PACIFIC JOURNAL OF MATHEMATICS
Vol. 81, No. 2, 1979

TWO THEOREMS ON THE PRIME DIVISORS OF ZERO
IN COMPLETIONS OF LOCAL DOMAINS

L. J. RATLIFF, JR.

The first theorem concerns the number of minimal
prime ideals of a given depth (=dimension) in the comple-
tion of a finite integral extension domain of a semi-local
domain. The second theorem characterizes local domains
that have a depth one prime divisor of zero in their comple-
tion as those local domains whose maximal ideal I is a
prime divisor (=associated prime) of all nonzero ideals
contained in large powers of 1.

For arbitrary local (Noetherian) domains R it is of some interest
and importance to know as much as possible about the prime divi-
sors of zero in the completion R* of R. One reason (among several)
for this is that knowledge about these prime ideals is necessary to
solve the catenary chain conjectures. (For example, the Chain Con-
jecture, open since 1956, holds if all minimal prime ideals in R*
have the same depth whenever the integral closure of R is quasi-
local.) In this paper we add to the existing knowledge in this area
by proving two new theorems about such prime ideals.

For the first of these, it is well known that if the integral
closure of R has & maximal ideals, then the completion B* of R has
at least & minimal prime ideals. (For example, see the proof of
(33.10) in [3].) It is also known [8, (2.14.1) = (2.14.2)] that if there
exists a maximal chain of prime ideals of length % in some integral
extension domain of R, then some minimal prime ideal in R* has
depth n. Our first theorem, (4), shows that these two results
combine in a somewhat unexpected manner for finite integral exten-
sion domains of R. The second theorem, (9), characterizes local
domains R such that there exists a depth one prime divisor of zero
in R*. (11) gives a similar characterization of a subclass of the
local domains whose completions have depth one minimal prime
ideals.

To help simplify the statement and proof of the first theorem,
a few preliminaries are needed. We thus begin by fixing two nota-
tional conventions.

(1) NotAaTION. We shall denote by A’ the integral closure of a
ring A in its total quotient ring, and by R* the completion (in the
natural topology) of a semi-local ring R.

The following three definitions are also needed.
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(2) DEFINITIONS. For an integral domain A, c¢(A) = {m; there
exists a maximal chain of prime ideals of length m in A}, and
uc(A) = {n; there exists a maximal chain of prime ideals of length
n in some integral extension domain of A}. If Pec Spec A, then we
let ¢(P) and uc(P) denote the sets ¢(4,) and uc(4,). Also, the class
of quasi-local domains @ such that we(Q) = ¢(Q) will be denoted by
&

It is clear that c(4) € uc(4), and [3, Example 2, 203-205] in
the case m = 0 shows that this containment may be proper even
when A is a local domain, so there are local domains that are not
in . It is an open conjecture (the Upper Conjecture) that the only
local domains that are not in & are all similar to the cited example;
that is, those whose altitude (=Krull dimension) is >1 and whose
integral closure has a height one maximal ideal. (See [9, (4.10.3)].)

In (3) we list the known results concerning uc(4) and & that
will be needed below.

(3) REMARKS. (3.1) [8, (2.14.1) = (2.14.2) = (2.14.6)]. If (R, M)
is a local domain and X is an indeterminate, then uc(R) = {depth z;
z is a minimal prime ideal in R*} = {n — 1; ne uc(R[X]uw.x)}-

(3.2) [9, (4.1)] Every local domain of the form R[X], x is in
&, where (R, M) is an arbitrary local domain.

(8.3) [9, 4.8.2)] If Re & and R’ is quasi-local, then, for each
integral extension domain S of R and for each maximal ideal N in
S, Sye % and uc(N) = uc(R).

The following theorem is the first of the main results in this
paper.

(4) THEOREM. Let (R, M) be a local domain such that R’ 1is
quasi-local, let S be a finite integral extension domain of R, and
let N be a maximal ideal im S. Then the following statements hold:

(4.1) There exists a depth n minimal prime ideal in (Sy)* if
and only if there exists a depth n minimal prime ideal in R*.

