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PROJECTIVE MODULES OVER SUBRINGS OF k[X, Y]
GENERATED BY MONOMIALS

DAVID F. ANDERSON

In this paper we study finitely generated projective
modules over affine subrings A of Jc[X, Y] generated by
monomials. If A is normal, then all finitely generated pro-
jective A-modules are free. If A is not normal, we show
that finitely generated projective A-modules stably have the
form free © rank one

1* Introduction* In this paper we study projective modules
over subrings A of k[X, Y] generated by monomials. We study
conditions on A so that all finitely generated projective A-modules
have the form free 0 rank one. In §IV we use Seshadri's localization
technique to show that all finitely generated projective A-modules
are free when A is an affine normal subring of k[X, Y] generated
by monomials. If we drop the assumption that A is normal it need
not be true that all finitely generated projective A-modules are free.
However, in § V we show that finitely generated projective A-modules
stably have the form free 0 rank one. We also give sufficient con-
ditions on k for finitely generated projective A-modules to have the
form free 0 rank one. These results do not generalize to arbitrary
subrings of k[X, Y].

This paper constitutes part of the author's dissertation at the
University of Chicago. The author would like to thank his advisor,
Professor M. Pavaman Murthy, for his many helpful suggestions.

2* Preliminaries* All rings A will be commutative with 1.
Spec (A) is the set of all prime ideals of A and max (A) is the subset
of spec (A) consisting of maximal ideals. We give spec (A) the Zariski
topology. If X is a topological space, the combinatorial dimension
of X will be denoted by dim X. If A is a ring, the group of units
of A is A*. SL (n, A) is the group of n x n matrices over A with
determinant 1, and E(n, A) is the subgroup of SL (n, A) generated
by elementary matrices. The Krull dimension of A will be denoted
by dim A. k will always be a field. Let P be a finitely generated
projective A-module and Q e spec (A). We define rankρP to be
άimAQ/QAQPQIQPQ. If rankQ P is constant, we will denote it by rank P.
Our UL-theory notation will follow Bass [4].

KQ(A) is the subgroup of K0(A) generated by [Arankp] - [P] for
finitely generated projective A-modules P, and Pic (A) is the group of
isomorphism classes of finitely generated projective A-modules of rank
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one. There is a natural determinant epimorphism det: K0(A) —»Pic (A)
defined by det ([P]) = A*(P) where n = rank P. We denote the kernel
of this map by SK0(A). Clearly SK0(A) = 0 iff every finitely generated
projective A-module stably has the form free 0 rank one. In this
case P is stably isomorphic to An~ι 0 Λn{P).

A commutative square of rings

is cartesian if g^ix) = g2(y) implies there is a unique ze A with ft(z) =
x and /2(z) = #.

THEOREM 2.1 (Milnor [10]). Given a cartesian square of rings
with gx surjective, the following ("Mayer-Vietoris") sequences are
exact

0 > A* > Af 0 At > J3* - ^ Pic (A)
( X } > Pic (AJ 0 Pic (A2) > Pic (B)

t(A2) ^

Moreover, if GL (n, Ax) -> GL (τ&, JB) is surjective for all n and all
finitely generated projective Ax and A2-modules are free, then all
finitely generated projective A-modules are free.

Using the natural determinant maps, sequences (1) and (2) may
be connected to obtain the following commutative diagram with exact
rows and columns.

0

I
SKt(A) >

1
Ky{A) >

1
. .- > A *

> j±

1
0

0

1
SK.iA,) 0 SiΓ1(A2̂

1

> Λ* (T\ /I*

I
0

0

1 ,
I

i ,
> JD ~

I
0

0

I
• SK0(A)

1
ft ( Λ\Λ-O\^ *v

I
> Pic (A)

I
0
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0 0

sκ(Λ)lsκ(A}
> KoiA,) ®K0(A2) —

I
> Pic (A) Θ Pic (A) —

1
0

following lemma is obvious.

-> K0(B)

1
-»Pic (5)

I
0

LEMMA 2.2. Suppose that SK^A,) = SK^A^) = 0,

(1) S*β(A) = 3(S*i(J3)).
(2) SίΓiCB) - 0 ίmpίίes SiΓ0(A) - 0.
( 3) If h is an isomorphism, then SK^B) w S.Ko(A).

