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MODULARITY OF THE CONGRUENCE LATTICE
OF A COMMUTATIVE CANCELLATIVE
SEMIGROUP

HowARD HAMILTON

Modularity of the lattice of normal subgroups of a group
is well-known. Equivalently, the lattice of congruence rela-
tions on a group is a modular lattice. A natural question
to consider is how far can we push the last statement when
dealing with the larger class semigroups. It is easily shown
that the class of congruence lattices of semigroups satisfies
no nontrivial lattice identity. Thus we might try to find
those semigroups whose congruence lattice is a modular lattice.
This problem is of all the more interest due to the fact that
congruences on algebras whose congruence lattice is a modular
lattice satisfy variants of the Jordan-Holder-Schreier
theorem. In this paper we show that the commutative
cancellative semigroups whose congruence lattice is a modular
lattice are the abelian groups, the positive cones of rational
groups, and the nonnegative cones of rational groups. We
also show that the commutative cancellative semigroups with
a distributive lattice of congruences are locally cyclic or
locally cyclic with an identity adjoined. This last result
generalizes Ore’s theorem that a group has a distributive
lattice of congruences if and only if it is locally cyclic.

1. Introduction. By an N-semigroup we mean a commutative
cancellative archimedean semigroup without idempotent. An N-
semigroup will denote a commutative cancellative idempotent free
semigroup (CCIF-semigroup) which contains an ideal which is an N-
semigroup.

It was shown in 1957 by Tamura [14] (see also [1] and [13])
that every N-semigroup S can be represented by an abelian group
G and a function I from G X G into the nonnegatlve integers N°
with the properties

1.1) I(g, h) = I(h, g) for all ¢g,heG,

(1.2) Ig, h) + I(gh, k) = I(g, hk) + I(h, k) for all g, h,kecG,

1.3) I(g,e) =1 for all g e G, where e is the identity of G,

(1.4) For each g €G there exists m > 0 such that I(g, g™ > 0.

Where S = N° x G with the product

1.5) (m, g)(n, k) = (m + n + I(g, h), gh) for (m, g), (n, h) e N° x G .
469
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We write S = (G, I) if S is determined in this manner by G and I.

Condition (1.1) is the requirement on I that makes the product
(1.5) commutative, while (1.2) gives associativity of (1.5). Property
(1.3) is just a normalizing condition. Condition (1.4) is the require-
ment that makes (G, I) an archimedean semigroup. Cancellation in
(N° +) and G makes (G, I) cancellative, also. Thus we see that if
we were to drop condition (1.4) all we would lose, possibly, is the
archimedeanness of S. In [9] it is shown that dropping (1.4) yields
an N-semigroup and that every N-semigroup can be obtained in this
way. [9] also contains further information on the structure of N-
semigroups and CCIF-semigroups. We will need the following infor-
mation about N-semigroups from [9].

LEMMA 1.1. [9] Let S be an N-semigroup. Let T be the N-
semigroup ideal of S. Then

(1) T={aecS|for all bcS there exist m >0 and ccS such
that a™ = be}.

(ii) For each a€T p, is a group congruence on S where for
x, Yy €S we have (x, y) € 0, if there exists m, n > 0 such that a™ = a™y.

(iii) If S=(G, I) then for all g€ G we have (1, 9) e T and (0,ec T
if e is the identity of G.

Let S = Uuer S, where I' is a lower semilattice, be the greatest
semilattice decomposition of a semigroup S. For each ael" the a-
filter of S is S* = Upz.Ss. Then S is the I' direct limit of S=.

Fact 1.2. If S is a CCIF-semigroup then the a-filters of S are
all N-semigroups.

Next we will discuss a relationship between congruences on a
semigroup and congruences on the a-filters of the semigroup. Later
we will apply this to CCIF-semigroups.

For a semigroup X we will let L(X) denote the lattice of all
congruence relations on X. If o,¢c L(S*) for some @' then ¢* =
o, U (S\S*) x (S\S%) is a congruence on S, and the map o, 0* is an
isomorphism of L(S% onto a sublattice of L(S). Thus we. have

LEmMMA 1.3. For each e’ L(S%) is isomorphic to a sublattice
of L(S).

Next, let & = {Il.0.,€ 1. L(S%: for B, vl with 8= 0,<0:}.
LEMMA 1.4. & is a complete sublattice of 11. L(S).