(4.2) If neuc(R) and if there are k maximal ideals in S’ that
lie over N, then there are at least k minimal prime ideals of depth
n in (Sy)*.

4.3) If ncuc(R) and if there are exactly m maximal ideals in
S, then there are at least m minimal prime ideals’of depth m in S*.

Proof. (4.1). By (38.1), there exists a depth n minimal prime
ideal in (Sy)* if and only if neuc(N), and there exists a depth n
minimal prime ideal in R* if and only if n e uc(R). Also, if nec uc(N),
then clearly %< ue(S), and so n € uc(R), since S is integral over R.
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Thus it remains to show that if n e uc(R), then ne uc(N).

For this, let D = R[X],.x) and C = S[X ] zx1—ur.xn. Then De &,
by (3.2), and C is integral over D. Also, I is quasi-local, by the
hypothesis on R, so by (3.3) uc(P) = uce(D) for each maximal ideal
P in C. Now (N, X)C is a maximal ideal in C, since N is maximal
in S, and Cy,x0 = Sy[X]wsy,x»» Therefore, by (3.1), if neuc(R),
then % + 1€ ue(D) = uc((N, X)C), so neuc(N).

(4.2): Since there are only finitely many maximal ideals in S/,
there exists a finite integral extension domain BS S’ of S such that
B and S’ have the same number of maximal ideals. Therefore there
exist & maximal ideals in B that lie over N. Also, if necuc(R),
then for each maximal ideal @ in B there exists a minimal prime
ideal of depth = in (Bg)*, by (3.1) and (4.1). Now (Bg)* = Bz, S0
there exists a minimal prime ideal w in B* such that w < QB* and
height QB*/w = n. Then B*/w is a complete domain, so B*/w is
local, and so @B* is the only maximal ideal in B* that contains w.
Therefore depth w = height QB*/w = n.

Now B* and S* have the same total quotient ring 7T (since B
is a finite S-algebra and S B < S'), so there exists a one-to-one
correspondence between the minimal prime ideals z in S* and the
minimal prime ideals w in B* given by w = 2T N B* and z = w N S*,
and then depth z = depth w (since B*/w is integral over S*/z).
Therefore, since there exist & maximal ideals in B* that lie over
NS*, it follows from the preceding paragraph that there are at least
k minimal prime ideals of depth » in S* that are contained in NS*.
Then, as in the preceding paragraph, if z is such a minimal prime
ideal, then height NS*/z = depth z = n. Hence, since (Sy)* = S}g,
it follows that there are at least £ minimal prime ideals of depth =
in (Sy)*.

(4.3) follows from (4.2), since S* = @ (Sy,)*, where the N, are
the maximal ideals in S.

Concerning (4), it is an open problem if there exists %€ uc(R)
such that % < altitude R. If such #» exist, then, as noted in the
introduction, the Chain Conjecture does not hold.

(5) REMARKS. With the notation of (4), the following state-
ments hold:

(5.1 R is quasi-unmixed if and only if some S, is quasi-
unmixed if and only if all S, are quasi-unmixed.

(5.2) If there exists a minimal prime ideal of depth d in (Sy)*,
then there exist at least © minimal prime ideals of depth d in (Sy)*
and there exist at least m minimal prime ideals of depth d in S*.
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(5.3) There exists a local integral extension domain S, < S of
R such that (S,)’ = S’ and (S,)* has at least m minimal prime ideals
of depth n, for each % e uc(R).

Proof. (5.1) is clear by (4.1).

(5.2). If there exists a minimal prime ideal of depth d in (Sy)*,
then dcuc(R), by (4.1) and (3.1), so the conclusion follows from (4.2)
and (4.3).

(5.8). Let S,=R + J, where J is the Jacobson radical of S.
Then S, is a finite integral extension domain of R (since S is and
Rc S, 8), and J is the only maximal ideal in S, and is the con-
ductor of S, in S. Therefore S, is a local domain and (S, = S, so
the conclusion follows from (4.3) (with S, in place of S).