We review a localization technique due to Seshadri which will
be used in §IV. For details one may consult [4]. A set S of ideals
of A is multiplicative if I, Je S implies IJeS. A prime ideal P is
special if P is invertible and AjP is a PID for which E(n, AjP) =
SL (n, A/P) for all n. A multiplicative set of ideals is special if it is
generated by special prime ideals. If S is any multiplicative set of
invertible ideals, we define S^A = U/es-f"1- For M an A-module,

THEOREM 2.3 (Seshadri). Let A be a commutative noetherian
ring and S a special multiplicative set of invertible ideals. Let P
be a finitely generated projective A-module and suppose that S~XP ^
L[ φ 0 L'n where each Li is a finitely generated projective S^A-
module of rank one. Then

(1) There are finitely generated projective A-modules L* of
rank one with L\ P* S~λA <ĝ  Li for i = 1, , n.

(2) For each choice of Lt in (1) there is an I inthe group of
invertible ideals generated by S such that P ^ ILX 0 i 2 0 0 L Λ .

COROLLARY 2.4. Let A, S, and P be as above. If S~Ψ is the
direct sum of a free S'1A-module and a projective S^A-module of
rank one, then P is also the direct sum of a free A-module and a
projective A-module of rank one.
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The next two lemmas will also be used in §IV. I do not know
a reference for Lemma 2.6, however compare [16, p. 7].

LEMMA 2.5 (111]). Let A = 4 0 Θ Λ Θ * be a graded affine
normal domain with Ao a field, then Pic (A) — 0.

LEMMA 2.6. Let A be a commutative ring with max (A) noetherian
and V(I) = Fa max (A) closed with dim (max (A)\F) ^ 1. Let P be
α finitely generated projective A-module with rank P — n ^ 2, and
assume that P/IP is a free A/I-module. Then P & An~ι φ Λn(P).

Proof. It is sufficient to show that if P is a finitely generated
projective A-module with rank P ^ 2 and P/IP a free A/J-module,
then P^Aζ&P' with P'/IP'A/Mree.

Let max (A)\F = Uι U U Ut be a decomposition into closed
irreducible components and pick Mt e £/,. For s e P and iVemax(A),
let s(N) be the image of s in PN/NPN. P/IP is free, so by the Chinese
Remainder Theorem there is a s e P with s(ikfi) ^ 0, 1 ̂  i ^ ί, and
s a basis element for P/IP. Clearly s(M) Φθ for Mz)I.

Let Z(s) = {Je max (A) |s(/) = 0}; then Z(s) c max (A)\F and Z(s)
is closed [16, p. 6]. Each Λf< ί J£(s), so Z(β) is 0-dimensional and hence
finite, say Z{s) — {Iίf , IJ. Rank P ̂  2, so as above we may choose
t 6 P such that (1) ί(/t) ^ 0 for 1 ̂  i ^ I, (2) ί and s form part of
a basis for P/IP, and (3) s(M*) and t(Mt) are linearly independent for

As above Z(β, t) = {Me max (A)|s(M) and ί(Af) are linearly depen-
dent} is finite. Let Y = Z(s, t)\Z{s) = {J19 , Jm), then pick 0 Φ ae
(Jx Π n e/JVΛ U U I*), or let a = 1 if Y" = ̂ . Let u = s + at,
then u(M) Φ 0 for all Me max (A), so Au is a direct summand of P
[16, p. 6]. Note that u — s + at is part of a basis for P/IP.

(α0, , an) e A%+1 is unimodular if Aa0 + + Aan = A. Z7Λ+1(A)
is the set of all unimodular elements in An+1. The stable range of
A, denoted by sr (A), is t^d if given any unimodular row (α0, , αd),
there exist c0, , ĉ -i 6 A so that (α0 + coad, , ad^ + 0^.^) 6 Ad is
unimodular. It is well-known that sr (A) ^ 1 + dim A and that An+] ^
A@P implies An ^ P whenever n ^ sr (A) ([4, p. 239]).

