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APPROXIMATION PROPERTIES OF POLYNOMIALS
WITH BOUNDED INTEGER COEFFICIENTS

V. DROBOT AND S. MCDONALD

For every fixed positive integea N, let &*N denote the
set of all polynomials p(x)—Σ &&* where α* is an integer,
I di \^N. For a fixed real number t set ^N(t)={p(t): p e&*N}.

THEOREM 1. Suppose 1 < t < N + 1 and t is not a root of
map of the polynomials from &N. Then <^N(t) is dense in J?

THEOREM 2. If t is an S-number then &*N(t) is discrete
for every N.

1* For every fixed positive integer N, let 3PN denote the set
of all polynomials p(x) with integer coefficients, p = Σ ^ιχ\ s u c ^ that
I di I <; N. For a fixed real number £ set

It was shown in [1] that if N = 1, ί is a number such that 1 < t < 2
and ί is not a root of any of the polynomials from ^ then the
set ^ ( t ) is dense in the real line. (It is fairly easy to see that if
t g (1, N + 1), t > 0 than <^0O cannot be dense in JK). At the same
time it was shown that ^(1/2(1 + V 5)) is discrete. As far as we
know this is the only known example of N and t e (1, N + 1) such
that <^(t) is discrete. In this paper we prove two extentions of
these results. The first is a straightforward generalization of [1]:

THEOREM 1. Suppose 1 < t < N + 1 and t is not a root of any of
the polynomials from ,0*N. Then ^N(t) is dense in R.

The second result is more intriguing and has a curious connection
with what is known as P — V numbers or S-numbers (P — V numbers
for Pisot-Vijayaragharan, see [2] for details).

DEFINITION. A number t>l is called a P — V number if it is
an algebraic integer and all of its conjugates have absolute value
strictly less than 1.

THEOREM 2. If t is a P — V number then ^N(t) is discrete for
every N.

It follows, for instance, that ^ v ( l/2( l + V 5)) is discrete for all
N, not just N = 1.
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Let ||81| denote the distance from s to the nearest integer. A
number θ is said to have property (P) if for some λ > l , | |λ^ | |->0.
It is known that every P — V number has property (P). A conjecture
is raised in [2] as to whether the converse is true: Is every number
with property (P) a P - F number? It is known that every algebraic
number with property (P) is a P — V number. Thus the conjecture
would be settled if one could show that for every number t having
property (P), the set &*N(t) is discrete.

The proof of Theorem 1 is essentially no different from the proof
given in [1] for N = 1. We proceed with the proof of Theorem 2
now.

LEMMA 1. Suppose t > 1 and 0 is an accumulation point of
^N(t). Let k, m be any positive integers. There exists polynomial
p of the form p(x) = xmif(x), f e 0>Ni mx> m such that

r fe-χ ^ p(t) < r k .

Proof. Let r(x) be a polynomial in &N such that

0 < r(ί) < r*-wi .

Let mx be the smallest integer such that

Then mx>m and r(ί)<Γ*"W l. Thus

LEMMA 2. Suppose t > 1 and 0 is an accumulation point of
^N{t). Then &*N(t) is dense in R.

Proof. Let u > 0 and η > 0 be fixed. Let k be so large that
the interval [t~k~\ t~k] has length less than η. There is a sequence
of polynomials pu p2, , having no common terms aόx

ύ such that

This follows by applying Lemma 1 with fixed k and making mx larger
and larger. If

9 (*) = Pi(«) + + pjf)

then qm(t) > mt~k

9 so qm(t) —> oo. Hence for some m, qm(t) will be
inside the interval [u — η u — η\. Since u and 57 were arbitrary,
the result follows.
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Proof of Theorem 2. It is enough to show that &*N(t) is not
dense for any N — 1, 2, . Indeed, suppose this is done and assume
that ^No(t) is not discrete. Then clearly ^2No(t) has 0 as an accumu-
lation point and by Lemma 2 is dense. To show &N{t) is not dense
for any N we argue as follows. Let

be all the roots of the irreducible monic polynomial of t, and let

so that 0 < σ < 1. For any k

tk + t\ + + t\

is an integer, hence

[ίMnteger I :g \t%\k + + \tv\
k ^ (p - l)(Jfc .

Let p(x) — a0 + α ^ + + Λî 3' be a polynomial in .^V
Then

*p(fi) - Σ «^"+%t*p(fi)

so

\tkp(t) - integer I £ Σ |α . l (P - D**+"

- f e

Σ
71=0

^ iSΓ(p - 1) σκ

1 - σ

Choose k so large that the right hand side is less than 1/3.
Then

Pit)-
integer

tk

or, if the integer is odd

for any p e ^N.
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