 1) — X(1,1) + %] — f(8)e E, 0 <s =1}
-P{[X(1, 1/t) — X(1, 1) + u] — g(t) e B,y 0 < t < 1} .
But the two probabilities on the right-hand side of (2.3) are equal to
P{X(s,1) — f(8)e B, 0 = s = 1| X(1, 1) = u} and P{X(1, t) — g(t) € B,
0=¢=<1|X1,1) = u} respectively, and hence the proof is complete.

3. Main results and proofs. In what follows {X(s, t):s, ¢t = 0}
will be used exclusively for the Yeh-Wiener process.

THEOREM 1. If a,b,¢c,d =0, then with @ =a + b + ¢ + d,
P{sg)p X(s, t) — (ast + bs + ¢t +d) = 0}

= N(—@) + ¢ ***+DN(g + b — ¢ — d)
+ 6—-2(a+c)(b+d)N(a —b+c—d)
_ ez(d—a)(b+c+2d)N(a —b—c¢c—3d).

Proof. First observe that
P = P{saup X(s,t) — (ast +bs + ¢t +d) = O}
D
= P{sup X(s, 1) — [(@ + b)s + (¢ + D] = 0}

3.1) + P{Os;}gX(l, t)—[e+et+@+d]= 0}
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- P {ossug X(s,1) — [(@ + b)s + (¢ + d)] =0, sup X(1, ¢)
~—[(a+c>t+(b+d>]zo}.

Since X(s, 1) and X(1, t) are equivalent to the standard Wiener process
W(t), the first two probabilities on the right of (8.1) can be evaluated
explicitly.

Now,

P, = P{sup X(s, 1) — [(a + b)s + (¢ + d)] Z 0, sup X(1, 1)

— [+ o)t + (0 + d)] 2 0}
= P{X1, 1) = @}
N Sa+b+c+dP{OSSu£ X(,1) —[(@a+bds+(c+d))=0,

—o0

sup X(1, ) — [(@ + o)t + (b + d)] Z 0] X(1, 1) = u}dN(u) )
0st=s1
Due to the fact that

P{Ossug X(s, 1) = [(@ + b)s + (¢ + )] = 0, sup X(1, 1)

—[@+o)t+@®+d)]=0/X({1,1) = u}
(3.2)
= Plsup X5, 1) — [(a + b)s + (¢ + ] = 0 X(1, 1) = u]

.P{Osggxa, £) — [(@+ o)t + (b + d)] = 0| XL, 1) = u} ,

we may use Lemma 2 to get
Pz = N(—-@)
a+b+te+d
+ S P{sgy X(s, 1) — [(c + d)s + @ — w)] = 0}

—o0

-P{ sup X(L, &) — [b + )t + @ — w)] 2 o}dN(u)
= N(—&)
a+b+e+d — —
+ S 6—2(c+d)(a—u)e-—z(b+d)(a—u)dN(u)

= N(—8) + X001 N(g — b — ¢ — 3d).

The result now readily follows.

COROLLARY. If d =0, then



460 C. PARK AND D. L. SKOUG

P{s?p X(s, ) = d} = SN(—d) — ¢“*N(—3d) .
D
This corollary agrees with the result in [6: p. 877].

THEOREM 2. If{Y(s, t): (s, t) € D} is the two-parameter Brownian
bridge, i.e., {Y(s, t): (s, t)e D} = {X(s, t): (s, t)e D| X1, 1) = 0} and
a,be,d=0, then

P{s;qu(s, t) — (ast + bs + ¢t + d) = 0}
D

— e—2(b+d)a. __{__ 6—2(b+d)a - e—2(b+c+2d)a .

Proof. This follows from (3.2) by setting u = 0.

THEOREM 3. If a,b,¢ =0 and d > 0, then with@ =a-+b+c+d
and ¢ =c¢ + d,

| X(s, 8)| >1l =9 b e d
P{Szgwpast-i—bs—l-ct—kd: } fla, b, d),

where

fla,b,0,d) = N(=@) + 3 (=D e " avw)

a—2(b+d)k
+ e-—?(a+c)(b+d)k2§

dN(u):I

—a—2(b+d) k

_ i (— 1)j+ke—23[3j2+(b+d)k2]{e2[c_j+(b+d)k]2
=1

a—2[cj+(b+d)k] a—2[cj—(b+d)k]
X S N(u)}

dN(’bb) + ezﬁj—(b+d)k]2g

—a—2[ci+(b+d)k] —a—2[ci(b+d)k]

Proof. Observe that

= lX(87 t)l —
Py(u) = P{ S s ot 7 d = llX(l, 1) u}
- X, DI
P{"sggl(a +b)s+ (c+d) 1 or
| X1, )] 3
ost=1 (@ + o)t + ® + d) = llX(l, 1) = u} .