3* Subrings of k[X, Y] generated by monomials* Subrings A
of B = k[X, Y] generated by monomials arise naturally as either the
ring of invariants of an automorphism of B of finite order or as the
kernel of a ^-derivation of B when chark = p Φ 0. Clearly if A is
as above, then A c B is integral, so not all affine normal subrings of
B generated by monomials are one of these two types. However,
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over an algebraically closed field of chark = 0, any affine normal
subring of B generated by monomials is isomorphic to BG where G
is the cyclic group generated by an automorphism of the form
φ: JXΊ—> aX, Y\-*bY, a,bek. We state the following three propositions
without proof; for details see [1] or [2].

PROPOSITION 3.1. Let A be an affine normal subring of B =
k[X, Y] generated by monomials with AaB integral. Then Ap& A!
where A'= k[X, Y] or A'=k[Xn, XY\ XΎπ, , χ*^γ^=^f y ] where
0 < j < n, gcd (j, n) = 1, and "—" denotes mod n.

PROPOSITION 3.2. Let A be an affine subring ofB = k[X, Y]
generated by monomials. If dim A = 1, then A^ Ar where A! is an
affine subring of k[X] generated by monomials. If dim A = 2, then
A f^ A" where A!f is an affine subring of B generated by monomials
with A!' a k[X, Y] integral.

PROPOSITION 3.3. Let A be an affine subring of B = k[X, Y\
generated by monomials with AaB integral. Then A, the integral
closure of A, is also an affine subring of B generated by monomials.
The conductor of A/A contains a nonzero monomial.

We recall that sing (A) = {P e spec (A) | Ap is not regular}. If A
is an affine normal domain of dim 2, then sing (A) is a closed subset
of spec (A) of dim 0, and hence finite [9, p. 245]. If in addition
A c k[X, Y] is generated by monomials, we can explicitly describe
sing (A).

PROPOSITION 3.4. Let A be an affine normal subring ofB =
k[X, Y] generated by monomials with AaB integral and A not
regular. Then the origin is the only singularity of Ay that is,
sing (A) ={M = (X, Y)B n A).

Proof. The proof of Proposition 3.1 [2, Thm. 2.5] shows that
the isomorphism is just a change of variables which does not change
the origin. Thus we may assume that A = k[Xn, XYj, X2Y2j, •••,
p - i y ^ y*] where 0 < j < n and gcd (j, n) = 1. It is sufficient to
show that for each of the generators fx = Xn, f2 = XYj, , f%+ί = Yn

of M, A[l/fi\ is regular. For if N is any other maximal ideal, then
some fi £ N, and thus AN is regular since it is a localization of the
regular ring A[l//J.

Clearly A[l/Yn] = k[XY', Yn][l/Yn] which is regular. Similarly
A[l/Xn] = k[Xn, YXl][l/Xn] where YXι e A. Ua,bΦ 0, then A[l/Xa Yb]
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contains 1/Xn and 1/Yn and thus is a localization of A[l/Yn]. So
A[l/XaYh] is also regular.

We note that a subring of B — k[X, Y] generated by monomials
is a graded ring with the natural grading it inherits from B.

4* Protective modules over affine normal subrings of k[X, Y]
generated by monomials*

THEOREM 4.1. Let A be an affine normal subring ofB = k[X, Y]
generated by monomials, then all protective A-mo&ules are free.

Proof. Let P be a protective A-module. If P is not finitely
generated, then P is free by a result of Bass [5] or Hinohara [8].
So we may assume that P is finitely generated.

If dim A = 1, then by Serre's theorem [4, p. 173], P has the
form free0rank one. But Pic (A) = 0 by Lemma 2.5, so P i s free.
Thus, we may assume that dim A = 2. By Propositions 3.1 and 3.2
we may assume that A = k[Xn, XYj, X2Y% , χ»^γ^=^9 y ] where
0 < j < n and gcd (j, n) = 1.

Let B = k[X, Y] where k is the algebraic closure of k. The
maximal ideals of B are of the form Ma,b = (X — a, Y — b), and thus
the maximal ideals of A are of the form A n Ma>b because A c B is
integral.

