DEHN'S LEMMA AND HANDLE DECOMPOSITIONS OF SOME 4-MANIFOLDS

J. H. Rubinstein

We give two short proof of a weak version of the theorem of Laudenbach, Poenaru [3]. Also we show that an embedded $S^1 \times S^2$ in S^4 bounds a copy of $B^2 \times S^2$. Finally we establish that if W is a smooth 4-manifold with $\partial W = \#_n S^1 \times S^2$ and W is built from $\#_{n-1} B^2 \times S^2$ by attaching a 2-handle, then W is homeomorphic to $\#_n B^2 \times S^2$.

1. 4-Dimensional handlebodies. Let X, Y be the following smooth 4-manifolds:

$$X=\sharp_{n}B^{3} imes S^{1}$$
 and $Y=\sharp_{n}B^{2} imes S^{2}$.

In [3] it is proved that if $h: \partial X \to \partial Y$ is a diffeomorphism, then the smooth closed 4-manifold $X \bigcup_h Y$ which is obtained by gluing along h, is diffeomorphic to S^4 .

We begin with two brief proofs, one using the Dehn's lemma in [5] and the other employing unknotting in codimension 3, of the following result:

THEOREM. Let X, Y, h be as above. Then $X \bigcup_h Y$ is homeomorphic to S^4 .

Proof. (1) Let $\{x_i\} \times S^1$ be a circle in the boundary of the ith copy of $B^3 \times S^1$ in the connected sum $X = \sharp_n B^3 \times S^1$, for $1 \le i \le n$. Without loss of generality, all the loops $\{x_i\} \times S^1$ can be assumed to miss the cells which are used to construct X as a connected sum. By the Dehn's lemma in [5], it follows that all of the circles $h(\{x_i\} \times S^1)$ bound disjoint smooth embedded disks D_i in Y, for $1 \le i \le n$.

Let $N(D_i)$ denote a small tubular neighborhood of D_i in Y. Clearly $X \bigcup_h (N(D_1) \cup \cdots \cup N(D_n))$ is diffeomorphic to B^4 , since $N(D_i)$ can be thought of as a 2-handle which geometrically cancels a 1-handle of X. On the other hand, let W denote the closure of $Y - N(D_1) - \cdots - N(D_n)$. Then $\partial W = S^3$ and W is contained in Y which can be embedded in S^4 . By the topological Schoenflies theorem [1], W is homeomorphic to $B^4 \cup B^4 = S^4$.

(2) By Van Kampen's theorem, $\pi_1(X \bigcup_h Y) = \{1\}$. Let Z be a bouquet of n circles which is embedded in X and is a deformation retract of X. By isotopic unknotting in codimension 3, Z is con-

tained in the interior of a PL 4-cell B in $X \cup_h Y$. Therefore, by an isotopy we can shrink X down towards Z until X is included in int B. Exactly as in (1), by the topological Schoenflies theorem we obtain that $X \cup_h Y$ int B is homeomorphic to B^4 and so the result follows.

REMARK. Note that if the PL or smooth 4-dimensional Schoenflies theorem was known, then these arguments would establish that $X \bigcup_k Y$ is PL isomorphic or diffeomorphic to S^4 .

2. Embeddings of $S^1 \times S^2$ in S^4 . The following result was first proved by I. Aitchison (unpublished). We present a simplification of his method, which again uses the Dehn's lemma in [5].

THEOREM. Let $h: S^1 \times S^2 \to S^4$ be a smooth embedding. Then h extends to a topological embedding of $B^2 \times S^2$ in S^4 .

Proof. Let V, W be the closures of the components of $S^4-h(S^1\times S^2)$ (by Alexander duality there are two such components). By the Mayer-Vietoris sequence, without loss of generality the inclusion $h(S^1\times S^2)\to V$ induces an isomorphism $H_1(h(S^1\times S_2))\to H_1(V)$ and $H_1(W)=0$.

Let G denote the group which is the pushout of the homomorphisms $\pi_1(h(S^1 \times S^2)) \to \pi_1(V)$ and $\pi_1(h(S^1 \times S^2)) \to \pi_1(W)$. By Van Kampen's theorem, $G = \{1\}$. On the other hand there is a homomorphism of G onto $\pi_1(W)$ induced by the epimorphism $\pi_1(V) \to H_1(V) \cong H_1(h(S^1 \times S^2)) \cong \pi_1(h(S^1 \times S^2))$. Consequently $\pi_1(W) = \{1\}$ follows.

