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TWO THEOREMS ON THE PRIME DIVISORS OF ZERO
IN COMPLETIONS OF LOCAL DOMAINS

L. J. RATLIFF, JR.

The first theorem concerns the number of minimal
prime ideals of a given depth (=dimension) in the comple-
tion of a finite integral extension domain of a semi-local
domain. The second theorem characterizes local domains
that have a depth one prime divisor of zero in their comple-
tion as those local domains whose maximal ideal M is a
prime divisor (^associated prime) of all nonzero ideals
contained in large powers of M.

For arbitrary local (Noetherian) domains R it is of some interest
and importance to know as much as possible about the prime divi-
sors of zero in the completion R* of R. One reason (among several)
for this is that knowledge about these prime ideals is necessary to
solve the catenary chain conjectures. (For example, the Chain Con-
jecture, open since 195β, holds if all minimal prime ideals in ί!*
have the same depth whenever the integral closure of R is quasi-
local.) In this paper we add to the existing knowledge in this area
by proving two new theorems about such prime ideals.

For the first of these, it is well known that if the integral
closure of R has k maximal ideals, then the completion i2* of R has
at least k minimal prime ideals. (For example, see the proof of
(33.10) in [3].) It is also known [8, (2.14.1) => (2.14.2)] that if there
exists a maximal chain of prime ideals of length n in some integral
extension domain of R, then some minimal prime ideal in i?* has
depth n. Our first theorem, (4), shows that these two results
combine in a somewhat unexpected manner for finite integral exten-
sion domains of R. The second theorem, (9), characterizes local
domains R such that there exists a depth one prime divisor of zero
in R*. (11) gives a similar characterization of a subclass of the
local domains whose completions have depth one minimal prime
ideals.

To help simplify the statement and proof of the first theorem,
a few preliminaries are needed. We thus begin by fixing two nota-
tional conventions.

(1) NOTATION. We shall denote by A! the integral closure of a
ring A in its total quotient ring, and by R* the completion (in the
natural topology) of a semi-local ring R.

The following three definitions are also needed.
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(2) DEFINITIONS. For an integral domain A, c(A) = {m; there
exists a maximal chain of prime ideals of length m in A), and
uc(A) = {n; there exists a maximal chain of prime ideals of length
n in some integral extension domain of A}. If PeSpecA, then we
let c(P) and uc(P) denote the sets c(AP) and uc(AP). Also, the class
of quasi-local domains Q such that uc(Q) = c(Q) will be denoted by
if.

It is clear that c(A) £ uc(A), and [3, Example 2, 203-205] in
the case m = 0 shows that this containment may be proper even
when A is a local domain, so there are local domains that are not
in ^ . It is an open conjecture (the Upper Conjecture) that the only
local domains that are not in ^ are all similar to the cited example;
that is, those whose altitude ( = Krull dimension) is >1 and whose
integral closure has a height one maximal ideal. (See [9, (4.10.3)].)

In (3) we list the known results concerning uc(A) and ^ that
will be needed below.

(3) REMARKS. (3.1) [8, (2.14.1) <=> (2.14.2) ~ (2.14.6)]. If (R, M)
is a local domain and X is an indeterminate, then uc(R) = {depth z;
z is a minimal prime ideal in R*} = {n — 1; n e uc(R[X]{M>x))}.

(3.2) [9, (4.1)] Every local domain of the form R[X]{M>X) is in
<g% where (R, M) is an arbitrary local domain.

(3.3) [9, (4.8.2)] If iZeίT and R' is quasi-local, then, for each
integral extension domain S of R and for each maximal ideal N in
S, SNe%? and uc(N) = ue(R).

The following theorem is the first of the main results in this
paper.

(4) THEOREM. Let (R, M) he a local domain such that R' is
quasi-local, let S be a finite integral extension domain of R, and
let N be a maximal ideal in S. Then the following statements hold:

(4.1) There exists a depth n minimal prime ideal in (SN)* if
and only if there exists a depth n minimal prime ideal in iϋ*.

(4.2) If ne uc(R) and if there are k maximal ideals in S' that
lie over N, then there are at least k minimal prime ideals of depth
n in (SN)*.