Proof. Let {0; = [[.0.s: 6 € 4} be a collection of members of .~
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Then by the definition of join in the direct product II, L(S*) we
have V;es 0 = 12 (Vse4045)s and Vie105: S Viea0r, if 8= 7 because
05, < 0y, for all 0 if B =v. Hence V,p,€.% Similarly, one sees
that M; 05 = 1. (MNses0a5) 18 in A

Define a function f: ¥ — L(S) by f(Il.0¢.) = U;o.. Note that
U. 0. € L(S) because of the definition of &~

THEOREM 1.5. The map f is a closed lattice homomorphism of
& onto L(S).

Proof. Let [[,o0, and [],7. be two members of &,
f(Mo.vIe)=f(Tl@. ve)=U@ Ve,
and f(Il.0.) V f(l.70) = (U.0.) V (Ua7.). Since U,0, and U, 7.

are both contained in U,(o, V 7.), we have immediately that
U0, V 70) 2 (Us0,) V (Us7.). To see containment the other
direction, let (a, b)eU. (0, V 7,) then there exists gel such that
(a,b)e gy VV t5. That is, there exists gel and a = a, a, a,, ---,
a, = beS? such that (a,, a,,,)€0; or (a, a,,,)€c;, for :=0,1, ---,
n —1. Thus (a,b)e(U.0.) V (U.7.), and we have shown that
U. (0. V 72) € (Ua0s) V (Ux7.). Therefore, f preserves joins.
Now we show that f preserves intersections. We have

A=) = f(MNe0e) =Y <,

and f(II.0.) N f(Tl.7n) = (U 0.). Since U, (0. N 7,) is contained in
each of U.,o0, and U.7. we have U.(6.N7.) S (U0 N (Ua o).
Now let (a,d)e(U.0.) N (U.7.). That is, (a,d)eU.0. and (a, b) e
U.7.. Hence there exist B, Y€ such that (a, b) €0, and (a, b) €7,
and since [].o, and [].7, are in & we have (a, b) € 64 and (a, d) € 4.
Thus (a, b) € (0 N7s) and so (a, b) e U, (0.N7,). Therefore f pre-
serves intersections.

From Lemmas 1.2 and 1.4 and Theorem 1.5 we immediately have

THEOREM 1.6. Let S be a semigroup. L(S) satisfies an identity
iof aud only if L(S*) satisfies the same identity for each acl.

If o is a binary relation on a set X and ¥ £ X then p|Y =
oN(Y xY). Also, ¢y will denote the identity relation on X, and

w, will denote the universal relation on X.

THEOREM 1.7. ([19] Proposition 3.1) If p is a group congruence
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on S and J is an ideal of S them o = p|J is a group congruence
on J and S/o = J/o. Furthermore, 0 is the unique extension of o
to a group congruence on S.

COROLLARY 1.8. The join semilattice of group congruences on
a semigroup S 18 isomorphic onto the join semilattice of group
congruences on any ideal J of S.

LEMMA 1.9. Let S be a semigroup and let J be an ideal of S.
Let 0 be a group congruences on J and ft the unique extension of
o to a group congruence on S. Letn = o Uts and let T be any group
congruence on S. Then neL(S) and V7T =p V.

Proof. o = p|J implies that 7 is a congruence relation on S.
We have 7 & ¢ therefore 7 V7 < ¢t V. We also have (# V 7)|J =
|y V(c|d) =0V (z|J)= (n V)|J where the first “=" follows
from Corollary 1.8. Now # V7 and ¢ \V 7 are group congruences on
S with (# Vv 7)|J S ( VvV 7)|J. Hence again by Corollary 1.8 7 \V 7 2
V. Thus » V7=pVrz, and we are done.

DEFINITION 1.1. A semigroup S is a proper subdirect product
of two semigroups 7T and U if S is a subdirect product of 7T and U
and S T and S U. In which case it follows that there exist
nontrivial congruences ¢ and v on S such that g Ny = ¢.

COROLLARY 1.10. If a semigroup S is a proper subdirect product
of two groups and 1if S has a proper ideal J then L(S) is not
modular.

Proof. Let S be a proper subdirect product of two groups then
there exist nontrivial congruences ¢ and z on S such that S/¢ and
S/t are groups and # N7 =¢. Letn=(y¢|J)U¢t. By Lemma 1.9
neL(S)and » VT =pV<7c. And since 7 S ¢ we have N7 = ¢.
Hence L(S) contains

IVT=pVT

ls
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as a sublattice; so L(S) is not a modular lattice.
2. CCIF-semigroups with L(S) modular.