For each 0 Φ b e k let Qb = {Y - b)B n A. Clearly

A/Qb ~ fc[Γ", bjT, b2jT2, .9b
{n-1)jTn-\ bn] .

b 6 k is algebraic over k, so k' = k[bn] is a field. Each b^T = (bn)\bjTy
for some integer i. Thus A/Q6^fc'[6J'T] = &'[iS] is a euclidean ring
because S = VT is transcendental over k\

Next we show that Qb(b Φ 0) is invertible. It is sufficient to
show that (Qb)N is principal for each maximal ideal N of A. If
Qb (£ N, then (Qb)N = AiV. If Qfe c JV, then clearly N Φ (X, Γ)JB Π A.
So by Proposition 3.4, AN is a regular local ring and hence factorial.
Thus (Qb)N is a feί one prime ideal in a factorial ring and hence
principal. So Qb is locally principal and thus invertible. Qh is actually
principal because Pic (A) = 0 by Lemma 2.5. In fact Qb = (Y — 6)JB Π
A = /A where f ek[ Yn] is the polynomial of least degree satisfying
fφ) = 0.

For each 0 Φ b e A; Qb is an invertible ideal such that A/Q6 is a
euclidean ring, and thus E(n, A/Qb) = SL (n, A/Qb) for all n. Thus
each Qb is a special prime ideal. Let S be the multiplicative set
generated by the Qb for 0 Φ b e k. We show that all finitely generated
protective S^A-modules have the form free 0 rank one.
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Let / = (YB n A)S~1A and Z = max (S~lA\V(I)). S kills all the
maximal ideals (X — α, 7 - 5 ) n A when 6 ^ 0 ; so dim Z <̂  1.

A/( Γ ΰ n i ) ^ fc[ Γ] and S"1 A// ^ S~\A/ YB n A) ,

so Pic (S^A/I) — 0 also. Thus all finitely generated projective S^A/I-
modules are free. By Lemma 2.6 all finitely generated projective
S^A-modules have the form free 0 rank one. Thus all finitely
generated projective A-modules have the form free 0 rank one by
Corollary 2.4. But Pic (A) = 0, so all finitely generated projective
A-modules are free.

Seshadri [17] first showed that all finitely generated projective
k[X, Y]-modules are free. Murthy and Pedrini [12] showed that all
finitely generated projective A-modules are free if A = k[Xn, XY, Yn]
or A = k[Xn, XYn~\ - J ^ T , Yn]. Our result generalizes these.
Quillen [15] and Suslin have recently, and independently, proved
Serre's problem. That is, all finitely generated projective k[Xlf , Xn]-
modules are free. The following conjecture thus seems reasonable.

Conjecture. Let A be an affine normal subring of k[X19 • ••, Xn]
generated by monomials, then all finitely generated projective A-
modules are free.

We can however prove a weaker version of this conjecture.
First a result which follows from Quillen's work [15]. The author
learned of this result in a course given by R. G. Swan.

PROPOSITION 4.2. Let A be a commutative ring and f e A[X] a
monic polynomial. Let P and Q be finitely generated projective
A[X]-modules with

(1) Q is extended from A.
(2) / Q c P c Q .

Then P and Q are isomorphic.

Proof (sketch). The proof is similar to that of [15, Thm. 3],
Let A(X) denote the localization of A[X] with respect to the mul-
tiplicative system of monic polynomials. Let Q ^ Qo <ĝ  A[X]. Since
/ 6 A[X] is monic, by (2), P ®A[X} A(X) ~ Q ®ΛU1 A{X) ~ Qo ®A A(X).
Then as in [15, Thm. 3], P is extended from A, say P ^ P o®^ A[X].
Thus Po f* Qo, and so P^Q.

THEOREM 4.3. Let A be an affine normal subring of k [X, Y\
generated by monomials, then all finitely generated projective
A[Xίf , Xn]-modules are free.