(4) can be used to say something about the number of minimal
prime ideals in the completion of finite integral extension domains
of arbitrary semi-local domains, as will now be shown.

(6) COROLLARY. Let S be a finite integral extension domain of
a semi-local domain R. Let M, «--, M, be the maximal ideals in
R, assume that there are k, maximal ideals in S’ that lie over M,
(for 1 =1, +++, g) and that neuc(M,) if and only if i =1, -+, h < g.
Then there are at least k, + «++ + k, minimal prime ideals of depth
n in S*.

Proof. There exist finite integral extension domains A of R
and B of S such that AC R, BC S, R and A have the same
number of maximal ideals, and S’ and B have the same number of
maximal ideals; and it can be assumed that A £ B. Therefore,
L, = Ay,.4 is a local domain such that (L)’ is quasi-local and there
exist &k, maximal ideals in B that lie over P, = M, N A. Also, by
the Going Up Theorem, » € we(L,) if and only if 2 < h. Hence, by
(4.8), for i =1, -+, h there are at least k, minimal prime ideals of
depth % in (B,_p)*. Now (B,_p)* is isomorphic to a direct summand
(with %; maximal ideals) of B*, so the %k, minimal prime ideals of
depth » in (B,_p)* correspond to %, minimal prime ideals of depth
n in B*. Thus it follows that there are at least &k, + .-+ + k,
minimal prime ideals of depth n in B*. Therefore the conclusion
follows as in the second paragraph of the proof of (4.2), since S*
and B* have the same total quotient ring.

Before considering the second of the main theorems, we give
two small applications of (6). The second of these uses a number
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of new results from the recent paper [10].

(7) With the notation of (6), if Z = Rad S*, then (S*/Z)' has
at least k, + -+ + k, maximal ideals of height n. In particular,
if S is analytically unramified, then there exist at least k, + -+ + k,
maximal ideals of height m in S*. For, (S*/Z) = @ {(S*/z); z is
a minimal prime ideal in S*}, so since each S*/z is a complete local
domain and since at least k, + «-- + k, of the z’s have depth =, by
(6), it follows that (S*/Z)" has at least k, + --- + k, maximal ideals
of height n. And if S is analytically unramified, then Z = (0), so
the second statement follows from the first.

(8) With the notation of (6), let Q be an open ideal in S, let
r be a large integer, and let I be an ideal im S such that Q" S I <
(@), = the imtegral closure of Q" im S. Then there exist at least
ki + o« + k, minimal prime ideals of depth m inm the form ring
(=associated graded ring) Z (S, I) of S with respect to I. To prove
this, note first that it is known [11, Theorem 2.1] that # (S, I) =
Bt H#, where & = F(S, I) = S[tl,t™*] (t is an indeterminate) is
the Rees ring of S with respect to I. (The restriction to local rings
in [11] is not essential.) Therefore it suffices to prove that ¢—<Z
has at least %, + --- + k, minimal prime divisors of depth %. For
this, it may be assumed that I = (Q"),, by [10, (7.7)]. Let #° =
HA(S*, IS*), let z be a minimal prime ideal in S*, and let z* =
2T[t, t7] N ", where T is the total quotient ring of S*. Then [7,
Corollary 2.23] says there exists a height one prime ideal p” in .2
such that (z*, t7)2” < p”. Next, since r is large, [10, (7.1)] shows
that z* is the only minimal prime ideal in 2" that is contained in
p”. Also, by [10, (7.3)] and since r is large, there exists a one-to-
one correspondence between the minimal prime divisors p” of t~1<2Y,
p° of t7.2°, and p of t7'<Z, and then depth p = depth p° = depth
p” = depth 2, by [10, (7.8) and (5.2.1)]. Therefore, since S* has at
least &k, + -+ + k, minimal prime ideals of depth %, by (6), it follows
that t'<Z has at least k, + .-+ + k&, minimal prime divisors of depth
n, and so .# (S, I) has at least k, + --- + k, minimal prime ideals
of depth «.

We now consider the second theorem on prime divisors of zero
in R*. Concerning (9), it is shown in [1] that every power of the
maximal ideal in an analytically irreducible local domain R contains
a prime ideal of height = altitude B — 1. (9) characterizes local
domains that fail about as completely as possible to have this latter
property.