DEFINITION 2.1. An N-semigroup S is power-joined if for all
a, b€ S there exist m and n greater that zero such that a™ = b".

From [8] we have the following theorem about power-joined
N-semigroups.

THEOREM 2.2. Let S be an N-semigroup. Then the following are
equivalent:

(a) S is power-joined.

(b) S is not a subdirect product of two groups.

(¢) The group congruences on S form a sublattice of L(S).

COROLLARY 2.3. Let S be an N-semigroup. If L(S) is modular
then S is power-joined.

This is immediate from Theorem 2.2 and Corollary 1.10 because
being a subdirect product of two groups is equivalent to being a
proper subdirect product of two groups for semigroups which are
not groups.

Let S = (G, I) be an N-semigroup. If |G| =1 then S = N, the
positive integers with addition. In [2], Exercise 6, p. 137, it is
shown that L(N°) is a distributive lattice. Let o€ L(N) then p* =
e U{(0, 0)} e L(N® and o+ p* is an embedding of L(N) into L(N").
Thus L(N) is distributive and hence modular.

For an N-semigroup S we will introduce the following notation:
L,(S) is the collection of nil congruences on S, L.(S) is the collection
of Rees congruences on S, and L,(S) is the collection of group con-
gruences on S. In general L,(S) and L.(S) are both sublattices
of L(S), and by Theorem 2.2 L,S) is a sublattice of L(S) if and
only if S is power-joined.

LEMMA 2.4. Let S=(G,I) be an N-semigroup. If L(S) s
modular then L,(S) = L,S).

Proof. We can assume that |G| > 1 because otherwise S= N
from the above remarks and it is clear for N that L,(N) = L,(N).
If |G| > 1, L(S) is modular and 7 e L,(S)\L,(S) then let I, be the
ideal of S which is the zero of S/». Let p; be the Rees congruence
associated with I,, then or, < 7. Letrt be the group congruence on
S corresponding to the homomorphism 7 of S onto G given by z(m, g) =g
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for all (m, g)€S. Since the join of any group congruence with any
nil congruence is @;, we have 7 V7 = Pr, VT =05 Leto= 7| L.
If (m, g) and (n, g) are in S\I, and ((m, 9), (n, 9)) €7 With m > n then
since (m, g) = (n, 9)(0, )™ ™ so [(n, 9)], divides [(%n, 9)], in S/n, but in
a nil semigroup xy = x implies x = 0. Thus we have a contradiction,
and so ((m, g9), (n, h))en for (m,g) and (n, k)€ S\I, implies g = h.
Hence we have 7Nt =p;, Nt =0U¢. Thus we have

W

OUe

contained in L(S), and so L(S) is not a modular lattice. Thus L,(S) =
L,(S).

Tamura has classified the commutative archimedean semigroups
in the following four classes:

Type (1) commutative nil semigroups.
Type (ii) commutative nil extensions of abelian groups.
Type (iii) N-semigroups.

Type (iv) commutative archimedean nonpotent noncancellative
semigroups.

Since a homomorphic image of an archimedean semigroup is also
archimedean, a homomorphic image of an N-semigroup S has one of
the four types above. Let o ¢ L(S) then we call ¢ a nil- (ng-, N-, T4-)
congruence on S if S/o is of Type i (ii, iii, iv). Dickinson [5] has
noted that a T4-congruence is a refinement of an N-congruence.

DEFINITION 2.5. An N-semigroup S is said to be irreducible if
¢ty is the only N-congruence on S.

Tamura [15] has shown that an irreducible N-semigroup is iso-
morphic onto a positive real additive semigroup. It is also shown
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in [15] that every N-semigroup S = (G, I) is a subdirect product of
an irreducible N-semigroup and the structure group G of S.

LemMMA 2.6. Let S be an N-semigroup. If L,(S) = L.S) then
S s irreducible.

Proof. Suppose S is not irreducible then S is a proper subdirect
product of an irreducible (hence positive real) N-semigroup 7T and
an abelian group G. Let 7,: S— T be the projection of S onto T (we
identify S with its isomorphic image in Tx@). We have 7, is not
one-to-one because the subdirect decomposition is proper. Thus (m, g)
and (m, h) are in S for some me T and g, hc G with g#h. Let J=
{(n, k)€ S:m > m and ke G} then J is an ideal of S. Define a relation
7 on S by » = w,; U {(m, 9), (m, b)), (m, k), (m, g))}. Then 7 is a nil-
congruence on S which is not a Rees congruence. Thus L,(S)=L.(S).

