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MULTIPLICITY THEORY FOR BOOLEAN ALGEBRAS
OF //-PROJECTIONS

EHRHARD BEHRENDS AND RICHARD EVANS

As an application of the integral module representation
we investigate the multiplicity function in the sense of
Bade for Boolean algebras of Lp-projections. In the case
of finite multiplicity and the restriction of the multiplicity
function to invariant subspaces we obtain results which
have no analogue in the case of arbitrary Boolean algebras
of projections.

()• Introduction* Let X be a fixed real Banach space and p a
fixed number, 1 <; p < oo. An ZAprojection is a continuous pro-
j e c t i o n E:X->X s u c h t h a t \\x \\p = \\Ex\\p + \\x — Ex\\p f o r al l xeX.
ZAprojections have been investigated in [3], [4], [5], [8].

We consider a fixed complete Boolean algebra, say &, of Lp-
projections on X (for definitions, in particular that of the multipli-
city function, see § 1 below). First, we give a short survey of the
integral module representation which was introduced in the thesis
of the second-named author ([8]). We use this representation to
obtain results concerning the relationship between pairs of closed
subspaces invariant w.r.t. & - the .^-cycles. The main result in
this connection is the following: If M is a ,^-cycle and x an
element of X, then there is a z e X such that (M + S(x))~ = J l ίφ
S(z) whereby S(x) denotes the smallest ^-cycle containing x. It
follows that [in the case of finite multiplicity n there are vectors
a?i, ••-,#» with X = Sfa) 0 © S(xn). This is in marked contrast
to the case of arbitrary Boolean algebras of projections, where there
is a Banach space X containing vectors xι and x2 such that X =
(S(x1) + S(x2))~ but in which it is impossible to find vectors yu y2

with X - S(yi) + S(y2) (see [6]).
The case [of finite multiplicity will be treated in some detail in

§ 4. It turns out that in this case the space X may be arbitrarily
well approximated by finite families of Bochner spaces Lp( V: μ)
with finite-dimensional V.

The last section is devoted to the restriction of the multiplicity
to invariant subspaces, i.e. cycles. There seem to be no results in
this direction in the general case (cf [7], p. 2289). We shall show
that, for I/-projections, the multiplicity function behaves as one
would expect, i.e., the multiplicity of a cycle is less than or equal
to that of the whole space. Partial results concerning the multipli-
city of ad joints in dual spaces have been excluded in order to avoid
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the technicalities which are involved (e.g., the dual integral module
representation).

1* Preliminaries*
Boolean algebras of Lp-projections. The concept of an j^-pro-

jection was defined in the introduction. The range space of such a
projection is called an L^-summand. For the basic properties of
.^-projections and Z/-summands, the reader is referred to [4]. Note
that X = Xx φ p X φp φp Xn is a short way of indicating that
the Xt are ZAsummands with Xt f] Xj = {0}(ί Φ j) and X = Xι +
X . 2 + ••• + Xn - i t f o l l o w s t h a t Wx, + + x n \ \ p = W x ^ + - - + \\xn\\p

if xt e Xi for all i.
It is known that for p Φ 2 every pair of L^-projections commute

[3j. It follows that the set of all //-projections is in this case a
complete Boolean algebra of projections in the sense of Bade [1] (i.e.,
an increasing net converges to its supremum, in the strong operator
topology). We shall consider the more general case in which & is
a fixed complete Boolean algebra of //-projections for some p,
whereby the case p = 2 is not excluded and we do not assume that
this algebra contains all the //-projections.

A .^-summand is an Z/-summand whose corresponding 1/-pro-
jection lies in .̂ P*. For the general properties of these summands
and of Boolean algebras of projections we refer the reader to [4]
and [1|. We need the following facts and definitions:

(a) There is a compact Hausdorff extremally disconnected space
Ω such that the elements of <3S correspond to the clopen subsets
of Ω (Ω is just the Stonean space of &). By ED we mean the
element of έ% which corresponds to the clopen set D.

(b) The Banach algebra generated by ,^P, (lin &)~, is called
the Cuningham algebra of έ% and is written r&^. It is isometri-
cally isomorphic to C(Ω), the Banach algebra of continuous functions
on Ω is such a way that ED corresponds to XD for each clopen set
D in Ω. For Γ G ^ / ; we write f for the associated function in
C(Ω).

(c) For every Borel measurable function on Ω there is a
(uniquely determined) continuous numerical valued function on Ω
such that these functions coincide on the complement of a set of
first category. Each Borel set in Ω is the symmetric difference of
a clopen set and a set of first category.

(d) For each a e l w e define ρx{D): = | EDx\\p for all clopen D
in Ω. px can be extended to a regular Borel measure on Ω which
we also write px.

(e) If D is a clopen subset of Ω we say that D satisfies the
countable chain condition (CCC) if each strictly increasing chain of



MULTIPLICITY THEORY FOR BOOLEAN ALGEBRAS OF Z^-PROJECTIONS 23

clopen sets in D is at most countable (equivalently: each family of
disjoint clopen subsets of D is at most countable). In this case we
shall also say that the corresponding projection E satisfies the CCC.

It is easy to see that supp px satisfies the CCC since px is finite.
It follows that Ω is the supremum of a family of clopen subsets
each of which satisfies the CCC. We can thus restrict ourselves to
the case where Ω and I themselves have this property.

(f) For YdX there is a smallest projection E such that Ey =
y for all ye Y (the carrier projection of Y). Note that if FΛE=0
then FY = {0}. If Y = {x}t we shall write Ex for this projection.

(g) We note that with the notation of (d), (e), (f) the following
conditions are equivalent:

( i ) Ω satisfies the CCC.
(ii) there is an xeX such that supp ρx = Ω.
(iii) there is an xeX such that Ex = /.

Following [8] we call a closed subspace of X which is invariant
w.r.t. all projections in <S& a «^-cycle. It is easily verified that
the intersection and the closed linear hull of arbitrary collections of
.^-cycles are again ^-cycles. It follows that there is for each
a e l a smallest .^-cycle containing sc. This cycle is the closed
linear hull of {Ex \ Ee &} and is written S(x).

