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MOD p DECOMPOSITIONS OF H-SPACES;
ANOTHER APPROACH

JOHN McCLEARY

Let M and M’ be unstable modules over the mod p
Steenrod algebra such that there are spaces Y and Y’ with
H¥Y;Z)=UM) and H¥(Y'; Z,)=U(M'). Here U() is the
free-associative-graded-commutative-unstable algebra func-
tor introduced by Steenrod. Suppose g: M’ — M is a mor-
phism of unstable modules. We develop an obstruction
theory which decides when g can be realized by a map G:
Yo — Yy, that is, g=H*(G, Z,)|x. We then apply this ob-
struction theory to obtain p-equivalences of certain H-spaces
with products of spheres and sphere bundles over spheres
which are determined by the cohomology structure of the
H-space.

The decomposition of H-spaces into products of simpler spaces
has been extensively studied by various authors [5, 7, 8,9, 12, 15,
16,17]. The problem is to obtain conditions on an arbitrary H-
space and a prime p for which H*(Y; Z,) completely determines the
mod p homotopy type of Y. In [7] Hopf showed that a finite-
dimensional H-space is rationally equivalent to a product of odd-
dimensional spheres. For a simply-connected Lie group, Serre [15],
Kumpel [8] and later Mimura and Toda [14] have provided conditions
for which a group is p-equivalent to a product of odd-dimensional
spheres and spaces, B,(p), which are sphere bundles over spheres.

The main thrust of this paper is to describe an obstruction
theory, based on techniques of Massey and Peterson [10], which is
used to prove

THEOREM A. ([9]). Let Y be a mod p H-space where
(1) H*Y; Z,) is primitively generated,
(2) H*Y;Z,) = A@gnyt1y -+ *y Tonyrr) Where m=my <--- < my, and
(3) p=n —n, + 2,
then Y, is homotopy equivalent to SZpt' x Sipett x - .. x St

THEOREM B. Let Y be a mod p H-space where

(1) H*(Y; Z,) is primitively generated,

(2) H*Y;Z,) = A @ty ***y Tongs) Wheren, = my, < -+ - < my, and

(3) 2p>n,—n, + 2 and p =5,
then Y, s homotopy equivalent to the product II, B, (D), X
1. Sim-+* with the numbers m, and m, determined by the action of
G on H)+Y; Z,).
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Theorem B includes most cases of theorems proved by Harper
[5] and Wilkerson and Zabrodsky [16]. The condition p = 5 is tech-
nical and can be eliminated by other means. We will concentrate
on the obstruction theory which arises as follows.

DEFINITION. Let M be a module over the mod p» Steenrod algebra
7 (p). We say that M is an unstable module if for p = 2, q'c = 0
when dimz <7 and for p odd, 2 =0 when dimx < 2¢ and
BFP'x = 0 when dimx < 2i. An algebra over .7 (p) is unstable if
it is an unstable module and for p = 2, .“q'x = 2> when dimxz =1
and for p odd, &'z = 2? when dim 2 = 2.

Let Z/.# and %.o7 denote the categories of unstable modules
and unstable algebras with degree-preserving maps. The definitions
have been chosen so that H*( ;Z,) is a contravariant functor: v~ 2P —
84
The forgetful functor & : % &% —Z/_# has an adjoint U: Z_# —
% defined by U(M) = T(M)/D where T(M) is the tensor algebra
generated by M and D is the ideal generated by elements of the
form x®y — (—L)¥™=imy Q2 and for p =2, g’z — @« When
dimz =1, for p odd F2x — 2R 2 --- X = (p times) when dim x=
21. We will call a space very nice (following [2]) if H*(Y; Z,)=
U(My) for some unstable module M,. Examples of such spaces
include K(z, n)’s for = finitely generated, odd-dimensional spheres,
most H-spaces and a few projective spaces.