DEFINITION 2.7. Let S be a semigroup with zero. Then an
element ze€S such that o2y =yx =0 for all yeS is called an
annthilator of S. The collection of annihilators of S is denoted by
A(S).

DEFINITION 2.8. Let S be a commutative semigroup. If z and
y are in S then we say x divides y in S (denoted x|y or x|gy) if
there exists z€ S such that zz = y.

THEOREM 2.9. (Tamura [17]) Let S be an N-semigroup. Then
the cancellative congruences on S form a sublattice of L(S) isomorphic
onto the lattice of subgroups of the group of quotients of S. Hence
the cancellative congruences om an N-semigroup form o modular
lattice.

LemMMA 2.10. Let S be a power-joined N-semigroup such that
L,S) = L.S). Let oeL(S). If o+1 then there exists T e L,(S) and
N e L.(S) such that ¢ =t N7 and T and 7 are uniquely determined
by o.

Proof. By Lemma 2.6 Sis an irreducible N-semigroup. Therefore,
from Dickinson’s result we know that S has no T4-congruences. Hence
if 01 then o is either a Rees congruence of an ng-congruence. In
either case S/o contains a group ideal (in the case o is a nil-congruence
the group is the trivial group). Let J, denote the ideal of S which
maps onto this group ideal under the natural homomorphism of S
onto S/o. Then a|J, is a group congruence on J,. By Theorem 1.7
let = be the group congruence on S which extends o¢|J,. Let 7 be
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the Rees congruences mod J,. Clearly tNn =o0|J,U¢ts. Since J,jo
is an ideal of S/o, (S/0)/(J,/o) is a nil semigroup. Let v be the con-
gruence on S such that S/y = (S/o)/(J,/6). Then ve L,(S) = L.S).
But v = w,;, Uc|(S\J,) so o[(S\J,) must be ¢4,,. Hence o =
oldJ,Uts=1tNM7.

Uniqueness of © and 7. Suppose 7, 7,€ L,(S) and 7, 1, L.(S)
and that 7, N7, =7,N 7. Let I,, be the ideal of S associated with
7:(¢ = 1,2). Suppose I, # I,. Assume x¢I,\I,, then by the proof
of Theorem 1.7 there is a y € I,,N I, such that (x, y) €z,. Therefore
(x,y)er, N7, but (x,y)en, so (x,y¥)&7,N7N, This contradicts the
assumption that z,N%, = ,N7,. Therefore I, < I,. Similarly
we get I,, < I,. Hence 7, =7,. And so z,|I, = 7,|I, and so again
using Theorem 1.7 we have 7z, = 7,. This proves the uniqueness of
z and 7.

We are now ready to prove the theorem determining the N-
semigroups whose congruence lattice is modular.

THEOREM 2.11. Let S be a power-joined N-semigroup. Then the
following are equivalent:

(1) L(S) is a modular lattice.

(2) L,S) = L.S).

(8) For each ideal J of S we have |A(S/J)| < 2.

(4) Divisibility is a total order on S.

(5) S is isomorphic to a positive come of an additive subgroup
of the rationals.
In which case L(S) = (L,S) X L.S))* (where L' means a smallest
element 1 is adjoined to the lattice L).

Proof. We show (1)< (2),( Q)= (3)=(4)=(2), and (4) = (5).
(1) = (2) is shown in Lemma 2.4.

Proof of (2)=(1). Assume that S is a power-joined N-semigroup
for which L,(S) = L,(S). Define a map » from L(S) into
(Ly(8S) x L,(S))" by

1 if o=1

o) =
@) =en) if o+iando=rzn7 for ceLyS) and peL(S) .

From Lemma 2.10 it follows that ) is well-defined and \7'(z, 7)) =
T NN, M) = 4 is the inverse of \.