Multiplicity theory. The cycles of the form S(x) behave in
many respects as one-dimensional subspaces (cf. f. ex. [4], Satz Dl).
The aim of multiplicity theory is to investigate a "dimension" with
respect to the projection algebra, using the S(x)'& as building blocks.
If the projection algebra is the trivial one, consisting of 0 and /,
multiplicity theory is simply dimension theory. If, as in our case,
the projection algebra consists only of lAprojections, multiplicity
measures, in some sense, how close X behaves as an abstract Lp-
space. In § 4, for example, where we discuss the case of finite
multiplicity, we shall see that X behaves almost as a space LP(V;
μ), which is the natural generalization of the ZAspaces. Following
Bade ([2]) we define:

DEFINITION 1.1.

( i ) <£?: = {EI Ee &, E satisfies the CCC}.
(ii) For Ee^, m(E) (the multiplicity of E) is defined by

m(E): = inf {Card /1 there exists a family (Xi)ieI in EX such that

(iii) m( ) is extended to the whole of & by means of m(E): =
sup {m(F) \F^E, Fe^} for Eeέ^.

(iv) For Ee& the multiplicity of E is said to be uniform,
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if m(F) = m(E) for all Fe <^, 0 Φ F ^ E.
Clearly, from the definition, m(E) = m(E\EX) whereby the

second multiplicity is calculated in the Boolean algebra &°E. Also,
by (iii), the multiplicity is completely determined by those E which
satisfy the CCC. It follows that any procedure for calculating the
multiplicity of the identity on spaces where it satisfies the CCC can
be used to calculate the multiplicity of an arbitrary projection on
an arbitrary space. We shall sometimes use this fact to simplify
our proofs.

For a discussion of the properties of the multiplicity function
we refer the reader to [2]. In particular the following properties
hold:

PROPOSITION 1.2.

( i ) m(0) = 0.
(ii) mis monotone and ra(supieJ Eά) = sup ie t/ m{Es) for every

family (Ed)ίeJ in &.
(iii) There is a disjoint partition of .ζ& into a family (Ee),

indexed by a set of cardinals, such that each Ec has uniform mul-
tiplicity c {by "disjoint partition" we mean that the Ec are pairwise
disjoint and sup Ec = I). Note that this partition corresponds to
a disjoint family (Ωe) of clopen subsets of Ω with (U Ωc)~ = Ω.

Suppose that M is a .^-cycle. By restriction, & induces a
complete Boolean algebra of ZAprojections on ikf. If we denote the
multiplicity function on the restricted algebra by m, it is natural
to expect that m(E\M) ^ m(E) for Ee&. We shall see in § 5 that
this is indeed true.

Since S(x) — {Tx\ Ter^Λ~, the multiplicity of E corresponds to
the dimension of EX as a normed ί^-module in the case where E
satisfies the CCC. If E does not satisfy the CCC then the dimen-
sion of EX is generally larger than the multiplicity of E.

2. The integral module representation• In this chapter we
shall describe without proofs the representation of X as a space of
vector-valued functions on Ω such that the elements of & have the
form of multiplication by characteristic functions which was intro-
duced in [8], We shall only treat a special case which is general
enough for our purpose, namely that where Ω satisfies the countable
chain condition. For the general case and a complete description
of the construction, see [8], [5],

As before, let ^ be a complete Boolean algebra of iZ-projec-
tions on the real Banach space X. We assume that Ω satisfies the
countable chain condition. Thus there is an element x in X such
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that Ex Φ 0 for all E Φ 0 in &, wlog ||a?|| = 1 (see introduction).
Let y be some element of X. Since supp px = Ω, the measure py is
absolutely continuous w.r.t. ρx. Thus there is an L\px)-ίunction fy

on Ω such that ρy = /7>β. As every ^-measurable function is
almost everywhere equal to some unique continuous function on Ω,
we can assume that fy itself is continuous. Note that fy^0 and
is finite almost everywhere.

We denote by CP(Ω, px) the space of continuous numerical p-
integrable functions on the measure space (Ω, ρx) with the obvious
structures of addition and multiplication by C(Ω)-iunctions. \\g\\p

denotes the ZAnorm of an element in CP(Ω, px). Now, if we set
[y]: = (fψp, the mapping y H* [y] maps X into CP(Ω, ρz). This map-
ping has the following properties:

LEMMA 2.1.

( i ) Ill/Il = l|[»]ll,/or all y in X.
(ii) [Ty] = | Γ | [y] for T in ^ ^ and y in X.
(iii) [y + z] <; [y] + [z] /or 2/, z in X.

These are the defining properties of a norm resolution.

By 2.1 (ii) and (iii) the mapping y H> [#](&) is, for each k in i2,
a semi-norm on Yk: — {y\y in X, [y](k) < co}, a linear subspace of
X. Let Xk be the associated Banach space, i.e., the completion of
Yk/{v\[v](fi) = 0} in the norm || ||fc induced by y\-+[y](lc). This con-
struction provides us with a family of Banach spaces indexed by
the points of Ω. The p-direct integral of this family over Ω with

Xkdpx, is the set of all mappings /: Ω —> \JΩ U{°°}
such that /(A;) lies in Xfc U I00} for each k and for which the scalar-
valued function &h-> ||/(fc)||fc(|| ™ 11̂ : = °°) lies in CP(Ω, px). A 2?-direct
integral is not, in general, closed under addition so that it cannot
be given a natural vector space structure. However a subset Z of
the p-direct integral for which the following properties hold:

DEFINITION 2.2.

( i ) For all /, g in Z there is an h in Z with f(k) + g(k) = h(jk)
wherever f(k) and g(k) lie in Xk.

(ii) For all f in Z and g in C(Ω) there is an h in Z with #(&)
f(k) = h(k) wherever f(k) lies in Xfc

can be given a natural C(i2)-module structure since continuity implies
that the h of 2.2 is unique.