Suppose Y and Y’ are very nice spaces and g¢g: My — M, is a
morphism of unstable modules. We ask whether there is a continu-
ous function G: W— W' such that H*(W; Z,) = H*(Y; Z,), H*(W';
Z,) = H*(Y'; Z,) and G*|y, = g7 If such a function G exists we
say that g is realizable by G. The obstruction theory provides a
series of obstruection sets, <.(g), inductively defined and lying in
computable groups such that

THEOREM. There exists a function G:Y,, — Y, realizing g if
and only if 0€7,(g) for all n.

This result has been obtained independently by John Harper
using the unstable Adams spectral sequence where the obstructions
are not as explicitly identified.

In the first section we will provide a thumbnail sketch of the
Massey-Peterson theory providing details where they will be of later
use. The second section is a presentation of the obstruction theory
and in the third section we give the proofs of Theorems A and B.

The results in this paper include part of my Temple University
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doctoral dissertation written under the direction of Dr. James Sta-
sheff. I am grateful to him for his encouragement and guidance.

1. The Massey-Peterson theory. Let M e Z/ #. We define an
endomorphism A: M — M by Ay» = S7q" when p = 2 and Ay = "
and Ayt = BF”" when p is odd. Since A is an endomorphism this
induces an action of Z,[\] on M. We say that M is a free Nn-module
if M has a homogeneous basis over Z,[\] or equivalently if for all
xeM,»x =0 if and only if  =0. The fact that M is a module
over the polynomial algebra Z,[A] implies that submodules of free
A-modules are also free A-modules.

The important examples of free A-modules are MK(Z, n) and
MK(Z,, n) where r = p*for k = 1and H*(K(x, n); Z,) = U(MK(x, n))
for n > 1.

Using the map )\, we introduce a functor 2: % # — Z/ . # de-
fined by the rule (2M), = (M/»M),+,. For f: M — N, a morphism in
#.#, f commutes with the action of .%7(p) and so f(AM)C AN.
Thus 2f: 2M — 2N is well-defined. When =« is finitely generated,
by considering the Cartan basis one can show that QMK(z, n) =
MK(z,n —1). In the topological category, 2K(z, n) = K(x, n — 1);
this motivates the choice of notation.

ProPOSITION 1.1. If PL QS R0 is ewact in % A, then

Q2 J9)
QP—J: QQ—g.QRHO is also exact. In addition, if f is a mono-
morphism and R is a free N-module then 2f is also a monomor-
phism.

The theorem recorded below is due to Massey and Peterson [10]
for the case p = 2 and to Barcus [1] for p odd.

Let & = (&, p,, B,, F') be a fibration satisfying

(a) The system of local coefficients of the fibration is trivial,

(b) H*(F;Z,) = U(A) where Ac H*(F; Z, consists of trans-
gressive elements.

(¢) E, is acyclic and the ideal generated by the extended image
of A in H*(B,; Z,) under transgression contains all elements of posi-
tive dimension.

By the extended image of A we mean the set {y,}U{vy} in
H*(By; Z,) where v: A — A is defined v|, =0 and v|: = 8F" and
{y;} projects to a basis for the image of the trangression 7 in
H*(B,; Z,)/Q; Q denotes the indeterminacy of .

Let f: B— B, be a map and & = (E, p, B, F) the induced fibra-
tion. Suppose

d) H*(B; Z, = UR) and R is a free A-module,

() H*B; Z,)=UZ) and Z=Z,P Z, in Z.# and Z, is a
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free n-module, and
(f) f* H*(By Z,) — H*(B; Z,) is such that f*(R)C Z,.

THEOREM 1.2. (Massey-Peterson-Barcus). Given &, & and f: B—B,
satisfying (a) through (f), let Z' = coker fi: R—Z and R' = ker
f*|z, then as algebras over Z, H*(E;Z, = U(Z')Q U(LR') and as
algebras over .7 (p), H*(E; Z,) is determined by the short exact
sequence 1n Z A,

0—UZ") . N QR 0

* *

called the fundamental sequence for &, where i: F— E is the imclu-
sion and N is an 7 (p)-submodule that generates H*(E; Z,).

For a proof we refer the reader to [10] and [1]. The theorem
gives a clear picture of the mod p cohomology of certain fiber
spaces. This result will allow us to make certain topological con-
structions that carry useful algebraic information.