N\ 18 order preserving. Let o, C o, for g, 0,€ L(S). If \(o,) =1
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then \(0,) < M0,) since 1 is the smallest element of (L,(S) x L,(S)).
Thus assume that A\(o,) # 1. Then M\o,) = (z;,, 3,) for 7 =1, 2 with
o, =7, NNt =1,2). Let I, denote the ideal of S associated with
7,0 =1,2). If I, &I, choose wel,\I,, and ye€lI, NI, such that
(%, y)et,. Then (x,y)er, NN =0, 0, =71,N 7, which implies that
(¢, ¥) €7, but this is a contradiction, since x ¢ I,, and y € I;,,, Thus
I, < I, and so 9, £ 7,. Now o, C 0, implies o,|I, < 0,|I,, than is
©,|I,, & I, (see the proof of Lemma 2.10). Hence by Theorem 1.7
and Corollary 1.8 7, S 7,. Thus (¢, 7,) S (7, ,) and A is order

preserving.

It is obvious that \~' is also order preserving. Hence A is a
closed lattice isomorphism of L(S) onto (L,S) X L.S))'. In our
present case (i.e., S is power-joined) we have L,(S) is a sublattice of
L(S) by Theorem 2.2 and so by Theorem 2.9 L, S) is a modular
lattice. L,(S) is always a modular lattice, since it is isomorphic onto
a sublattice of the Boolean lattice of all subsets of S with inclusion
as the partial order. The isomorphism here is just the one taking
ne L,(S) to its associated ideal of S. Thus L, (S) x L.(S) being the
direct product of modular lattices is a modular lattice. But adjoining
a smallest element to a modular lattice also gives a modular lattice.
Hence L(S) is a modular lattice. This completes the proof that
2) = (D).

Proof of (2)= (3). Let L,(S)=L,(S) and choose J an ideal of S.
If u, v € S are two distinct nonzero annihilators of S/J, then p = w,U
{(u, v), (v, w)} is in L,(S) but not in L,(S). A contradiction. Hence
|A(S/I)] = 2. !

Proof of (3) = (4). Note that for an N-semigroup divisibility is
always a partial order. Assume |A(S/J)| <2 for every ideal J of
S. If there exists u, ve S such that wtv and v}t u, then let J =
wS)U@S). Then A(S/J) 2 {u, v, 0}. This contradicts our assumption,
thus either u|v or v|u and S is totally ordered by divisibility.

Proof of (4)=(2). Let S be an N-semigroup in which divisibility
is a total order. Tamura [15] has shown that such semigroups are
irreducible and are therefore isomorphic into the positive reals. The
assumption that S be power-joined puts us into the positive rationals
(see Tamura and Sasaki [20]) with addition understood to be the
operation in all of our real semigroups. Thus we will assume that
S is contained in the positive rationals. Let J be an ideal of S. If
xedJand ye S with y>« then x|y hence yeJ. ThusJ is a segment
of S (i.e.,, J=1(¢, ®)s={xeS:x>¢} or J=][¢, ©)s={xeS:2=c
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for some rational ¢=0). Let e L,(S) and let J, denote the associated
ideal of S. Let ¢=inf(J,) and suppose a, bc S with a<b and (a, b) ey
then (a, d), (b, + (b — a)), +++, (b + (m — 1)(b — a), b + m(b — a)) are
all in . And for m large enough b+ m(b —a) > c¢ hence
b+ mbd-—a)ed, and so a,beJ,. Thus peL,(S). This completes
the proof of (4) = (2).

The equivalence of (4) and (5) is easily seen when we realize
that (4) puts us into the positive rationals as mentioned in the proof
of (4) implies (2).

We are now ready to answer the question of modularity of the
congruence lattice of a CCIF-semigroup.

THEOREM 2.12. Let S be a CCIF-semigroup. Then L(S) is a
modular lattice if and only if S is a positive cone of a subgroup
of the additive rationals.

Proof. Let S = U..r S, be the greatest semilattice decomposition
of S. All we need to do to is show that each a-filter S* is an
N-semigroup if L(S) is a modular lattice. Assume that L(S) is
a modular lattice. Then by Theorem 1.6 L(S*) is modular for
each ael’. Choose ael’. By Fact 1.2 S* is an N-semigroup.
Let S* = (G, I) for some abelian group G. We will be done when
we show that G must be a torsion abelian group because then I
must satisfy condition (1.4) and so S* is an N-semigroup. Suppose
G contains an element g, of infinite order. From Lemma 1.1 we see
that (1, g,) and (0, ¢), where e is the identity of G, are in the N-
semigroup ideal of S and so by part (ii) of Lemma 1.1 the relations
01, g,) and p(0, ¢) are group congruences on S. Suppose (m, g) and
(n, h) are in S then ((m, g), (n, h)) € 0,» if and only if g = h, and
((m, 9), (m, 9)) € P14, implies that m = n since g, has infinite order.
Thus 04,,) N P, = ¢ and so S* is a subdirect product of the two
nontrivial groups S*/0,,,) and S*/0(0, ). Therefore by Corollary 1.10
we have a contradiction to the assumption that L(S*) is a modular
lattice. Hence G is a torsion abelian group and we are done.