If, further:
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(iii) For each k, Xk = {/(fc) \feZ, f(k) Φ - } - .
(iv) Z is complete in the norm N(f): = | | ( | | / ( )ll-)llp

we call Z an integral module.
Xkdpx by means of y f-> {y} whereby

Ω

(y)(k): = the equivalence class of y in Xk if \y](k) < oo

I - oo if [y](k) = oo

all the structures of X are transferred to the range space so that
2.2 ( i ), (ii) and (iv) are automatically satisfied and (iii) follows
from the definition of the Xk. We thus have the following repre-
sentation theorem:

THEOREM 2.3. Let X, &, Ω and x be as above.
There is a family of Banach spaces Xky indexed by the points

of Ω such that X is isometrically isomorphic as a C(Ω)-module to

S P

Xkdpk. (X is a C(ί?)-module by virtue of
Ω

C(Ω) = '?-/).

The most important advantage of the integral module repre-
sentation is of course that the operators in rώ",. now correspond to
the pointwise multiplication by continuous functions. In particular
a projection in έ$ has the action of restriction to the corresponding
set in Ω.

Since we are interested in ^-cycles in X we need to know

how these look in the integral module representation. As is to be

expected they turn out to have a particularly simple form.

Xkdpx be the representation of

Ω

2.3.
If M is a &-cycle in X then:
( i ) Mk\ = {(y)(k) I (y)(k) Φ c°, y e M) is a closed subspace of

Xk for each k.
(ii) If y is an element of X then y is in M if and only if

(y)(k) e Mk U {<*>} far all k.
(iii) For each natural number n the set {k \ dim Mk = n} is

clopen in Ω. In particular the set supp M: = {k\MkΦ {0}}" is clopen
and corresponds to the carrier projection of M.

Proof.
( i ) That Mk is a subspace is clear, since (ay + bz}(k) = a(y)(k)J

r

b(z)(k) for α, b in R, y, z in M. It remains to show that Mk is
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closed. Suppose that yk is in Xk with (yn)(k) —> yk for some sequence
{yn} in M. We suppose that in addition || (yn+1)(k) -
[ίf +i - V . P ) ̂  1/2W+1 for each n. Set sx = ylm Since [^-
there is a clopen set A containing k on which [?/2 — #J <; 1/2. Set
z2 = ^ + J^Ofc - i/i). Then [z2 - s j ^ 1/2 and (z2)(k) = <»2>(fc). By
induction we obtain a sequence {zj in AT with [«n+1 — zn] ^ l/2% and
(zn)(k) = (yn}(k) for each τ&. Thus {2W(J)} converges uniformly on J2,
in particular {#J converges in M to # with (z)(l) = lim (zn}(l) for
each 1. Since (zn)(k) = (yn)(k) for all w we have <3>(fc) = lim (yn)(k)~
yk. Thus Mfc is closed.

(ii) Suppose that y is in X and that (y)(k) eMk U {^J for each
&. Let ε > 0 and ED be such that H^?/ — y\\ < e and (y)(k)eMk

for fc in J9. Then there is for each k in D a zk in M with (zk)(k) =
(y)(k). Let Dk Q D be a clopen set containing & on which [zk — y]<
ε. Then Z? is covered by finitely many Dks, say Dl9 , Dn corres-
ponding to kU''',kn. Wlog we may assume that the D/s are
disjoint. Put z = - E ^ ^ + + EDnzkn e Λί. Then

EDy\\ £ (\[z - yYdpxy
p = ( ± \Di[zki

^ (εp)1/?) = ε .

Thus ||2 — y\\ ̂  2ε. Since ε was arbitrary and M is closed we have
yeM.

The 'only if part follows immediately from the definition of
Mk.

(iii) The continuity of [y — z] for y, z in M implies that if
\\(v)(k) - <z>(fc)||fc > ε for some k then \\](y)(l) - <«>(Z)||, > ε for all
ϊ in some clopen neighbourhood of fe. Using this and a standard
argument invoking the compactness of the unit ball in a finite-dimen-
sional space we obtain: If y,zu --,zm are in M and d((y)(k),
lin K^Xfc), •• < 0 ( * 0 } ) > e f o r s o m e k then d((y)(l), lin {<^>(0, •••,
(zmy(l)}) > ε for I in some clopen neighbourhood of k. It follows
that if <2i>(&), ••*, <̂ m>(fc) are linearly independent for some jfc then
<3i>(Z)> , < O ( 0 a r e linearly independent in some neighbourhood
of fc. Thus for each n the set {k \ dim M^ ^ n) is open. Let fc0 be
a point in the closure of this set and suppose that dim 714̂  — m<n.
Let zu , zm in M be m elements such that <«iX&0), , (zm)(k0) is
a basis for ikfv Let A = {z \ z 6 M, [z] ̂  3, d((z)(k)9 lin {<^>(&), ,
<̂ m>(fc)}) ^ l>](fc)/2 ^ 1/2 wherever [̂ ](/b) ^ 0 } . We order the elements
of A by means of z f^ z' if and only if (z)(k) = (z'}(k) wherever
<«>(fc) ^ 0. If {̂ «}«ê  is a totally ordered chain in A then it con-
verges to an element z0 in M which also satisfies the defining condi-
tions of A. Clearly z0 is an upper bound for the chain so that we
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can apply Zorn's Lemma to obtain a maximal element in A, say z.
Since <^>(fc0), , <* >(*o) span MkQ, (z)(ko) = O. But [z](k) ̂  1 where
(z)(k) Φ 0 so, by the continuity of [z](k), we have that {z){k) = 0
on some clopen neighborhood D of k0. Let & be a point in D with
dimMfc ^ w. Then there is a z' in ikΓ with [£'](&) = 2 and d((zf}{k),
lin {<«!>(*), , <̂ m>(&)}) > 3/2 > [z'P)/2. By continuity there is a
clopen set D0Q D containing k such that ίT^s' l i e s *n Ά But ^ e n
z + -fî 02' lies in A and is strictly larger than z. Since this is a
contradiction it follows that dim MkQ ^ w. Thus {k | dim Λf* ^ n} is
clopen for all n. Since {& | dim Mk — n} — {k\ dim AT* ̂  w}\{& | dim Mk^
n + 1} this set is also clopen for each n. supp M — {k \ dim Mk ^ 1}
and is therefore clopen. That it corresponds to the carrier projec-
tion of M is trivial.