It is an easy consequence of a theorem of Cartan [3] that the
module MK(Z,, n) is the free unstable module on one generator of
dimension n. We also have that MK(Z, n) is projective in Z . #
and so we can talk of resolutions of a module in Z.#. Suppose
Y is a very nice space with H*(Y; Z,) = U(My) and 27 (My): 0«
Myt on“Xﬁ: -+ is a (not necessarily projective) resolution of
My, by modules which are direct sums of MK(z, n)’s for # = Z, or
Z, Using Theorem 1.2 we construct a tower of fibrations that
carries the algebraic information contained in 2°(My).

By a realization, & (2°(My)), of 27 (My) we will mean a system
of principal fibrations:

F, F, F, F

Is Ifa Ifz Ifl
¥ Ps E, Pt By o g By 3 By ) E,

[js L L'z Ijl

QF._, QOF., QF, OF,

that satisfies:

(1) E, and F, are products of K(x, n)’s that is, generalized
Eilenberg-MacLane spaces (9EMs)*

(2) H*(E,; Z,) = UX,), H*(F; Z,) = UX,) and H*(F,; Z,)=
UQX,). .

(8) Sl =dy Jfoft: 22X, — 2°X, is 2°d,.

(4) The fibration p:™* is induced by the path-loop fibration
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over f,.
(5) p.;:Y— E, is the composition pi. opifio---opi™op,.
(6) Plxy Xo— My is e.

By using Theorem 1.2 in the construction below we also obtain
(7) H*E,; Z,) = UMy QU(2%ker d,_,) as algebras over .o7(p).

THEOREM 1.8. Given Y, My and 2°(My) as above, there exists
a realization of 27 (My).

Proof. We construct & (27(My)) = {E,, »i*, F;, 7, p; Y} by in-
duection. Y—>E ?F comes for free because E, and F, are the ap-
propriate gEMs and maps between spaces and products of K(Z,, m)’s
and K(Z, n)’s are determined by morphisms in Z/ #. Construct
QF, ? B, 7F1 by pulling back the path-loop fibration 2F, — PF, —F'.

1 Y41

Clearly p! satisfies (a) through (f) of Theorem 1.2 and so we can
conclude that H*(E,; Z,) = U(coker f¥|,) @ U(Q ker f¥|;,). However
f¥=d, on X, and cokerd, = My. Hence H*(E,; Z, = UMy)Q U
ker d,) as an algebra over Z,. Construct p,: Y — E, as a lifting of
p, to the fibration; p, exists since (f,op,)* = eod, = 0. To obtain
the .97 (p)-algebra structure of H*(E,; Z,) we observe that the fun-
damental sequence for p? splits by the map »pf.

00— U(MY)ﬂN 2 Qkerd,—0

S

U(My)

Thus H*(E,; Z,) = UMy) ® U2 ker d,) as an algebra over .o7(p).

Now 0 —kerd, — X, — kerd, — 0 is exact from the resolution.
Since everything in sight is a free A-module, by Proposition 1.1,
0—-QRkerd, —» 2X,— 2kerd,— 0 is also exact. Using the splitting
of the fundamental sequence and the fact that F, is a gEMs, we
can choose f,: B, — F, such that (f,°7)* = 2d,

The inductive step simply repeats this procedure for f, to
obtain E,., and f,,.

The role of the space Y in this construction is vital since the
splitting of the fundamental sequence depends on the map p,: Y — E,.
This splitting will play a crucial role in the obstruction theory.

Recall that a graded module is n-connected if M, = 0 for k < n.
Let M be in ¥ # and 2°(M): 0<—M<—X<—XE~X<— -+« a3 Te-
solution of M in ¥ _#. We will call 22(M) convergent if 2°X, is
f(s)-connected for all s and f(s) — « as s — «. Using minimal re-
solutions and allowing modules MK(Z, ») in the construction of re-
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solutions we can guarantee the existence of convergent resolutions
for most Mez #.