Upon applying Lemma 4, we obtain

_ | X6, )| B
P,(u) = P{sup T D 2 1 xa, v = ul
X, 8| B
+ P{oss?glz (@ +e)t + (b + d) = 1|X(1, 1) = ’ll/}
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- | X(s, 1| _
P{osél;lg (a + b)s + (C +d) = 1[X(1, 1) u}
. | X, )| _
Plsup DL |x0,1) -}

Due to Lemma 2.a., it follows

| X5, 1) B

X(s, 1) + u|
= Plsup X& D +ul 5 4
{O‘Z?RO(G Tds+a - }

- P{ sup X(s, 1) — [(c + d)s + (@ — w)] = 0
0=s8<00
or inf X(s, 1) + [(c + d)s + @ + w)] < 0}..
0=8<00
Lemma 1 applied to the last expression gives:

P{ sup X(5, 1) — [(¢ + d)s(@ — w)] 2 0

0=8<00
or inf X(s,1) + [(¢ + d)s + @ + w)] = 0}
0=58<o
= i {e—za'(c+d)(2m—1)2[ez(c+d)(zm—1)u + 6—2(c+d)(2m—1)u]

e—?&‘(c+d)<zm)2[ez<c+d)<zm)u + 8—2(c+d)(zm)u]} .

Therefore

| X(s, 1] —
P‘{é‘é’l Grstetd - 1|X(1’ b= “}

— i (__1)j+1e~22<c+d)jz[ez(c+d)ju + e—z<c+d)ju]
=1

and

X0, )] _
Plop LUl 2 1|x0,1) = u]

—_ i(_1>/=+1e—zE(b+d)k2[ez(b+d)ku + e-—?(b+d)ku] .
k=1

461

Since X(1, 1) is the standard normal random variable, the result now

follows by:

p | X(s, 1) 1
{S;lbpast+bs+ct+d }

= PIXQ, DIz a) + | _PaiNw

v

ey
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a

= ON(—@) + S _Py(u)dN(u) .

THEOREM 4. If a,b,¢,d=0and G=a+b+c+d, b=b+c+d,
¢ =c+d, then for u <@,

P, = P{sgp X(s, t) — (ast + bs + ¢t +d) = OIX(l, 1) = u}

- { Bpgre _ gwa] L ogie-n | psg
b
I + 26(@ — w)] » b=0.

Proof. Upon applying Lemma 3, we obtain

P, = P{sup X +1L,t+1) — XL t+1) + X0t +1) — X101
(3.3) =0

-[d(s+1)(t+1)+c(s+1)+b(t+1)+a-—u]go}.

Consider the fact that X(s + 1,¢t+1)— X(1, ¢t + 1) and X(1, ¢t+1) —
X(1, 1) are independent processes equivalent to X(s, ¢ + 1) and X(1, ¢),
respectively. The latter X(1, ¢) will be denoted by X*(1, t) to signify
that it is independent of X(s, ¢ + 1). Due to the fact that ¢(s + 1) <
e(s + 1)t + 1) for all ¢, s, ¢t = 0, it follows from (3.3)

P,z P| sup X(s, ¢ + 1) + X*(L, 1) — [5(¢ + D)s + bt + 7 —u] 2 0}
3.4 = S:_;P{sglo) X(s, ¢ +1) — [8(¢ + s — 7] 2 0]sup X*(1, 1)
—bt+a@—u) = r}p(r, w)dr ,
where p(r, w) is the probability density of
P{stg}) X0 — Gt +3—w =7}

{l . 6—2'5(5'+r—u) , U—a=sr

0 , otherwise.
Thus
5 5) ) zge—zi(ﬂr—u) , U—a=<r
@ pr, w) = 0 ,  otherwise .

Observe that the probability in the integrand of (3.4) becomes
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P{s:g;) X(s,t +1) — [t + s — 7] 2 o}
(3.6) e, r<0
a {1 , r>0.
Therefore, (3.5) and (3.6) together with (3.4) give

P, > So ~eﬁrzge~zﬁi+r—u)d,’. + szb—e—-zb_(u"-kr—u)dr ,
u— 0

a

from which the result readily follows.
The following is a special case (v = 0) of Theorem 4, which has
broad application in Kolmogorov-Smirnov statisties.

THEOREM 4.a. If{Y(s, t): (s, t) € D} is the two-parameter Brownian
bridge and if a,b,¢,d = 0, then

Plsup,Y(s, t) — (ast + bs + ¢t + d) = 0}

- -%(e‘m —e By L e p>0
(1 + 2a6)e , b=0.

THEOREM 5. If a,b,¢,d = 0, then
Plsup, X(s, t) — (ast + bs + ¢t + d) = 0}
N(—a) + —Z—[N(d — 25)e et _ N(@ — 25)e~ ]
+ N(@ — 2b)e™% , b>0
|N(—a) + V%e-m + N@ — 26)(L + 2a8 — 45%)e—

b=0.