12 DAVID F. ANDERSON

Proof. By induction on n, the case n = 0 is just Theorem 4.1.
Suppose A = k[f19 . ., /r] with /, e &[X, Γ] and let B = 4 [ I υ , XJ.
Let S be the set of monic polynomials in k[Xn+ί], Then B[Xn+ι]s =
*(X.+i)[/i; , Λ][Xχ, , XJ. Clearly *CX.+1)[/lf • , /,] is still an
affine normal subring of &(XW+1)[X, F] generated by monomials. So
by induction all finitely generated projective β[Xw+1]5-modules are
free. Let P be a finitely generated projective 2?[X»+1]-module; then
Ps is free, say Ps P* FS where F is a finitely generated free B[Xu+ι]
module. Thus there exists a g e S so that Pg & Fg and hence gmF c
PczF for some m. By Proposition 4.2 P^F, and hence is free.

Thus affine normal subrings A of k[X, Y] generated by monomials
are nontrivial examples of nonregular rings for which NK0(A) = 0,
where NK0(A) = ker (KQ(A[T]) -+ K0(A)), induced by Γ H O . In fact,
it is an open question if NKQ(A) = 0 for all normal domains.

5* Projective modules over subrings of k[X, Y] generated by
monomials* If we drop the assumption that A is normal, all finitely
generated projective A-modules need not be free.

EXAMPLE 5.1 ([7]). Let A = k[X\ X3, Γ], then not all finitely
generated projective A-modules are free. P = (1 + XY, 1 + XY + X2 Y2)
is a rank one projective A-module (invertible ideal in k{X, Y)) which
is not free. In fact, K0(A) ^ Z 0 Pic (A) ** Z φ k[ Y]. That K0(A) ^
Z φ Pic (A) is just Theorem 5.5. We show that Pic (A) ^ k[Y]. We
have the following cartesian square.

A = k[X2, X\ Y] ^ — B = k[X, Y]

i
All - k[ Y] <=—> BJI = k[ε][ Y]

Here I = {X2, X3)B is contained in the conductor ideal and ε2 = 0.
By (1) of Theorem 2.1, Pic(A)^fc[ε][Γ]*/&*. But, as abelian groups,
k[e][Y]*/k*p*k[Y].

Of course all finitely generated projective A-modules may be free
even though A is not normal.

EXAMPLE 5.2. Let A = k[X2

f XY, Y], then all finitely generated
projective A-modules are free. We have the following cartesian
square.

A - k[X\ XYy Y] > B = k[Xy Y]

I I
A/I = k[X*] > B/I = k[X] .
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Here I = YB is the conductor ideal. All finitely generated projective
B and A/I-modules are free and all GL (n, B) —> GL (n, B/I) are sur-
jective. Thus by Theorem 2.1, all finitely generated projective A-
modules are free.

We show that if A is an affine subring of B = k[X, Y] generated
by monomials, then SK0(A) = 0, that is, the natural map det: KQ(A) —>
Pic (A) is an isomorphism. This just means that stably any finitely
generated projective A-module has the form free 0 rank one.

Let A be an affine subring of B — h[X, Y] generated by monomials,
A the integral closure of A, and I the conductor ideal. / Φ 0, so
let J be any nonzero ideal contained in I. Thus dim A/J, dim A/J ̂  1,
so SK0(A/J) = SK0(AIJ) = 0_by Serre's theorem [4, p. 173]. By
Theorems 3.3 and 4.1 SKQ(A) — 0, so by Lemma 2.2 it is sufficient
to show that SK^A/J) = 0. Again we may assume that dim A = 2,
and thus by Propositions 3.1, 3.2, and 3.3 we may assume that A =
k[Xn, XT, X2F2 T, , JC-i γί=πr y ] where 0 < j < n and gcd (i, n) -
1. Also / contains a nonzero monomial / = XaYb with α, fe Φ 0; let

LEMMA 5.3. Let A and B be commutative rings with AcB inte-
gral. If Id A is an ideal of A, then ^ I = ^IB Π A.

Proof. Clearly ^Ia^IBf)A. Let Pespec(A) with I a P.
A c B is integral, so there is a P e spec (B) with P = P Π i . I c
PaP, so / β c P . Thus ^TBCZP and ^TZ? n AcPfl A = P . So v Ύ =

LEMMA 5.4. SK^A/fA) = 0.

Proo/. By above A//Λ = M^M, ^ ^ , , X*~ιY*-»', Yn]/XaYhA.