By applying 2.4 (i) to X itself we immediately obtain:

COROLLARY 2.5. For all keΩ> and yk in Xk there is a y eX
with (y)(k) = yk, i.e., the completion in the definition of Xk is super-
fluous.

The Zorn's Lemma argument of 2.4 (iii) occurs over and over
again when working with integral modules. In order to save
repeating it each time it is formulated in the following lemma for
which we need a preparatory definition.

DEFINITION 2.6. Let X, . ^ be as above and n a natural number.

QS(X«, .<&): - {(χl9 .. ,xn;F)\xieX,Fe.^' and EXi

= F for all i) .

THE EXISTENCE LEMMA 2.7. Let A be a subset of QS(Xn, &)
for which the elements of X which occur are bounded in norm and
let E e έ%? satisfy the countable chain condition. If

( i ) For each F in .&, 0 S F ^ E there is an a: = (alf , an;
Fa) in A with 0 S Fa ^ F.

(ii) Whenever {Fa} / F <ίE and a is an element of QS(Xn, &)
such that Faa: = (Faalf , Faan; FaFa) is in A for all a then Fa
is also in A.

(iii) Whenever a and a' are in A and FaFa, — 0 then a + α': —
(a1 + a[, , an + αi; Fa + Fa,) is in A.
Then there is an element a in A with Fa = E.

Proof. We order the elements of A by means of a <; af if and
only if Fa ^ Fa, and at — Faa\ for all i. Let ^ be the set of all



MULTIPLICITY THEORY FOR BOOLEAN ALGEBRAS OF ZAPROJECTIONS 29

a in A with Fa^E. A strictly increasing totally ordered chain in
AE can be at most countable since E satisfies the countable chain
condition, say α1, , am, . By the boundedness in norm of the
elements occurring in A, a\, a\, , aT, , is a Cauchy sequence for
each i and converges in X to an element α,. Clearly a: — (alf ,
αn; sup Fαm) is in QS(Xn, &) and FαWα = am for each natural
number m. By (ii) α is in A and is an upper bound for the chain
α1, , am, . Since jPαm <; 2£ for each m, α is in AE. By Zorn's
Lemma AE contains a maximal element. By (i) and (iii) the projec-
tion in this element must be E.

Note that it is not essential for the validity of the existence
lemma that & consists of lAprojections (although that is of course
the case in the present paper). It suffices that the norm bounded-
ness implies that every sequence in which each element is an
extension of the previous one is Cauchy. In practice we shall only
use the cases n = 1 and n = 2 and shall normally only verify (i),
leaving it to the reader to check that (ii) and (iii) are trivially
satisfied. If the elements of A are characterized by some property
then verifying (i) corresponds to showing that the set of projections
for which it holds is co-final in every ultrafilter containing E. The
existence lemma then allows us to conclude that the property holds
for E itself.

3* Distance functions* If y is an element of a Banach space
Y and M a subspace, the distance of y from M, d(y, M) is
infmeJtf \\y + m\\. This well-known distance function suggests the
following definition of the distance between two subspaces of Y:

DEFINITION 3.1. The distance between two subspaces Mlt M2 of
a Banach space F, d(Mlf M2) is inf {((m1 + m211 | m16 Ml9 m2 6 Λf2,
maxfllmJI, ||m2||} = 1}, whereby we define the infimum of the empty
set to be unity.

Clearly, if d(Mlf M2) = d, we have \\m1 + m2\\ ^ d \\mL\\ and ^

d| |w 2 | | for m1eMum?eM2. This distance function takes values in
[0, 1].

PROPOSITION 3.2. Let Mu M2 be closed subspaces of F.
( i ) // Λfi Π M2 Φ {0} then d(Mlf M2) = 0.
(ii) d(Mu M2) > 0 if and only if Λfx Π M2 = {0} and M, + M2 is

closed.

Proof
( i ) Trivial.
(ii) The 'only if part is trivial and the 'if part follows from
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the closed graph theorem.
We are, of course, interested in the case where M1 and M2 are

^-cycles jin a Banach space X. (^ as in the foregoing section.)
We have seen in the last section how M1 and M2 define families
(MJk and (M2)k of subspaces of the spaces Xk in a given integral
module representation. The next proposition relates d(Mlf M2) to
the distance between these subspaces.

PROPOSITION 3.3. Let M, M1 and M2 be ^-cycles in a Banach
space X and y e X.

( i ) dk(Ml9 M2): — d{{M^)kJ (M2)k) is continuous as a function of
k.

(ii) d(Mlf M2) = iniΩ dk(Ml9 M2).
(iii) dk{S{y), M) vanishes on a nonvoid clopen subset of Ω if

and only if S(y) Π M Φ {0}.

Note. 3.3 (iii) does not necessarily hold for two arbitrary &-
cycles.

Proof.
( i ) Suppose for some k in Ω, dk(Ml9 M2) < aeR. Then there

is also some ε > 0 such that dk(Mu M2) < α(l — ε). By the definition
of the distance function there are elements m e (Mλ)k, m' e (M2)k with
max {||m||Λ, \\m'\\k} — 1 and \\m + m'\\k < α( l — ε). Let m1 e Mlf m2e

M2 be such that (m^}{k) = m, <m2>(fc) = m'. By continuity there is
a clopen set D containing k with IKmiXOHi > \\m\\k — ε, ||<m2>(ϊ)||i >
| | m r | | , - ε and || (m^il) + <m2>(i)||z < α(l - ε) for all I in D. But
then α(l - ε) > || (m^l) + <m2>(Z)||z ^ dt(ML, M2)-μ, > ( 1 - ε)dι(Mu M2)
whereby μx = max {|| {m,){l)\\u \\ <m2>(ί)HJ > 1 - ε. It follows that
dz(M1, M2) < a for I in D.