Now suppose Y and M, are as above and 27(My) is a conver-
gent resolution of My. Note li_rp 2°ker ds_lcl_iin 2°X, = 0. Hence

lim H*(E,; Z,) = lim [UMy) ® U(.Qs“ker d,_)] = U(sMY). If we let p,=
lim P, Y —lim F, ‘be the inverse limit of the realization of & (My),
then X H *(lsim E; Z,)— H*(Y; Z,) is an isomorphism. Thus p.. in-

duces a homoi:opy equivalence (lim, K,),, = Y,,, where W, is the
mod p localization of the space W. In this way we can think of
a realization of a convergent resolution as a successive approxima-
tion to the space Y at the prime p.

2. The obstruction theory. In this section we will assume
that Y and Y’ are two very nice spaces with modules M, and M,
in Z.# such that H*(Y; Z, = UMy) and H*(Y'; Z,) = U(My.).
Let 22(M;): 0+ M, < X, < X, o and Z(My): 0« My, < XO’;?«
X/ Zl—' - -+ denote resolutions of M, and M, in % .#. Because woe
havé been liberal in our choices of modules to use in the construc-
tion of resolutions we need a definition that provides the analogue
of the defining property of projective resolutions. Suppose we have
a morphism g: My, — M, in Z 2. We will say that g lifts through
the resolutions 77 (My,) and 227(My) if there exist maps g.: X{ — X,
in % _# such that the following ladder commutes:

’

d di
0 My S X! e X1t

bk e

0 M,y X, y X,

If 22(M,) is already a projective resolution, then any map can be
lifted.

The focus of this section will be on the realizability of morphisms
in 22 #. The following theorem indicates the effect of a realizable
map on the realizations & (27(My)) and & (27(My)).

THEOREM 2.1. ([10]). Let k: Y — Y’ be a map such that k*(M,,)C
My and k* lifts through the resolutions. Let {k;}: 27 (My,) — 27 (My)
be such a lift. Then there exists a map @: & (27 (My)) — & (27 (My))
realizing the lift of k*, that is, @ 1is a collection {¢;: E, — E;,
F; — F}} satisfying the following:
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C.1A) f = U@Q77%k;): U X,) > U(2'X;). And the following
diagrams commute up to homotopy:

B -2 B oF, 2, oF:
2.1B) i l l’pﬁ_l 2.10) aj jj;-
E,_, —;;_7 E_, E; —¢;—’ E;
B2 m vy-*, v
|
(2.1D) fi+1l Ifi’H (2.1E) p. l 1?;
Fi+1—,¢:1_)Fi’+1 E’“TE:

This theorem illustrates the naturality (up to homotopy) of the
constructions we have introduced thus far. We record two corol-
laries to this theorem.

The maps ¢,: E, — E, induce morphisms 4%: N, — N, of the ex-
tensions in the fundamental sequences for the fibrations ’p2™* and
p27. In the proof of Theorem 1.3 we observed that N, and N, are
split extensions. We ask then whether the morphisms ¢} respect
this splitting. Combining 2.1D) and 2.1E) we get that [f,:,0 ¢, p,]=
[Vusi0fniio0,] = 0 in [Y, Fi]. Thus pFod¥o(fh+)* = 0 which implies
that ¢x(Im(f,+)*) Cker pf. By construction Im(f,,)* = 2"kerd,_,
and ker p¥ = 2"kerd,_,. Thus ¢;:Q"kerd,_, — Q"kerd,_,. From
2.1B) we obtain the following commutative diagram which implies
on: UMy:) — U(My).

Con ™%,
00— U(MY') — N,

1¢::_1 1 x

00— UM,) — N,
() (o )*

COROLLARY 2.2. The mappings ¢,: E, — K, induce morphisms
of split extemsion ¢%: N, — N,.

Now suppose that Y is a primitively generated mod » H-space.
The multiplication m: Yx Y — Y induces m*: UMy) — UMy B M)
such that m*(My)C M, P My,. From Theorem 2.1 and the primitivity

we have

COROLLARY 2.3. For Y a primitively generated mod p H-space,
the spaces K, are mod p H-spaces and the maps f,: E,_.,— F, are
H-maps.
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The next theorem obtains a partial converse to Theorem 2.1 and
provides the basis for the obstruction theory.