3. Commutative cancellative semigroups with idempotents
with L(S) modular. In this section we will determine those com-
mutative cancellative semigroups with an idempotent (which is neces-
sarily an identity element of the semigroup), which are not groups,
whose congruence lattice is a modular lattice.

Let S = U..r S, be the greatest semilattice decomposition of a
commutative cancellative semigroup with an identity element. Then
I' has a maximal element @, and S,, is an abelian group. Assume
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that L(S) is a modular lattice and assume S+ S, (i.e., S is not an
abelian group). By Theorem 1.6 L(S®) is modular for all ¢ e I". Also,
if @ # a, then S* contains S,, which is an N-semigroup, as an ideal;
hence, we have

LEMMA 3.1. For each a # @, S, is a power-joined N-semigroup.

Proof. Assume that a + «, and S, is not power-joined then by
Theorem 2.2 S, is a subdirect product of two groups. Equivalently,
there are two group congruences ¢ and 7 on S, such that o6 N7 = ¢,.
Let ¢ and T be the unique extensions of ¢ and 7, respectively, to
group congruences on S* Suppose (x,y)€d N 7T, and choose z¢€8S,.
Then (xz, y2z)ed NT with xz, yzeS,. Therefore (xz, yz)eco Nt =¢,
and so xz = yz. Thus x =y, since S is cancellative, and we have
07T = tse. Henece by Corollary 1.10 we have L(S*) is not modular.
This is a contradiction and therefore S, must be power-joined.

In [7] Theorem 2.5 Hall showed that for a power-joined N-
semigroup A the translation semigroup 7T(A) of A is a commutative
cancellative semigroup having two archimedean components. One
component is an ideal containing the inner translations of A (and
hence a copy of A) and the other component is the group of permu-
tation translations of A and is isomorphic to a subgroup of any
structure group of A. By [20] every structure group of a power-
joined N-semigroup is a torsion abelian group. Hall also showed
that a commutative cancellative ideal extension of A is isomorphic
to a subsemigroup of T(A).

LEMMA 3.2. || =2.

Proof. Suppose |I'| > 2. Then there exist a«, e such that
B < a < &. By Lemma 3.1 S;is a power-joined N-semigroup. Thus
from Hall’s work we have S? is isomorphic to a subsemigroup of
T(S;) containing the copy of S;. We will identify S; and S* with
their images in 7(S;). Let T(S;) = A U B be the greatest semilattice
decomposition of T(S;). Let A denote the archimedean component
containing S; and let B denote the archimedean component consisting
of the group of permutation translations of S;. Letxe¢S,. IfxeB
then, since B is torsion group, there exists m > 0 such that z™ =1
so 1e€S,. But 1eS,, a contradiction. If x € A then 2™ ¢ S, for some
m > 0, as A is archimedean and S; is an ideal of 7(S;). Therefore,
we would have z™€ S, N S;, another contradiction. Thus |I"| = 2.

Hence we will let S=S,US, where S, is a power-joined N-
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semigroup and S, is isomorphic to a subgroup of the group of
permutation translations of S,

By L,(S,, S,) we mean the collection of nil-congruences on S, which
extend to congruences on S (i.e., 0 € L,(S,, S, if o is a nil-congruence
on S, and (a, b) co and x € S, implies (ax, bx) € ¢). Similarly L.(S, S,)
is the collection of Rees congruences on S, which extend to con-
gruences on S. The next lemma is a generalization of Lemma 2.4.

LEMMA 3.3. Let S=S,US, be a commutative semigroup with
S, an ideal which is an N-semigroup. If L(S) is a modular lattice
then Ln(So, S) = L’I’(SO! S,).

Proof. Let oe L, (S, S\L.(S, S,). Let J be the o-class of S,
corresponding to the zero of S,/o. J is an ideal of S, which is an
ideal of S. Hence the Rees congruence mod J, p;, is in L.(S,, S)).
Let = be the group congruence on S, determined by the natural
homomorphism of S, onto one of its structure groups G. Then & =
o0Uts, P = p;Ucts are in L(S). Let 7 be the unique group congruence
on S extending z. Then by an argument similar to that used in
Lemma 2.4 we see that L(S) contains

e

VA

(z]J) U g

R —

Hence L(S) is not modular.