Let B = k[X, Y], then βV/β = XYB. By Lemma 5.3 VJJ = XYB n

A. By [4, p. 469], SKί(A/fA)^SKMlfA)KirfA/fA))«SK^A^Jλ).

Clearly A/v/iϊ ^ &[X, 7]/(I7). But SίT^fl, η/(IΓ)) = 0, so

SK^A/fA) = 0.

THEOREM 5.5. Lei A δβ α^ α^^e subring of k[X, Y] generated
by monomials, then SKQ(A) = 0. Thus all finitely generated projective
A-modules stably have the form free 0 rank one.

COROLLARY 5.6. Let A be a subring of k[X, Y] generated by
monomials, then all finitely generated projective A-modules stably
have the form free 0 rank one.
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Proof. This follows from the following well-known result. Let
M be a finitely presented A-module, then there is a noetherian subring
R of A and a finitely presented 12-module Mf with M« ΛΓ (x) ΛA.
If M is projective, M' may also be chosen to be protective.

Theorem 5.5 is rather unsatisfying because it does not say that
any finitely generated projective A-module has the form free 0 rank
one, but only that this is stably true. Since dim A ^ 2, by Bass'
Cancellation Theorem [4, p. 184], if rankP = w ^ 3 , then actually
P w An~ι0 Λ\P). If rank P = 2, we only have P φ i ^ i 2 ® A\P).
If k is algebraically closed, by a cancellation theorem of Murthy and
Swan [13], P P* An~ι 0 Λn(P). I know of no examples where P96

If Pic (A) = 0, then all finitely generated projective A-modules
are stably free. If sr (A) ^ 2, then £7(3, A) acts transitively on
U3(A) = {(α0, αx, α2) 6i 3 | (α 0 , αw α2) unimodular}, so all finitely generated
projective A-modules are free. This happens when k is algebraic
over a finite field [18, p. 45]. We next show that this also happens
whenever 1/2 6 k.

We recall a few definitions. KSpo(A) is the Grothendieck group
with generators [P] for each symplectic A-module P and relations
[P] = [Q] if p ^ Q and [P j . Q] = [P] + [Q]. TF(A) is the kernel of
the natural map KSpo(A) -> K0(A) given by [P] h-> [P] which forgets
the symplectic structure. W is a functor from rings to abelian
groups. For more details one is referred to [6] or [18].

LEMMA 5.7 (C. Weίbel and R. G. Swan). Let i = Λ φ Λ 0
be a graded ring and F a functor on rings. If the natural map
induces an isomorphism F(A) —> F(A[T]), then the natural map Ao —>
A also induces an isomorphism F(AQ) —» F(A).

Proof. Define / : A-+ A[T] by / : Σa.-^Σa.T. By hypothesis the
two maps F(A[T])-> F(A) induced by Tt->0 and ΓH-^1 are both iso-
morphisms. Consider the composition A->A[T]^A. If T\~*l we
obtain the identity, while T\->0 gives the natural augmentation
A-+Ao. Thus the natural map A—> A[T]—> Ao induces a monomorphism
F{A) -> F(A0). But this map is always surjective, so F(A0) F* F(A).

PROPOSITION 5.8. Let A be an affίne subring of k[X, Y] generated
by monomials. If Pic (A) = 0 and 1/2 e k, then all finitely generated
projective A-modules are free.

Proof. By a theorem of Karoubi [6, p. 8], when R is a com-
mutative ring with 1/2 6 R> R-> R[T] induces an isomorphism W(R) —>
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W(R[T]). A is a graded ring with AQ = k, so W(A) **W(k) by Lemma
5.7. It is well-known than W(k) = 0 [6, p. 8], so also W{A) = 0.

By a result of Vaserstein [6, p. 7], there is a natural map

^:SL (3, R)\U,(R) >W(R)

which is bijective if E(r, R) acts transitively on Ur{R) for all r ^ 4.
In our case W(A) ̂  W(k) — 0 and E(r, A) acts transitively on

Ur(A) for all r ^ 4 since sr (A) ^ 3. Thus SL(3, A)\U3(A) = 1; that
is, SL (3, A) acts transitively on Ϊ73(A). So all finitely generated
protective A-modules which are stably free are actually free. But
Pic (A) = 0, so all finitely generated protective A-modules are free
by Theorem 5.5.