Now we can apply the Dehn's lemma in [5] to obtain that $h(S^1 \times *)$ bounds a smooth embedded disk D in W. Let N(D) be a small tubular neighborhood of D in W. Then the closure of W-N(D) is a topological 4-cell, by the topological Schoenflies theorem [1]. Therefore W is homeomorphic to $B^2 \times S^2$ and h extends to a topological embedding of $B^2 \times S^2$ as desired.

REMARK. This result is analogous to the classical theorem of Alexander that any smooth embedded $S^1 \times S^1$ in S^3 bounds a smooth solid torus $B^2 \times S^1$.

3. Handle decompositions and slice links. In [2], Kirby, Melvin proved that if a smooth 4-manifold M has boundary $S^1 \times S^2$ and is constructed by attaching a 2-handle to B^4 along a curve C with the 0-framing, then M is homeomorphic to $B^2 \times S^2$ and C is a slice knot. We prove the following generalization of their result:

THEOREM. Let W be a smooth 4-manifold which is obtained by adding n 2-handles to B^4 along the curves C_1, \dots, C_n . The 2-handles induce a framing of the link $C_1 \cup \dots \cup C_n$. Assume that framed surgery on the sublink $C_1 \cup \dots \cup C_i$ in S^3 yields $\sharp_i S^1 \times S^2$, for all i with $1 \leq i \leq n$. Then W is homeomorphic to $\sharp_n B^2 \times S^2$ and $C_1 \cup \dots \cup C_n$ is a slice link.

COROLLARY. Let W be a smooth 4-manifold such that ∂W is diffeomorphic to $\sharp_n S^1 \times S^2$ and W is built by attaching a 2-handle to $\sharp_{n-1} B^2 \times S^2$. Then W is homeomorphic to $\sharp_n B^2 \times S^2$.

Proof of theorem. By the assumption that surgery on the link $C_1 \cup \cdots \cup C_n$ gives $\sharp_n S^1 \times S^2$, it immediately follows that ∂W is diffeomorphic to $\sharp_n S^1 \times S^2$. If the handle decomposition of W is turned upside down, then W is constructed by attaching n 2-handles to $(\sharp_n S^1 \times S^2) \times I$ along some curves $C_1' \times \{1\}$, $C_2' \times \{1\}$, \cdots , $C_n' \times \{1\}$ and then adding a 4-handle. We will assume that the 2-handle glued along $C_i' \times \{1\}$ is dual to the 2-handle added along C_i to B^4 .

Let W_i or W_i' denote the 4-manifold which is obtained by adjoining i 2-handles to B^i or $(\sharp_n S^1 \times S^2) \times I$ respectively along the curves C_1, \dots, C_i or $C_{n-i+1}' \times \{1\}, \dots, C_n' \times \{1\}$ respectively. Then ∂W_i is diffeomorphic to $\sharp_i S^1 \times S^2$, since surgery on $C_1 \cup \dots \cup C_i$ gives $\sharp_i S^1 \times S^2$. Also $W - \text{int } W_i'$ is diffeomorphic to W_{n-i} and therefore W_i' is a cobordism between $\sharp_n S^1 \times S^2$ and $\sharp_{n-i} S^1 \times S^2$. Note that W_i' can also be constructed by adding n-i 2-handles to $(\sharp_{n-i} S^1 \times S^2) \times I$.

Let $\{C\}$ denote the homotopy class of a loop C relative to some base point and let $\langle * \rangle$ denote the normal closure of the set of elements * in some group. By Van Kampen's theorem applied to the two handle decompositions of W_i , we conclude that

$$\pi_1(W_i') \cong \pi_1(\sharp_n S^1 \times S^2)/\langle \{C_{n-i+1}'\}, \cdots, \{C_n'\} \rangle$$

and $\pi_1(W_i')$ has rank $\leq n-i$. Consider the case when i=1. By a classical theorem of Whitehead (see Exercise 20 on p. 283 of [4]) and by Corollary 5.14.2 on p. 354 of [4], it follows that $\pi_1(W_1')$ is free and $\{C_n'\}$ is primitive, i.e., is contained in a free basis of the free group $\pi_1(\sharp_n S^1 \times S^2)$.