(4.3) If ne uc(R) and if there are exactly m maximal ideals in
S', then there are at least m minimal prime idealsζof depth n in S*.

Proof. (4.1). By (3.1), there exists a depth n minimal prime
ideal in (SN)* if and only if neuc(N), and there exists a depth n
minimal prime ideal in iϋ* if and only if n e uc(R). Also, if n e uc(N),
then clearly neuc(S), and so neuc(R), since S is integral over R.
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Thus it remains to show that if neuc(R), then neuc(N).
For this, let D = R[X][M,X) and C = S[X]{BU]_iM,x)). Then ΰ e ^ ,

by (3.2), and C is integral over D. Also, D' is quasi-local, by the
hypothesis on R, so by (3.3) uc(P) = uc(D) for each maximal ideal
P in C. Now (N, X)C is a maximal ideal in C, since N is maximal
in S, and Cw,x ) ί 7 = S^[JL] ( ^^, X ) . Therefore, by (3.1), if neuc(R),
then w + leuc(D) = w((i\Γ, X)C), so neuc(N).

(4.2): Since there are only finitely many maximal ideals in S',
there exists a finite integral extension domain BQS' of S such that
B and S' have the same number of maximal ideals. Therefore there
exist k maximal ideals in B that lie over N. Also, if n e uc(R),
then for each maximal ideal Q in B there exists a minimal prime
ideal of depth n in (J5ρ)*, by (3.1) and (4.1). Now (£<>)* ^ E§5*, so
there exists a minimal prime ideal w in 5* such that w £ Q23* and
height QB*/w — n. Then B*/w is a complete domain, so B*/w is
local, and so QB* is the only maximal ideal in B* that contains w.
Therefore depth w = height QB*/w = w.

Now 5* and S* have the same total quotient ring T (since 5
is a finite S-algebra and S Q B £ S'), so there exists a one-to-one
correspondence between the minimal prime ideals z in S* and the
minimal prime ideals w in i?* given by w = zT Π 5* and 2 = w Π S*,
and then depth 2 = depth w (since I?*/w is integral over S*/z).
Therefore, since there exist k maximal ideals in B* that lie over
NS*9 it follows from the preceding paragraph that there are at least
k minimal prime ideals of depth n in S* that are contained in NS*.
Then, as in the preceding paragraph, if z is such a minimal prime
ideal, then height NS*/z — depth z = n. Hence, since (SN)* = S%s*,
it follows that there are at least k minimal prime ideals of depth n
in (SN)\

(4.3) follows from (4.2), since S* = φ (SNi)*9 where the JV, are
the maximal ideals in S.

Concerning (4), it is an open problem if there exists n e uc(R)
such that n < altitude R. If such n exist, then, as noted in the
introduction, the Chain Conjecture does not hold.

(5) REMARKS. With the notation of (4), the following state-
ments hold:

(5.1) R is quasi-unmixed if and only if some SN is quasi-
unmixed if and only if all SN are quasi-unmixed.

(5.2) If there exists a minimal prime ideal of depth d in (SN)*9

then there exist at least k minimal prime ideals of depth d in (SN)*
and there exist at least m minimal prime ideals of depth d in S*.
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(5.3) There exists a local integral extension domain So £ S of
R such that (SJ = S' and (So)* has at least m minimal prime ideals
of depth n, for each neuc(R).

Proof. (5.1) is clear by (4.1).
(5.2). If there exists a minimal prime ideal of depth d in (SN)*9

then deuc(R), by (4.1) and (3.1), so the conclusion follows from (4.2)
and (4.3).

(5.3). Let So = R + J, where J is the Jacobson radical of S.
Then So is a finite integral extension domain of R (since S is and
R Ω SQζZ S), and J is the only maximal ideal in So and is the con-
ductor of So in S. Therefore So is a local domain and (So)' = S', so
the conclusion follows from (4.3) (with So in place of S).

(4) can be used to say something about the number of minimal
prime ideals in the completion of finite integral extension domains
of arbitrary semi-local domains, as will now be shown.

(6) COROLLARY. Let S be a finite integral extension domain of
a semi-local domain R. Let Mu , Mg be the maximal ideals in
R', assume that there are kt maximal ideals in S' that lie over Mt

{for i = 1, , g) and that n e uc{M%) if and only if i = 1, , h ^ g.
Then there are at least k^+ + kh minimal prime ideals of depth
n in S*.