6* Subrings A of k[X, Y] with Pic (A) — 0* It is not hard to
determine precisely which subrings A of k[X, Y] generated by mono-
mials have Pic (A) = 0. If dim A = 1, clearly A &* k[X] iff Pic (A) =
0. If dim A ~2, by Proposition 3.2 we may assume that Acfc[I, Y]
is integral.

PROPOSITION 6.1. Let A be an affine subring of B = k[X, Y\
generated by monomials with AaB integral and let A be the integral
closure of A. Then Pic (A) = 0 iff

(1) Let Xm and Yn be the lowest powers of X and Y in A,
then X\ YjeA imply m\i and n\j.

( 2 ) XYB Π A is contained in the conductor of A/A.

Proof. We prove the notationally easier case with A = B ~
k[X, Y]. Otherwise we may assume A = k[Xn

9 XYj,- , Xn~ι Y^^} Yn\
and the proof is similar.

(<=) Let I - XYB, then A\I ~ k[X, Y]/(XY). Clearly A* = B* =
(A//)* - (jff/l)* - fc*. Also Pic {All) = 0. This follows from Theorem
2.1 applied to following cartesian square.

k[X, Y]/(XY) >k[X,

k[X, Y]/(Y) >k[X, Y]/(X, Y)

Thus also Pic (A) = 0 by Theorem 2.1.

(==>) Conversely assume that Pic (A) = 0. Suppose that (1) fails.
Say that not all powers of X are multiples of m. There is a retract
of rings R-^A->R where R is the image in k[X] of the map
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Θ:X\->X, Γι-*0. Thus Pic(i?)cPic (A). By Theorem 2.1 it is easy
to see that Pic (R) Φ 0, and hence also Pic (A) Φ 0. So we may
assume that (1) holds.

Pick / = XiYί in the conductor of BjA with i > m, n; this is
possible by Proposition 3.3. Since Pic (A) = 0, also (A/fB)* = (B/fB)*
by Theorem 2.1. For each g = XaYb with 1 <; a ^ m and 1 <; δ <ί n,
1 + 0 + /J5 is a unit in B/fB, and hence also in A/fB. But thus
P P e A , so XFB is contained in the conductor, and the proposition
is proved.

For example, the affine subrings A of B = &[X, F] generated by
monomials with integral closure B for which Pic (A) = 0 are precisely
those of the form

A = k[Xm, {JC'F' l l ^ i ^ m , l ^ j ^ n } y Yn] .

For these rings K0(A) ^ Z. Since this does not depend on the
field k, by an argument similar to that of Theorem 4.3 we see that
all finitely generated protective A[Xlf , JSΓJ-modules are stably
free. So these rings provide many examples of nonnormal rings for
which NK0(A) = 0.

We note that even though these rings are not normal, they are
"power closed" in the sense that if / is in the quotient field of A and
fneA for all large n, then actually f eA. This condition is in fact
necessary, for if A is not "power closed", then Pic (A) —• Pic (A[T])
is not an isomorphism (see Example 5.1).

One can also see that NKQ(A) = 0 for the rings of Proposition
6.1 by using the Mayer-Vietoris iί-theory sequence for NKt and NKQ

([14]). So the rings of Proposition 6.1 are precisely the nonnormal
affine subrings of k[X, Y] generated by monomials for which NKQ(A) —
0. Thus if A is an affine subring of k[X, Y] generated by monomials,
Pic (A) = 0 iff NK0(A) = 0.

7. The general case* One can ask if these results generalize
to more general subrings of k[X, Y]. This is studied in more detail
in [1] or [3]. The analogue of Theorem 5.5 fails in general because
there exist / 6 k[X, Y] with SKx(k[Xf Y]/(f» Φ 0. This also depends
on the field k. We close with one example.

EXAMPLE 7.1. Let A = k[X, Y(X2 - Y), Y\X2 - Y)], then
(1) If fc is algebraic over a finite field all finitely generated

protective A-modules are free.
(2) If & is an algebraically closed field of char 0, then SK0(A) p*

Ωϊiz Φ 0 and Pic (A) = 0. Thus there exist indecomposable finitely
generated projective ^modules of rank 2.
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