On the other hand suppose that every neighborhood of k contains
a point I where dι(Mu M2) < a. By the preceding part of the proof
there is a clopen set A containing I and elements m1 e Mu m2 e M2

with IKm.XΠ + <m2>(Z')llr < a max {IK^iXΠIIr, II <m2>(Πilr} and
maxίlKm^COl^, H<m2>(Π!lr} > 1/2 for Z' in A . Let D be the
clopen set {I \ dι{Mly M2) < a}~. We apply the existence lemma to
A: - {(ml9 m2; Ec) \ mx e Ml9 m2 e M2, (ml9 m2; Ec) e QS(X\^) iK
<m2y(l)\\ι ^ a maxdKmxXOIIz, Ii<m2>(i||)a and max {|| (
H<m2>(0||z} ^ 1/2 for I in C} and ^ The conditions (ii) and (iii)
are trivially satisfied and (i) we havejust shown. Thus there is a
pair ml9 ?n2 such that these inequalities hold everywhere in D, in
particular also at k. But then a max {|| {m^(k)\\k9 \\ <m2>(k)\\k} ^
IKm.XΛ) + <w2>(Λ)||fc ^ ^(M,, M2) max {|| <^x> (λ;)||fc, || <^2>(fc)||,}. It
follows that dk(Ml9 M2) ^ α. Thus the component-wise distance
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function is both upper and lower semicontinuous and therefore
continuous.

(i i) Let d: = inf^ dh(Mu M2). If mι e Mu m2 6 M2 and max {HmJI,
| |m2 | |} = 1 then

\\mi + m2\\* = [([m, + m2](k))pdpx=

{Mu M?)r(max{||<m1>(A;)|i,, \\{m2χk)\\k)γdpx

^ dλ (maxίlKm.Xfc)!!,, \\<m2χk)\\k}ydpx ^ d>

so that d(Mlf M2) ^ d.
On the other hand since dk(Mu M2) is continuous and Ω compact,

there is a point k in Ω such that dk(Mlf M2) = d. Let 1 > ε > 0.
As in (i) we can find elements m1 e Mlf m2 e M2 so that max
Il<m2>(i)|| ι}(= say IKm.XOHO > 1 - e and Um.Xl) + <
d(l + ε) for I in some clopen set D containg k. But then:

Jl, \\EDm2\\) ^maxdl^mJl, \\EDm2\\) ^ £
(i — s) ( l — ε)

So d(Λfx, Af2) < d{l + ε)/(l - ε) (note || JS^mJI ^ 0). Since ε was
arbitrary subject to 1 > ε > 0, d(Mu M2) — d.

(iii) It is straightforward to show that the spaces (S(y))k are
one-dimensional at most and equal to lin ((y}(k)) where (y}(k) is
finite and nonzero. Thus, if dk(S(y), M) — 0 on a clopen set D Φ φ
then, by 3.2 (ii) (S(y))kΠ Mk Φ {0} and so (y)(k) e Mk\J {o°} on Zλ
By 2.5 (ii) EDy e M. Since the distance between {0} and any other
subspace is 1, EDy Φ 0. Thus S(y) Π M Φ {0}.

On the other hand, if S(y) {Λ M Φ {O\ let z be an element in the
intersection with z Φ 0 and 1 ^ || (z)(k)\\k ^ 2 on supp z. Then <̂ >(fc)
is a nonzero element in (S(y))k Π M* for all & in supp z. By 3.2 (i)
dk(S(y), M) — 0 on supp z.

4* The case of finite multiplicity* In this section we consider
the case where m(I) < °°. It turns out that in this situation the
spaces behave as a sort of continuous analogue to the Bochner spaces
Lp( V; μ) with finite-dimensional V. In particular, X can be split
up in a very simple manner in contrast to the situation for arbi-
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trary Boolean algebras of projections with finite multiplicity (cf.
the counterexample in [6]).

LEMMA 4.1. Let & be a complete Boolean algebra of Lv-pro-

jections on X, MdX a &-cycle. For each xeX, there is a zeX

with

(M + S(x))~ = M + S(z) .

Proof. Let D: = {k | dk(M, S(x)) Φ 0}~, a clopen set in Ω. We
apply the existence lemma to ED and

A: = {(z, F ) I (z, F) 6 QS(X, <3T) , d(M, S(z)) ^ 1/4 ,

F{M + S(s)) - F((M + S(OJ))-)} .

That (ii) and (iii) are satisfied is easily verified. Now suppose that
0 S F = EG ^ ED. Then there is a point & 6 C with e^ikf, S(a?)) ^ 0.
Then Mk^Mk + lin((x)(k)) so that there is a point τ/fc6ikίfc4-lin ««>(&))
with ll^ll = 1 and d(Λffc, lin(i/fc)) > 1/3. Let meM and α e i ί such
that yk — <m + αcc>(&) (note that α ^ 0). Then there is, by the con-
tinuity of d. (M, S(m + ax)) and [m + ax](-) a clopen set CoaC
containing k such that dλ(M, S(m + ax)) > 1/4 and [m + α#](Z) > 1/2
for I e Co. Let 20 = ^ ( m + α«). Clearly (z0, ^ e QS(X, &) and
d(Λf, S(«o)) ^ 1/4. But #σoα? - («0 - EθQm)/aeM+ S(z0). It follows
that EcJiM + S(20)) = ECo((M + S(^))-). Thus (i) also holds. By the
existence lemma there is a (z,ED)eA, i.e., an element zeX with
ED(M + S(z)) = J^((ΛΓ + S(a?))-).

But (Af + S{x))~ - J^((AΓ + S(X))-) + M = ^(Af + S(s)) + AT =
Λf + S(2;) since dΛ(Λf, S(x)) = 0 outside X) implies (I - ED)(S(x)) c ikf.

THEOREM 4.2. Lei & be a complete Boolean algebra of ^-pro-
jections on the real Banach space X.

( i ) If Ω satisfies the CCG and I has finite multiplicity, say
n, then there exist xl9 , xn in X such that

For any xeX with Ex Φ 0 for all Ee &, EφO, the Banach spaces
Xk in the integral module representation of X w.r.t. x are finite-
dimensional, and n = ma,xkeΩ(άimXk).

( i i ) Conversely, if there is an xe X with Ex — I such that the
Xk in the corresponding intgral module representation are finite-
dimensional with n: = maxfc6J2 (dim Xk) then m(I) is finite and equal
to n.