Proof. There exist finite integral extension domains A of R
and B of S such that A £ R', B £ S', R' and A have the same
number of maximal ideals, and S' and B have the same number of
maximal ideals; and it can be assumed that A £ B. Therefore,
Lt = AM.nA is a local domain such that (Lt)' is quasi-local and there
exist kt maximal ideals in B that lie over Pi = Mt Π A. Also, by
the Going Up Theorem, n e uc(L%) if and only if i <Lh. Hence, by
(4.3), for i = 1, •••, h there are at least kt minimal prime ideals of
depth n in (BA_Pi)*. Now (BA_Pi)* is isomorphic to a direct summand
(with ki maximal ideals) of B*, so the kt minimal prime ideals of
depth n in (JB^_P.)* correspond to kt minimal prime ideals of depth
n in 2?*. Thus it follows that there are at least kx + ••• + kh

minimal prime ideals of depth n in J5*. Therefore the conclusion
follows as in the second paragraph of the proof of (4.2), since S*
and JS* have the same total quotient ring.

Before considering the second of the main theorems, we give
two small applications of (6). The second of these uses a number
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of new results from the recent paper [10].

(7) With the notation of (6), if Z = RndS*, then (S*/Z)' has
at least kλ + + kh maximal ideals of height n. In particular,
if S is analytically unramified, then there exist at least kt + + kh

maximal ideals of height n in S*\ For, (S*/Z)' = 0 {(S*/zY; z is
a minimal prime ideal in S*}, so since each S*/z is a complete local
domain and since at least kt + + kh of the z's have depth n, by
(6), it follows that (S*/Z)' has at least &!+•••+&* maximal ideals
of height n. And if S is analytically unramified, then Z = (0), so
the second statement follows from the first.

(8) With the notation of (6), let Q be an open ideal in S, let
r be a large integer, and let I be an ideal in S such that Qr £ / Q
(Qr)a — the integral closure of Qr in S. Then there exist at least
kγ + . . . -\- kh minimal prime ideals of depth n in the form ring
{ — associated graded ring) J^~(S, I) of S with respect to I. To prove
this, note first that it is known [11, Theorem 2.1] that ^~(S, I) =
&\t~γ&, where & — &(S, I) = S[tl, t'1] (t is an indeterminate) is
the Rees ring of S with respect to I. (The restriction to local rings
in [11] is not essential.) Therefore it suffices to prove that t~~γ&
has at least k^+ + kh minimal prime divisors of depth n. For
this, it may be assumed that / = (Qr)a, by [10, (7.7)]. Let ^ ° =
^ ( S * , IS*), let 2 be a minimal prime ideal in S*, and let z* =
zT[t, r 1 ] Π ̂ ° ' , where T is the total quotient ring of S*. Then [7,
Corollary 2.23] says there exists a height one prime ideal pof in &*
such that (z*, r 1 ) ^ 0 ' £ p". Next, since r is large, [10, (7.1)] shows
that z* is the only minimal prime ideal in <^?0' that is contained in
p°\ Also, by [10, (7.3)] and since r is large, there exists a one-to-
one correspondence between the minimal prime divisors p0' of ί"1^?0',
p° of t~γ&\ and p of t~γ&, and then depth p = depth p° = depth
p0' = depth z, by [10, (7.3) and (5.2.1)]. Therefore, since S* has at
least kx + + kh minimal prime ideals of depth n, by (6), it follows
that t'1^ has at least kx + + kh minimal prime divisors of depth
n9 and so ^~(S, I) has at least kx+ + kh minimal prime ideals
of depth n.

We now consider the second theorem on prime divisors of zero
in i?*. Concerning (9), it is shown in [1] that every power of the
maximal ideal in an analytically irreducible local domain R contains
a prime ideal of height = altitude R — 1. (9) characterizes local
domains that fail about as completely as possible to have this latter
property.

(9) THEOREM. The following statements are equivalent for a
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local domain (22, M) such that altitude R ^ 1:
(9.1) There exists a depth one prime divisor of zero in 22*.
(9.2) There exist M-primary ideals Q in R such that every

nonzero ideal contained in Q has M as a prime divisor.