Next, $\pi_1(W_2')$ has a presentation consisting of a set of free generators of $\pi_1(W_1')\cong\pi_1(\sharp_nS^1\times S^2)/\langle\{C_n'\}\rangle$ and the one relation $\{C_{n-1}'\}$. Hence by the results on p. 283 and p. 354 of [4] again, $\pi_1(W_2')$ is free and $\{C_{n-1}'\}$ is primitive. Therefore we obtain that $\{\{C_{n-1}'\}, \{C_n'\}\}$ is contained in a free basis for $\pi_1(\sharp_nS^1\times S^2)$. Continuing on with this argument, we conclude that $\{\{C_1'\}, \cdots, \{C_n'\}\}$ is a free basis of $\pi_1(\sharp_nS^1\times S^2)$. So by Lemma 2 of [3], there is a diffeomorphism $h: \sharp_nS^1\times S^2\to \sharp_nS^1\times S^2$ such that $h(S^1\times \{x_i\})$ is homotopic to C_i' for

all i, $1 \le i \le n$, where $S^1 \times \{x_i\}$ is contained in the ith copy of $S^1 \times S^2$ used to form $\#_n S^1 \times S^2$ and is disjoint from the 3-cells employed for the connected sum.

Let M be the smooth 4-manifold with $\partial M=S^3$ which is built by adding n 3-handles and 4-handles to W_n' , using the component $(\sharp_n S^1 \times S^2) \times \{0\}$ of $\partial W_n'$. The 3-handles can be attached along the 2-spheres $h(\{y_i\} \times S^2) \times \{0\}$, for $1 \leq i \leq n$, where $\{y_i\} \times S^2$ is in the ith copy of $S^1 \times S^2$ used to obtain $\sharp_n S^1 \times S^2$ and $\{y_i\} \times S^2$ misses the 3-cells utilized for the connected sum. Turning the 3- and 4-handles of M upside down, we find that M can be constructed with a 0-handle, n 1-handles and n 2-handles. Note that each 2-handle of M algebraically cancels one of the 1-handles, since C_i' is homotopic to $h(S^1 \times \{x_i\})$.

The Mazur trick can now be applied. $M \times I$ is a 5-manifold composed of a 0-handle, n 1-handles and n 2-handles. By the Whitney trick, the 2-handles geometrically cancel the 1-handles. Consequently $M \times I$ is diffeomorphic to B^5 and $2M = \partial(M \times I)$ is diffeomorphic to S^4 . By the topological Schoenflies theorem [1], M is homeomorphic to B^4 .

Let N denote the smooth closed 4-manifold which is obtained by gluing a 4-cell to M along $\partial M=S^3$. Then N is homeomorphic to S^4 . Since $N=W\cup \sharp_n B^3\times S^1$ it follows that W is homeomorphic to $\sharp_n B^2\times S^2$, either by isotopic unknotting in codimension 3 or by using the Dehn's lemma in [5] plus the topological Schoenflies theorem as in §2. This proves the first part of the theorem. Finally, exactly the same argument as in [2] applies to show that $C_1\cup\cdots\cup C_n$ is a slice link.

Proof of corollary. If W satisfies the conditions of the corollary, then W can be constructed by adding n 2-handles to B^4 along the curves C_1, \dots, C_n where $C_1 \cup \dots \cup C_{n-1}$ is a trivial link of n-1 components in S^3 . Hence W satisfies the hypotheses of the theorem and so W is homeomorphic to $\#_n B^2 \times S^2$.

Note. I would like to thank C. F. Miller for very helpful advice on the group theory in the above theorem.

REFERENCES

- 1. M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc., 66 (1960), 74-76.
- 2. R. Kirby and P. Melvin, Slice knots and property R, Invent. Math., 45 (1978), 57-59.
- 3. F. Laudenbach and V. Poenaru, A note on 4-dimensional handlebodies, Bull. Soc. Math. France, 100 (1972), 337-347.

DEHN'S LEMMA AND HANDLE DECOMPOSITIONS OF SOME 4-MANIFOLDS 569

- 4. W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Second revised edition, Dover, New York, 1976.
- 5. R. Norman, Dehn's lemma for certain 4-manifolds, Invent. Math., 7 (1969), 143-147.

Received March 30, 1979 and in revised form September 4, 1979.

MELBOURNE UNIVERSITY
PARKVILLE, VICTORIA, 3052 AUSTRALIA