(9) THEOREM. The following statements are equivalent for a
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local domain (R, M) such that altitude R = 1:
(9.1) There exists a depth one prime divisor of zero in R*.
(9.2) There exist M-primary ideals @ in R such that every
nonzero ideal contained in @ has M as a prime divisor.

Proof. (9.1)=1(9.2). Letz, ---, 2, be the prime divisors of zero
in R* with depth z, =1 and let (0) = N?{ ¢, be a primary decomposi-
tion of zero in R*. Let x be a nonzero element in MN{q,. Then,
for all P*eSpec R* — {2, M*}, x e Ker (R* — R}), so x is in every
P* primary ideal. Hence if I is a nonzero ideal in R such that
I: M = I, then a primary decomposition of IR* shows that x c IR*,
since IR*: M* = IR* and IR* £ z,. Since x # 0, there exist M-
primary ideals @ in R such that x¢ QR*, so x ¢ IR*, for all ideals
I £ Q. Thus it follows that M is a prime divisor of all nonzero
ideals I < Q.

(9.2) = (9.1). Assume (9.1) does not hold and let 2, -+, 2, be
the maximal prime divisors of zero in R*, so depth 2z, >1(¢ = 1,---, k).
Assume it is known that there exist P, ---, P, ¢ Spec R* — {M*}
such that z,c P, and such that there are no containment relations
among the p, = P, N R (so there are no containment relations among
the P). Let S=R — Ufop, let S* =R* — J! P, and for » = 1 let
I, = (NfpHRs N R and let I} = (N PP)R:NR*. Then I, S Iy NR
and I, (resp., I}) is the intersection of the %k primary ideals p{ =
pR, N R (resp., P/" = P'R} N R*). Also, I} 2 I},, and N I; = (0),
since N. (Nf PHRE = (0) and Ker (R* — R%) = (0). Therefore for
each m = 1 there exists n(m) such that I},, & M*™, by [3, (30.1)].
Hence I, S I;w.NR<S M*NR = M" and M is not a prime divisor
of I, s0 (9.2) does not hold. Therefore it remains to show the
existence of the P,.

For this, let 0 = a€ M and for ¢ =1, ---, k let P,, be a minimal
prime divisor of (2, a)R*. Let & ={P,,NR;0+aecM}. It wil
now be shown that for each 2: (i) 27, is an infinite set such that
U2 = M; and, (ii) the intersection of each infinite subset of &, is
zero. Namely, depth P,,N R = depth P, ,>1, so each .27, is an infinite
set such that U.Z”, = M (since a is an arbitrary nonzero element in
M), so (i) holds. Also, (ii) holds since the intersection of each
infinite subset of {P,.; 0+ ac M} is z,.

Now assume 1 <h <k and pe.,---,p, €., have been
chosen such that are no containment relations among o, ---, p,.
Then by (i) (and since M is not the union of finitely many prime
ideals) there exist infinitely many pe .., such that »p £ U? »,, and
by (ii) N? »; is not contained in at least one of these p, so there
exists p,., € ., such that there are no containment relations among
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Dy ***y Dpye From this the existence of P, --., P,€Speec R* — {M*}
such that z,c P, and such that there are no containment relations
among the P, N R readily follows.

(10) REMARKS. (10.1) It is clear by (9) that if there exists an
ideal @ in R as in (9.2), then for all finite local integral extension
domains (L, P) £ R’ of R there exists a P-primary ideal @ such
that P is a prime divisor of every nonzero ideal in L that is con-
tained in Q'.

(10.2) It is interesting to note that the equivalent conditions
in (9) imply that if PeSpecR — {0, M} and ¢ is a large integer,
then P¢is not P-primary (since P* S M' < Q). It would be interest-
ing to know if this is, in fact, equivalent to the equivalent state-
ments in (9).

(10.83) It was shown in [6, (4.8) (5)] that if R is as in [3,
Example 2, 203-205] in the case m = 0, then for all ¢ = 2 and for
all PeSpec R — {0, M}, P¢ is not P-primary.