Proof
( i ) The first part of the proposition follows from 4.1 by indue-
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tion on n.
Let y ι-> (y) be the integral module representation of X w.r.t.

x. Each y e X can be written as yλ + + yn with yi e S(Xi) for
each i. Thus <»> = <»x> + + (yn) so that Xfc = [Sfo)]* + +
[SGO1* for A; in iλ It follows that maxfc6i2 (dimXfc) ^ w.

However suppose that max^x? (dim Xk) < w. This means that
for each JceΩ there is an xi with <#.)(&) = 0. Let Dt: = {k\ <#*>(&) =
0} for i = l, - - , w. Then U?=i A = Ό so that {k | (a;n)(i;)^0}cU?:ί A
Since this set is open it is contained in U S Ct whereby C*: = (A)0

for ί = 1, - -, n — 1 (note that 42 is extremally disconnected). Let
yt: = Xi + Ec.xn for these i. Then (/ - ECi)Vi = a?, and 2 5 ^ = JS^α?,.
It follows that S^) + -8(yn^ => S(a?x) + + £(&,) - X This is
in contradiction to the fact that X has multiplicity n.

(ii) Suppose that dim Xk = m for some & 6 i2. Let xίf , xm

be a basis of Xk, xu - -, xm elements in X with <α?<>(fc) = »< for each
i and ikί: = [S(&i)H S(xm)]~. Then Mk = Xfc and by the continuity
of the dimension Mk> = Xfc, for Λ' in some clopen neighbourhood Z>
of k. Then J^X = EDM, and ^ has finite multiplicity less than or
equal to m. Thus there is a neighbourhood of each point k such
that the corresponding projection has multiplicity not greater than
n. It follows from 1.2 (ii) that m{I) <; n and then the equality
follows from (i).

Note. It follows from 4.2 that m(ED) = maxfcei)(dimXfc) for each
clopen D in Ω and thus that uniform multiplicity n oί I implies
dim Xk = n for all k in Ω.

We now investigate the restriction of the multiplicity function
to cycles in the case where / has finite multiplicity.

THEOREM 4.3. Let X be a Banach space, & a complete Boolean
algebra of Lp-projections on X. Suppose that I has finite multipli-
city n, that Ω satisfies the CCC and that M is a &-cycle. We
denote the multiplicity in & \M by m.

( i ) m(E\M) ^ m{E) for all Eeέ£.
(ii) M= X if and only if m(E) = m(E \M) for all Ee^.

In particular, if I and I \M have uniform multiplicity and EM — I,
M— X if and only if m(I) = m(I\M).

(iii) // / \M has finite uniform multiplicity kf EM = / and
%i, m"9Xk we elements of M such that M = S(xί) 0 0 S(xk), then
there are xk+l9 , xn such that X = S(xλ) 0 0 S(xn).

Proof
( i ) The same proof as 4.2 (i) gives m(jEU) = maxfc6i)(dimMfc)<^

maxfcez>(dimXfc) = m(E) (whereby D is the clopen subset of Ω as-
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sociated with E).
(ii) M = X if and only if Mk = Xk for all k e Ω. Since dim Xk

is finite, it suffices that dim Mk — dim Xk for each k and, since J2 is
totally disconnected and k ι—> dim Af&, A; H-> dim Xk are continuous, that
supfc6D (dim Mfc) = supfceD (dim X/£) for all clopen D. This is clearly
equivalent to m{E\M) = m(J5) for each Ee&.

(iii) Let Z> +̂1 = {A; | dim Xk ^ & + 1}. Apply the existence lemma
to ED£+1 and the set {(y, Ey) \ d(β(y), M) ^ 1/2} to obtain xk+1 with
j ^ + 1 = ^ Γ + 1 and d(S(xk+1), M) ^ 1/2. Let Dki2 = {k | dim Xk ^ fc + 2}
and apply the existence lemma to EDk*+2 and {(y, Ey) \ d(S(y), M 0
S(ίCfc+1)) ^ 1/2} to obtain Xk+2- Continue until xn. Since dim Mk = k
for all k and supp (xk+r} = Dk,rr for l ^ r ί g w — fc we have dim [£(#i)0
• © S(xn)]k - dim Xk for all k and thus X - Sfa) 0 © S(xn).

We now show that in the case of finite multiplicity, the space
X may be arbitrarily well approximated by sums of Bochner spaces
L'(V μ).

Let (S, Σ> μ) be a finite measure space and V a finite-dimen-
sional Banach space with n: — dim V. By &Σ we mean the Boolean
algebra on Lp( V; μ) which consists of the characteristic projections
EDy f H^ fXD for DeΣ. &Σ is obviously a σ-complete algebra of
Lp-projections. Since (S, Σ, μ) is finite, Ie.<S@Σ satisfies the CCC and
(7-completeness is equivalent to completeness.

LEMMA 4.4. Ieέ@Σ has finite uniform multiplicity and m(/) =
dim V.

Proof. Let el9 , en be a basis of V, elf , en e Lp( V; μ) the
corresponding constant functions. For DeΣ with μ{D) > 0 it is
easy to see that EDLP(V; μX-L^V; μ \D)) = S(XDeύ + + S{lDen)
so that m(ED) ̂  n for all ED.

On the other hand, suppose that for some ED Φ 0, S(fί) 0 0
S(/fc) - EDL*(V; μ) with k < n.

Then either (a) the set {ωeD\ f(ω) $ lin {f^ω), , fk(ω)}} has
zero measure for all feEDLp(V;μ) or (b) there is an feEDLp(V;μ)
and a measurable set C c D , μ(C) > 0 such that f(ω) ί lin {/^ω), ,
Λ(α>)} for o)eC.
(Note that both (a) and (b) are independent of the choice of repre-
sentatives.)