Proof. (9.1) => (9.2). Let zlf , zg be the prime divisors of zero
in 22* with depth zx = 1 and let (0) = Πί Q% be a primary decomposi-
tion of zero in R*. Let x be a nonzero element in Πf& Then,
for all P* e Spec 22* - fo, ikf*}, x e Ker (22* -> 22|*), so a; is in every
P* primary ideal. Hence if / is a nonzero ideal in R such that
I: M — I, then a primary decomposition of IR* shows that xeIR*,
since IR*: M* = 122* and IR* g zlβ Since a ^ 0, there exist M-
primary ideals Q in R such that xgQR*, so xglR*, for all ideals
IQ Q. Thus it follows that M is a prime divisor of all nonzero
ideals IQQ.

(9.2) => (9.1). Assume (9.1) does not hold and let z19 - *,zk be
the maximal prime divisors of zero in 22*, so depth zt > l(i = 1, , k).
Assume it is known that there exist P19 , Pk e Spec 22* — {ikf*}
such that ^ c P t and such that there are no containment relations
among the pt = Pt Π 22 (so there are no containment relations among
the PJ . Let S = 22 - Uί &, let S* = 22* - Uί Ή, and f or n ^ 1 let
L = (Πί PΓ)Λ5 Π 22 and let I* = (Πf PΓ)22|* n 22*. Then /» C /* n 22
and /Λ (resp., /*) is the intersection of the k primary ideals pln) =
pΓΛP< Π 22 (resp., P f > - Pf22*, Π 22*). Also, /* 2 J*+1 and f| /ί = (0),
since Γ\n (flf P?)-B** = (0) and Ker (22* -> 22**) = (0). Therefore for
each m ^ 1 there exists w(ra) such that /*(m) £ Λί*w, by [3, (30.1)].
Hence /w ( m>£/»* ( w )ni2C M*mn22 = Mm and 2lf is not a prime divisor
of /Λ ί m ), so (9.2) does not hold. Therefore it remains to show the
existence of the P,.

For this, let 0 Φ a e M and for i — 1, , k let P ΐ ? α be a minimal
prime divisor of (zi9 α)22*. Let ^ = {Piia n R; 0 Φ ae M}. It will
now be shown that for each i: (i) ^ is an infinite set such that
U ̂ . = M"; and, (ii) the intersection of each infinite subset of ^ is
zero. Namely, depth P i>αn22 ^ depth P ί i β ^ l , so each ^ is an infinite
set such that U ^ = M (since α is an arbitrary nonzero element in
M), so (i) holds. Also, (ii) holds since the intersection of each
infinite subset of {Piya; 0 Φ aeM} is z€.

Now assume 1 <; h < k and p1 e &*19 , ph e &*h have been
chosen such that are no containment relations among pί9 , ph.
Then by (i) (and since M is not the union of finitely many prime
ideals) there exist infinitely many p e ^h+1 such that p gΞ U? Vu a n d
by (ϋ) Πf Pi is n ° t contained in at least one of these p, so there
exists ph+16 &*h+1 such that there are no containment relations among
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Pi> , PΛ+I From this the existence of Plf , Pk e Spec R* — {M*}
such that Zi c P* and such that there are no containment relations
among the Pi Π R readily follows.

(10) REMARKS. (10.1) It is clear by (9) that if there exists an
ideal Q in R as in (9.2), then for all finite local integral extension
domains (L, P) Q Rf of R there exists a P-primary ideal Q' such
that P is a prime divisor of every nonzero ideal in L that is con-
tained in Q'.

(10.2) It is interesting to note that the equivalent conditions
in (9) imply that if P e Spec R — {0, M} and i is a large integer,
then P£ is not P-primary (since P* Q Mi Q Q). It would be interest-
ing to know if this is, in fact, equivalent to the equivalent state-
ments in (9).

(10.3) It was shown in [6, (4.8) (5)] that if R is as in [3,
Example 2, 203-205] in the case m = 0, then for all i ^ 2 and for
all PeSpeci? - {0, M}, Pι is not P-primary.

(10.4) If R is as in (10.3), then ikP is a suitable Q for (9.2).