(10.4) If R is as in (10.3), then M* is a suitable @ for (9.2).

Proof. (10.4). R is a regular domain with exactly two
maximal ideals, say P, @, such that height P =1 < heightQ =» + 1,
so there exist exactly two minimal prime ideals in R'*, say z*, w*,
with z* N w* = (0) and depth 2* =1 <depth w* =2+ 1. Then
w=w*NR* and z = z* N R* are the prime divisors of zero in R*
and zNw=(0). Also, M=PNQ, so M*=P*NQ*. Therefore
w=w*NM=w*NP*NER*) = w*N P* is a minimal prime ideal
in BR* and w & M*® (since wRZ = (w* N P*)R% = P*RY: & P*R% =
M**R%). So x in the proof of (9.1) = (9.2) can be chosen in w, ¢ M*2.

(10.4) and (10.2) give a different proof of the result noted in
(10.3).

It follows from the next result (see (12.2)) that if R’ is a finite
R-algebra (for example, if R is analytically unramified), then (9.2)
characterizes when there exists a depth one minimal prime divisor
of zero in R*.

(11) PROPOSITION. Let (R, M) be a local domain such that
altitude R=1 and every M-primary ideal contains a mnonzero
integrally closed ideal. Then the following statements are equivalent:

(11.1) There exists a depth one minimal prime ideal in R*.

(11.2) There exist M-primary ideals @ im R such that every
nonzero ideal contained in Q@ has M as a prime divisor.

Proof. (11.1) = (11.2) by (9).
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For the converse, let @ be such an ideal and let I be a nonzero
integrally closed ideal contained in Q. Let bel, b=+%0. Then
(bR), € I < @, so M is a prime divisor of (bR),. Now (bR), = bR' N R,
so there exists a (height one) prime divisor o’ of bR’ that lies over
M. Therefore ' is a height one maximal ideal, and so there exists
a depth one minimal prime ideal in R* by [4, Proposition 3.3].

This paper will be closed with the following three remarks
related to (11).

(12) REMARKS. (12.1) There exists a local domain (R, M) such
that altitude R > 1 and there exist M-primary ideals @ in R such
that there does not exist a nonzero integrally closed ideal contained
in Q. Therefore if 0 = be @, then (b"R), £ Q, for all n = 1.

(12.2) If (R, M) is a local domain and if there exists b in M
such that R, N R’ is a finite R-algebra (in particular, if R is a
finite R-algebra), then every M-primary ideal contains an integrally
closed ideal.

(12.3) If (R, M) is a local domain, if there exists b in M such
that R, N R" is a finite R-algebra (where R*® = N{R,; peSpec R
and height p = 1}), and if there exists an ideal @ in R as in (11.2),
then altitude R = 1.

Proof. (12.1). By (9) and (11) it suffices to show the existence
of a local domain R such that R* has a depth one prime divisor of
zero but does not have a depth one minimal prime ideal. Such an
example is given in [2, Proposition 3.3].

(12.2). Let Q@ be an M-primary ideal and let # such that
M= @, so b"e Q. Now {r/b5;reb*R'N R} = R, N R’ is a finite R-
algebra, so there exists k¥ = 1 such that b*(R, N R’) £ R. Therefore
if re(®**R), =b*"*R'N R, then r/b*""eR' N R, so reb'R, hence
®*R), S b'R for all ¢ = 1. Thus (*™R), S b"R < Q.

(12.8). [5, Lemma 5.15(10)] shows that there exists k& such that
YR, N RY)S bR, if R, N R™ is a finite R-algebra, so b** (R, N RY) &
b*"R. Also, b*™(R, N RY) is a finite intersection of height one
primary ideals, by [5, Lemma 5.15(4)], and height one prime ideals
in B, N R* lie over height one prime ideals in R, by [5, Lemma
5.15(6)]. Therefore with n such that "¢ Q, we have b***(R, N R*) S @
and is a finite intersection of height one primary ideals, so altitude
R =1 by the property of Q.
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