In particular,
Plsup, X(s, ) — M = 0} = 2[(1 — M)N(—)) + 17%: e-ﬂﬂ]

- Z[N(—x) Y S:’N(-—s)ds] , A=0.

Proof. The theorem now can be established by integrating lower
estimates of the conditional probability P, in Theorem 4 with respect
to dP{X(1, 1) £ u} = dN(u) = (2r) " exp (—u?/2)du. The special case
whena =b =¢ = 0and d = » agrees with Goodman’s result (Theorem
3 in [3]).

In order to find sharper upper bounds for the barrier-crossing



464 C. PARK AND D. L. SKOUG

probabilities we introduce the following: Let f(s, t) be a continuous
function on D. If sup, X(s, t) — f(s, t) = 0, then define 7, = (s, t,)
where

s, = inf {s € [0, 1]| X(s, t) = f(s, t) for some te]0, 1]},
t, = inf {t € [0, 1]| X(s,y t) = f(s0y 8)} ,

while if sup, X(s, t) — f(s, t) < 0, then set 7; = (o0, ). Thus with
the convention that (s, t,) < (s, t,) if and only if s, <s, and ¢, < ¢,
we have that

P{s%p X(s, t) — f(s, 1) = 0} - P{z, <q, 1)} .

THEOREM 6. If ¢,d = 0, then

P{sgp X(s,t) — (ct + d) = O}

< zp{ sup X(1, t) — (¢t + d) = 0}

0st=1

= 2[1 — N(c + d) + exp (—2¢d)N(a — b)] .

Proof. Let 7 stand for z, when f(s, t) = ¢t + d. Define
F(s,t) = Pzt < (s, 1)} .

Then
FQ,1) = P{sgp X(s, t) — (¢t +d) = 0}

- P{ sup X(1, t) — (¢t + d) = o}

0st=<1

+ P{ sup X(L, ¢) — (ot + d) < 0, sup X(5, 1) — (ot + d) 2 o}
0st<1

E1  = P{ sup X(1, &) — (ct + d) = o}

0sts1

+ SIP{ sup X(1, ¢) — (et' + d) < o}r = (s, t)}dF(s, £)

0 0st’=

< P{ sup X(1, &) — (ct + d) = o}

0st=1

+ | Plxa, o -t + a) < 0le = s, O}aFes, 1)

On account of the fact that = = (s, ) implies X(s, t) =ct +d and
X, t) — X(s, t) is independent of the conditioning 7 = (s, t), it follows
that
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- s:P{X(l, £) — (ct + d) < o‘r = (s, O}dF(st)
' = 'Plxa, 0 - X6, ) < 0}ares, ) = —;—F(l, 1.

The theorem now follows readily from (3.7) and (3.8).
COROLLARY 6.1. If b,e,d =0, then
P{sup X(s, t) — (bs + ¢t + d) go}
D

(3.9)
< zp{ sup X(1, 1) — (b*t + d) = 0} , b* = max {b, ¢} .

Proof. The result follows immediately by observing that
P{sgp X(s, t) — (bs + ¢t + d) = 0}
< min { P[sgp X(s, t) — (bs + d) = O] ,
P[Sgp X(s, ) — (ct + d) = 0]} .
The right-hand side of (3.9) can also serve as an upper bound of

P{sup, X(s, t) — (ast + bs + ¢t + d) = 0}, and it is certainly a substantial
improvement over (1.9). We state this fact formally as a corollary.

COROLLARY 6.2. If a,b,¢,d =0, then
P{sup X(s, t) — (ast + bs + ¢t + d) = O}
D

(3.10) < 2P{ sup X(1, t) — (b*t + d) = 0}

0st=st

< 2P{ sup X(1, £) — d = 0} = AN(—d)

0st<1
where b* = max {b, ¢}.
4. Supremum over rectangular regions. Some adjustments are

needed to apply the results for the more general rectangular region
Q =10, S] x [0, T]. The conversion formulas are given by:

P{sup X(s, t) — (ast + bs + ct +d) = 0}
(4.1) e
- P{saup X(s, t) — (a'st + b's + ¢'t + d') = 0} ,
D

where o' = aV'ST, b = bW/'S/T, ¢’ = ¢V T/S, and d' = d/v/ST.
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P{sgp X(s, t) — (ast + bs + ¢t +d) = 0| X(S, T) = u}
(4.2)
- P{sup X(s, t) — (a/st + b's + ¢t + d') = O‘X(l, 1) = u} ,
D

where o', ¥, ¢/, d’ are as in (4.1) and «’ = »/V/ST. In (4.1), if 0Q is
replaced by @, then D replaces oD.
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