Proof. (10.4). Rr is a regular domain with exactly two
maximal ideals, say P, Q, such that height P = 1 < height Q = r + 1,
so there exist exactly two minimal prime ideals in R'*f say z*, w*,
with z* Π w* = (0) and depth z* = 1 < depth w* = r + 1. Then
w = w* Π R* and z = z* Π i?* are the prime divisors of zero in iϋ*
and zΠw = (0). Also, Λf = P n Q, so ikί* = P* n Q*. Therefore
w — w* Π M* = ^ * Π (P* Π Q*) = w* Π P* is a minimal prime ideal
in i2* and w g M*2 (since î2p** - (w* n P*)i2'P** = P*ΛJί g P*2i2'Pΐ =
M*2i2p*). So a; in the proof of (9.1) => (9.2) can be chosen in w, ί ilί*2.

(10.4) and (10.2) give a different proof of the result noted in
(10.3).

It follows from the next result (see (12.2)) that if Rr is a finite
i?-algebra (for example, if R is analytically unramified), then (9.2)
characterizes when there exists a depth one minimal prime divisor
of zero in R*.

(11) PROPOSITION. Let (R, M) be a local domain such that
altitude R ^ 1 and every M-primary ideal contains a nonzero
integrally closed ideal. Then the following statements are equivalent:

(11.1) There exists a depth one minimal prime ideal in i2*.
(11.2) There exist M-primary ideals Q in R such that every

nonzero ideal contained in Q has M as a prime divisor.

Proof. (11.1) =- (11.2) by (9).
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For the converse, let Q be such an ideal and let I be a nonzero
integrally closed ideal contained in Q. Let b e I, 6 ^ 0 . Then
(bR)a C I Q Q, so M is a prime divisor of (bR)a. Now (6i2)β = bR' n #,
so there exists a (height one) prime divisor p' of 6i2' that lies over
M. Therefore p' is a height one maximal ideal, and so there exists
a depth one minimal prime ideal in i?* by [4, Proposition 3.3].

This paper will be closed with the following three remarks
related to (11).

(1.2) REMARKS. (12.1) There exists a local domain (R, M) such
that altitude R > 1 and there exist Af-primary ideals Q in R such
that there does not exist a nonzero integrally closed ideal contained
in Q. Therefore if 0 Φ b e Q, then (b*R)a gΞ Q, for all n ^ 1.

(12.2) If (R, Λf) is a local domain and if there exists b in M
such that Rb Π i2' is a finite i?-algebra (in particular, if R! is a
finite iϋ-algebra), then every M-primary ideal contains an integrally
closed ideal.

(12.3) If (jβ, M) is a local domain, if there exists b in M such
that RbC]R{1) is a finite i2-algebra (where R{1) = n{5P; peSpeci?
and height p = 1}), and if there exists an ideal Q in iϋ as in (11.2),
then altitude R = 1.

Proof. (12.1). By (9) and (11) it suffices to show the existence
of a local domain R such that iϋ* has a depth one prime divisor of
zero but does not have a depth one minimal prime ideal. Such an
example is given in [2, Proposition 3.3].

(12.2). Let Q be an M"-primary ideal and let n such that
Mn C Q, so bn e Q. Now {r/bk; r e bkR' n R} = Rb Π R' is a finite R-
algebra, so there exists k ^ 1 such that bk(Rb ΓΊ i?') £ R. Therefore
if r e (bk+ίR)a = bMRf Π R, then r/bk+i e Rf n Λ6, so r e 6*β, hence

£ ft'Λ for all i ^ 1. Thus (6fe+wi2)α C bnR Q Q.

(12.3). [5, Lemma 5.15(10)] shows that there exists k such that
bk+\Rb Π R{1))^bR, if Rb n J?(1) is a finite ^-algebra, so bk+n(Rb Π ̂ (1)) £
bnR. Also, bk+n(Rb Π -B(1)) is a finite intersection of height one
primary ideals, by [5, Lemma 5.15(4)], and height one prime ideals
in Rb Π R{1) lie over height one prime ideals in R, by [5, Lemma
5.15(6)]. Therefore with n such that b% e Q, we have bk+n(Rb Π Ra)) £ Q
and is a finite intersection of height one primary ideals, so altitude
R = 1 by the property of Q.
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