If (a) holds, let K be the unit ball of V and vl9 , vr a finite
family of elements in K with Ka U?=i B(vi9 1/4). The set G: =
Uί^i {ω I α) e D, vi(α))( = v<) e lin {/^(i)), , /Λ(α>)}} has by (a) zero meas-
ure. Thus there is a point ω£G. But then vt e lin {/i(ω), , fk(co)}
for all ί and thus d(v, lin {f(ω), , /fc(α>)}) ^ 1/4 for all veK. This
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of course contradicts the fact that k < dim V.
However if (b) holds, then there is an ε > 0 and CεaC, μ(Cε)>0

with d(f(ω)9 lin {f^oo), , Λ(ω)}) ^ ε for α>eCe. But then ||Xβ/ —
Σi=iQifi\\p ^ εpμ(Cε) for all glt , gk in the Cunningham algebra of
&Σ which contradicts the fact that EDLP(V; μ) = S(f) 0 0 S(fk).

Thus m (ED) = 72, for all ED e &Σf ED Φ 0.

LEMMA 4.5. Let X, &> Ω etc, satisfy the conditions of Theorem
4.2.

( i ) For each k in Ω and each ε > 0 there is a clopen neigh-
bourhood D of k such that δ{Xki Xt) <* ε for I in D,

Here δ(Xkf Xt) denotes the Banach-Mazur distance of Xk from
Xι i.e., δ(Xk9 Xι):=inί {log | | 9 | | | | ^ " Λ | | | φ: Xk —• Xι isomorphism) with
inf 0 : = oo.

(i i) For each k in Ω and each ε > 0 there is a clopen neigh-
bourhood D of k such that δ{Lv{Xk, (D, px \D)), EDX) ^ ε.

Proof
( i ) Suppose ε and k are given and choose an 1 > ε' > 0 such

that log(l + ε')/(l — ε') < ε . Since X and & satisfy the conditions of
Theorem 4.2, Xk has finite dimension say n. Then there is a clopen
neighbourhood Dn of k such that Xz has dimension n for I in Dn

(2.4 (iii)). Let y*, .- , ^ b e a base of Xk with \\yΐ\\k = 1 for all i
and let r > 0 be a number such that | |S3\2/*| | f c ^ r max |λ<| for
all real numbers \ί9 , λ%. (It is in fact possible to choose a base
for which r can be put equal to 1.)

Let yl9 , yn be elements of X such that <3/<>(fc) = τ/f for each
i. Since the unit ball of Xk is totally bounded it can be covered
by finitely many balls of radius rε'/An, say those with centers
zl9 , zn. Finally, if (yt}(l) Φ °°f let φt: Xk -> Xz be the linear map
which maps yf into <1Λ>(Z) for each i. Due to the continuity of
the norm resolution ||<£>z(z)||z is continuous as a function of I for
each z in Xfc. Thus there is a clopen set Z> containing k and con-
tained in Dn such that:

/ o " \ I I /y II I I /7i //y ] <•'"' C I A. Ί — 1 ΎYϊ
\ <X I 'v ί \\h — J l\^i/ I ^"^ / — > > ' I v m

(b) 1 - ε' < ||<2/<>(Z)llι < 1 + e' i = 1, , n,

for all I in Zλ

But then for each zeXk, \\z\\k = l there is a ^ wi th \\z — Zt\\k<

rε'/£nz — zt = ΣIΛ^JV* for suitable λ / s in R and from | |z — Zi\\k <

rε'/An i t follows t h a t λy < ε'/4^ for all j . Thus

I k - I l 9 > ι ( « * ) l l i l + Ill9>i(«*)ll«"- I W U
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< n(ε'/4n)(l + s') + (rε'βn) + (ε'/4) < ε' .

In particular, since e' < 1 each φt is an isomorphism and

But then

£ log

(ii) Suppose ε and fc are given and that ε' is a positive number
which we shall determine later. As in (i) we can determine a clopen
set D containing k such that δ(Xk, Xι) ^ ε' for I in D. With the
notation of (i) let yt be the elements of Lp(Xk, (D, px\D)) which have
the constant value yf on D. Consider the map φ which maps every
element of the form ΣrAftvt in EDX into ΣΛf<Vi in L\Xk, (D, px\»))
where the //s are continuous functions on Ω which vanish outside
D. Then φ is clearly well-defined and linear and its domain and
range are dense subsets of EDX and Lp(Xk, {D, px\D)) respectively.
Since

*ll p = ί i | Σ

and also

we have

dpx

n

A

V n

Λ

11 n

1! Λ

P Γ
=
 )D

P

k

But

It follows that

Σ Λ(i)itf

and thus that
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CΛ J ί\u)\yi/\v)
Λ

P

I

n

Λ

11 ^

• ΣΛDnf
II A

P

k

P

k

^ pε'(l + s')^1

Thus

and

n

A

P n

A
Σ,ftV<

n !

A

—

For sufficiently small e' we thus have that φ is 1 — 1 and

We can thus extend φ to an isomorphism between EDX and Lp(Xk,
(D, /°*U)) f° r which this inequality also holds.

We are now in a position to prove the promised result, that it
can be arbitrarily well approximated by sums of Bochner spaces.
The reader will note that we actually prove rather more than is
contained in the statement of the theorem, we have however chosen
this formulation for the sake of clarity.

THEOREM 4.6. Let X be a Banach space and a complete Boolean
algebra of Lp-projections on X, satisfying the CCC, with m(I) = n,
finite. Then, for each ε > 0, there is a finite family of finite
measure spaces (Sjf Σ , , μ Λ ^ r and <*> family (V^j^r of Banach
spaces of dimension less than or equal to n, such that, for Y: —
L*(Vu μd ® , L*{V2, μ2) @p, , 0 , L*{Vr, μr) δ(Y, X) ̂  e.

Proof. By Lemma 4.5 we can find for each point k a clopen
neighbourhood D such that (Lp(Xk, (D, px \D)), EDX) ^ ε. Since Ω is
compact there is a finite set ku -,kr such that the corresponding
D/s cover Ω, Wlog we may assume that the D/s are disjoint.
Set (Sj, Σ * μ5) = (Dj} Borel sets on Djf ρw \Dj) and Vά = Xkj for each
j . d i m Vs = d i m Xkj ^ n. S ince X=EDlX@p ED2Xφp, ,(BP EΌX
it follows immediately that δ( Y, X) ̂  ε by composing the individual
isomorphisms.