Hall [7] and Dickinson [4] gave the following characterization
of T(S) where S = (G, I) is an N-semigroup.

T(S) ={[m,9le N° X G:m + I(g,h) —1 =0 for all heG}.
The action of an element [m, g] € T(S) on an element (n, h)€ S is
[m, 9l(n, k) = (m + n + I(g, ) — 1, gh) .
The group of units T,(S) of T(S) is shown by Dickinson to be
T.(S) ={[0,9]e N° x G: I(9, h) =1 for all heG}.

THEOREM 3.4. Let S be a commutative cancellative semigroup
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with an identity element. Then L(S) is a modular lattice if and
only if S is an abelian group or a monmegative come of an additive
subgroup of the rationals.

Proof. Assume L(S) is a modular lattice, and assume that S is
not an abelian group. Then, as we noted above, S = S,U S, where
S, is a power-joined N-semigroup ideal of S and S, is an abelian
group. Suppose that S, = (G, I). From previous remarks we can
consider S, to be a subgroup of T,(S;). Define a relation ¢ on S, by

jm >0 and » >0, or
((m, ¢), (n, h))eo if and only ifim = n = 0 and [0, kl(m, g) = (n, h)
ifor some [0, k]e S, .

Then o ¢ L,(S,, S, and if S, is not the trivial group then o ¢ L.(S,, S,).
Hence by Lemma 3.3 S, must be the trivial group. Since S, is trivi-
al, every congruence on S, extends to a congruence on S. Therefore
L(S,) is a modular lattice, also; so by Theorem 2.11 S, is a positive
cone of a rational group. Therefore S is a nonnegative cone of a
rational group.

To see the converse, consider the following. Let S =S, U {1} be
a power-joined N-semigroup S, with an identity 1 adjoined. Define
a map F of L(S) into the direct product of L(S,) and the two element
lattice 2 = {0, 1}, with 0 > 1, by

{(UJSO, D if 1, ={1}

FO=1018,0 it 1,

where 1, denotes the ¢-class containing 1.

F preserves joins. Let o, 7e L(S).

Case (1). 1, ={1} =1.. Then F(o) V F(z) = (¢|8S,, 1) V (z]S,, 1) =
(@S, Vv7lS, 1) and F(o vVrt)=(oV1)S, 1. And (¢ V7)|S =
0|8,V 7|8, is clear. Thus F(o) V F(t) = F(o V 7).

Case (2). 1, =1{1} and 1. # {1}. Then F(o) V F(z) = (0|S,, 1) V
(]S, 0) = (]S, V 7|8, 0). Since 1. {1} and z S0 V¢ we have
1,,.#{1}so FloV7)=((oV7)|S,, 0). Thus to show F(o)VF(t)=F(oVT)
we need only show that (c\V7)|S,=¢|S,V7|S,. Inclusion of ¢|S,V7|S,
in (0 V7)|S, is clear. We therefore choose (a, b)e (o \V 7)|S,. Then
there exist @ =ay 0, +++, a, = b in S such that (a;, a,.,) €0 Ut for
all ¢ =0,1,---,n — 1. Since 1, = {1}, if a,, = 1 for some 4, then we
can delete a,, from the sequence and still have a chain of o Uz-related
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elements between a and b all of which will now lie in S,. Hence
(a,b)ec|S,V7|S, and so (6\V7)|S,S0|S,Vr|S, and we have equality
of F(o Vv 7) and F(0) < F(r) in this case.

Case (3). 1, {1} and 1, + {1}. Hence 1,,. = {1}. Therefore to
show that F(o¢ V 7) = F(0) \V F(r) we need only show that (¢ \V7)|S, <
o|S, VvV t|S, as in the last case. Let (a,b)c(o VvV 7)|S,, Then as
before there exists a =a, a,, -+, a, =b in S such that (a;, a;,,) €
oUrt for each 1 =0,1,---,» — 1. As in case (2) we wish to lift
this to a chain of o U z-related elements in S, from a to b. To
accomplish this note that ¢ and ¢ are group congruences on S and
hence on S,. And by Theorem 2.2 ¢|S,N7|S, is also a group con-
gruence on S,. Choose €S, such that wu sy is the identity
element of S/(6|S,N7|S,). Then u, is the identity of S/o and wu.
is the identity of S/z. So we have (a, ayu), (a;u, a,.,u) for 7 =0, 1,
«ee,n — 1, and (a,u, b) are all in o Uz. Thus (a,b)ec|S,V ]S,
and we are done. Thus F' preserves joins.

F preserves intersections. For any two congruences o, 7€ L(S)
we always have (6 N 7)|S, =0|S,N7|S,. Also, if 1, ={1}or 1, = {1}
then 1,,. = {1}. It also follows from the remarks about finding the
element u in case (3) above that if 1, {1} and 1, ## {1} then 1,,. #
{1}. Hence F' preserves intersections.

F is one-to-one. Let og,7eL(S). If F(o) = F(r) and F(o) =
(0|S,, 1) and F(r) = (7|8, 1) then ¢|S,=17|S,, but in this case
o=0|S,U{1, 1)} and = =7|S,U{@A, 1)}. Therefore 0 =7. If F(o) =
F(z) and F(o)=(d]|S,, 0) and F(z) = (t|S,, 0) then ¢ and 7 are group
congruences on S which are the unique extensions of ¢|S, and 7|8,
to group congruences on S. Thus ¢S, =7|S, implies that o = 7.
And we therefore see that F' is one-to-one.

The above shows that F' is a closed lattice isomorphism of L(S)
into L(S,) X 2.

To complete the proof of the converse of Theorem 3.4 let S be
a nonnegative cone of a subgroup of the additive rationals. Then
S = S,U{0} where S, is the positive part of S. S, is a power-joined
N-semigroup and by Theorem 2.11 L(S,) is a modular lattice. Thus
applying the map F to this S shows that L(S) is also a modular
lattice. This completes the proof of the theorem.

4, Summary and further observations. So far we have shown

THEOREM 4.1. The commutative cancellative semigroups whose
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congruence lattice is a modular lattice are

(1) The abelian groups.

(2) The positive cones of subgroups of the additive rationals,
and

(8) The mommegative cones of subgroups of the additive ra-
tionals.

Consider the following example. Let X be an index set and let
D, be the direct product of |X| copies of N° and let D ={n =
II.n,eD,: there exists M, > 0 such that n, < M, for all ze€ X}.
Then D is a commutative cancellative semigroup and the greatest
semilattice homomorphic image of D is the semilattice (actually
lattice) 2 of all subsets of X. Since every semilattice can be
embedded into 2* for some set X, we see that every semilattice is
a homomorphic image of some commutative cancellative semigroup.
In [6] R. Freese and J. B. Nation showed that the collection of
congruence lattices of semilattices satisfies no nontrivial lattice
identity. From this and the remarks above we see the following
theorem.

THEOREM 4.2. The collection of congruence lattices of commutative
cancellative semigroups satisfies no nontrivial lattice identity.

In [3] R. A. Dean and R. H. Oehmke and in [18] T. Tamura and
W. Etterbeek showed that the lattice of congruences on a locally
cyclic semigroup is a distributive lattice. Also, a theorem (see [12])
due to Ore gives the groups whose subgroup lattice is a distributive
lattice to be precisely the locally cyclic groups. From these results
and the fact that a distributive lattice is a modular lattice we have
immediately from Theorem 4.1 the following

THEOREM 4.3. The commutative cancellative semigroups whose
congruence lattice is distributive are

(1) The locally cyclic abeliam groups.

(2) The positive cones of subgroups of the additive rationals.

(38) The nonnegative cones of subgroups of the additive rationals.

Noticing the result of the theorem we can easily obtain that
Ore’s theorem almost holds for commutative cancellative semigroups.
That is, we have

COROLLARY 4.4. Let S be a commutative cancellative semigroup.
Then L(S) is distributive if and only if S is locally cyclic or S*
is locally cyclic with an identity adjoined. (S*equals S if S already
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has an identity element and S' is S with an identity adjoined if
S has no identity.)

Proof. Let S be a locally cyclic commutative cancellative semi-
group. Then for all x, y € S there exist z¢€ S and m, » € N such that
=2 and y = z". Thus 2" = y™, and 2y~' or yx' is in S. Hence
if S is not a group then S is a power-joined N-semigroup in which
divides is a total order. That is, S is a positive cone of a rational
group. The proof is now easily finished by looking at the theorem,
since positive cones of rational groups are locally cyclic semigroups.
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