5* The restriction of the multiplicity function* Let M be a
fixed ^-cycle in X. & induces a complete Boolean algebra of Lp-
projections &\ = έ% \M on M, and it is natural to ask whether it is
possible to compare the respective multiplicity functions. If we
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denote by m the "restricted" multiplicity function, one would expect
that m(E\M)<ίm(E) for Ee &. It turns out that this is true for our
situation, but there seems to be no result in this direction for the
general case of Boolean algebras of projections. To avoid notational
complications we will restrict ourselves to the case where έ%f satisfies
the CCC (note that this is then also true for έ$ since the repre-
sentation space of <5& is a subspace of Ω).

The following problem crops up: Is it possible given a fixed
family of cycles generated by elements of X to find the same
number of elements in M such that the cycles generated by these
elements approximate the same elements in Ml The case of finite
multiplicity is already settled (cf. § 4) whereas the general case
needs a certain amount of technical preliminaries.

LEMMA 5.1.

(1) Let x be an element of X such that Ex = I, S(x) Π M — 0,
ίj£j| = 1. Then there is an meM such that [x — m](k)^Zdk(S(x)f M)
for keΩ. If mr is any element of M such that \\EDx — m'|| ^ ε
(where e ^ 0 , f l c ί 2 cloven), then we have \\EDm — m'\\ <; 4ε.

( 2 ) For every xe X there is an meM such that \ \ Ex — m!\ | <̂
e(E e &, e ;> 0, mf e M) implies \\Em — m'\\ <: 4ε.

Note. In (1) dk(S(x), M) is taken in the integral module repre-
sentation with respect to this x.

Proof.
(1) We shall work in the integral module representation of X

with respect to x. Let Ωr be the open dense set {k \ dk(S(x), M)>0}.
For keΩ', select an mk in M with [mk — x\(k) <J 2dk(S(x), M). By
continuity there is a clopen neighbourhood Dk of k on which we
have [mk — x](l) ^ Sd^Sίx), M) for I in Dk. By applying the ex-
istence lemma we obtain an element m in M for which [m — x\{k)S
3dk(S(x), M) for all k in (fl)" = Ω. [EDx - mr\ <; ε implies ep ^
ί [EDx-m']v{k)dpx^[ [x-mr\p(k)dρx. On the other hand [x-m'}{k)>,
dk(S(x), M)[x](k) = dk(S(x), M) (all k e Ω) so that

\\EDm - Enx\\p = [ lΊ)\m - xγ(k)dpx= [ [m - x]p(k)dpx

^ \ ndk(S(x), M))»dPx

3D

S Zpep[ [x - m]p(k)dρx ^ Spep .

But this implies \\EDm — m'\\ S \\EDm — EDx\\ + \\EDx — mf\\ ^ 4ε.
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( 2 ) If Ex means the carrier projection of x, EM the projection
in &? with S(EMx) f] M = 0, S((I - EM)x) c M (cf. [2], 4.7) we have,
with Eo: = ExoEM, S(Eox) n # 0 ^ = 0, S((I - EQ)x) c ΛΓ, £^ 0 . = # 0 . We
apply (1) to the Banach space EQX, the Boolean algebra & \EQX, the

& U*-cycle E<Mf a n ( i the distinguished element Eox/\\Eox\\ (if EQx =
0, we have S(x) c l s o that we may choose x — m). We get an
moeM for which the conclusion of (1) is valid. Define m: =
m0 \\EQx\\ + (I — E0)xeM. Suppose m ' e l ^ H ^ e ^ are given
with WEx-m'W^ε. It follows that εp^\\EEox-EQm'\\p + \\(I-Eo)Ex-
{I-EQ)m'\\p. By (1), we have \\Em0 - Eo(m'/\\Eox\\)\\^ *\\ E(Eox/

ll)ll, i.e., \\E(\\Eox\\mo)-Eom'\\ £
It follows that

\\E0Em - EQm'\\* + \\(I - E0)Em - ( I
p + \\(I - E0)Ex - (J - # 0 )m' | | p

\\(I - E0)(Ex - m)\\*

- m')\\* + | ] ( 7 - E0)(Ex - m')!!']

m' | | p ^ 4pεp .

LEMMA 5.2. Lei (#ί)ie/ δe an infinite family of elements in X.
There is a family (m^^j in M such that Cz /=Cz J", (lin [JieI S(Xi))~ (Ί

Proof. Let J be the set of all (^, , ir; au , αr) where
ii, , ir is a finite subset of / and al9 , α r are rational numbers.
It is clear that Cz J = CzJ. For j = (i l f , ir; alt , α r), let my

be that element in M which is associated with x = a1xh + +
arxir as in Lemma 5.1 (2).

Let m' be an element of (lin \JiBIS(xt))~ Π M, ε > 0. It is pos-
sible, by the definition of S(xt), to find elements xiιf •• ,α?<r, opera-
tors Σ?=i axE*(p = 1> * » r ) s u c ^ that the aj are rational and
\\Σiro=iΣλ=iaffixBtp — m' | | ^ ε. An easy computation shows that we
may write Σ j U Σ ? 4 « ^ / ^ v as Σ U i ^ A X + + δί«*r) whereby
the family (Eλ)λ=:lj...a is a disjoint partition of / and the δ£ are
rational numbers. With j λ : = (i2, , ίr; b{, , 6ί), m/. = miyl, ε̂ : =
l l ^ δ ί ^ i + + Uxir) - Eλm'\\ it follows that | | ^ m λ - Eλm'\\ ^ 4ε
and therefore that 11 Σ U Eλmλ - m' | |p = Σ L i 11 ^ m , - Eλm' \ \p ^
4p Σ U i sj = 4P Σ U Eλ{blxh + + 6&<r) - m ' | | p ^ 4pεp. Thus we
have m' 6 (lin \JjeJ S(mj))~.

THEOREM 5.3. m(E\M) <; m ^ ) /or αίZ

Proof. By the usual techniques we can restrict ourselves to the
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case when E = I and Ω satisfies the CCC. But then 5.3 is a con-
sequence of 4.2 and 5.2 in the case of m{E) finite and infinite,
respectively.
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