THEOREM 2.4. Let g: My, — M; be given such that g lifts through
the resolutions 27 (My.) and 7(My) and let {g;: X;:— X,} be such a
lift. Suppose 27 (My:) and 7 (My) are convergent resolutions and
O = {¢;: B, > Ei, o F; — Fi}: (27 (My)) — & (27 (My»)) is a map of
realizations satisfying 2.1A, B, C and D. Then there exists a map
G: Y, — Y, such that G*|y, = g.

Proof. Let E_=lim{E, pi™}, E., = lim {E], 'p:"'}. Applying a
< «—
theorem of J. Cohen [4] to the inverse systems of homotopy com-
mutative squares

’
Pat1 Pi+s

i
Y B B —5Ehy Y — Eiy
y ) o )
H lpil’l pﬁﬂl l’pil‘ ; 1! l’péﬂ
Y— K, E, — E; YV——T*ZQ
D- Pi p'b

we may choose maps P.. Y — K., p..: Y'— E., and ¢.: E_, — E. such
that the following diagram commutes up to homotopy

’

Poo Do

Y22 B, E. Y’
\ /
po\ l l /po

Eo ‘q‘)"’ Eé

If we localize everything in sight at the prime p we get

’

Poo Do , P ’
Y(p) Eoo(p) o (p) Y,

4
po\ l /po
Eo(m ? E(;(p)

where the maps are understood to be localized. By the assumption
that 27 (My.) and 2°(My) are convergent, p. Y, = K., and p.:
Y, = E.,,. Let ¢. denote a homotopy inverse of p. and define
G = q.op,°p.. This gives the diagram

G
Inm‘—“*:Y&)

n| |

’
Eo(p) EO(p) .

%o
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Now apply H*( ; Z,). From the properties of the mod p localization
we get the following commutative diagram in Zr_# after restrie-
tion.

g
o,_o’Xo

My g M

Since ¢ and ¢’ are epimorphisms, by cancellation we have G*|y,, = g.

Now fix a morphism ¢g: My, > My in % #. We will assume
that g can be lifted thorugh 27 (M;.) and 2°(My) and that the re-
solutions are convergent. Because we have taken the F; and F) to
be gEMs the lifting {g,: X — X} gives rise to a collection of maps
{vo;: F;, — F/} such that « = U(2°'g,). Theorem 2.1 motivates the
following

DEFINITION 2.5. Let v: E, — E,. We will say that v is an =-
realizer for g if

2.5a, for 0 <¢ < n there exists ¢,: B, — K| such that ¢, is an
i-realizer and (2.1B) holds. Also the following diagrams
homotopy commute:

B, B, oF, 2% o
2.5b,, ”3_11 jp::" 2.5¢, jnj la‘:,
E, -;:: B, E, —7—+ E,
E, - E,
2.5d, | |

Fn-l—l’,_‘: 1

From the definition of a realization of a resolution, everything
at the O-level is a gEMs and so the existence of a 0-realizer comes
for free. Suppose we have an (n — 1)-realizer ¢,_,. We now con-
struct a particular candidate for v an m-realizer. By 2.5d, there is
a homotopy H:E, , X I— F, such that H(x,0) = f,c¢, ,(x) and
H(x, 1) = 9,of(x). Recall that FE, = {(\ x)|nePF,,zcE,_, and
M1) = f.(x)} and E, is the analogous subset of PF, X E,._,. Define
v: E,— E, by Y\, ®) = (Mg, ¢._.(€)) where A, is the path

YaoM2t), 0 =t < 1/2

Ag(t) =
a(®) H(x,2 —2t),1/2<t<1.
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Since Mg(l) = H(z, 0) = f,(¢,-1(2)), iy, $us(2)) is in E, and so v is
well-defined. It is easy to show that v is continuous and satisfies
n—1I

2.5a,, b, and c,. The fundamental sequences of p2~* and 'p’* give
us the key to condition 2.5d,.

THEOREM 2.6. The obstruction to v being an n-realizer is the
class [friovep,] in 1Y, Fyul.

Proof. Consider the diagram of spaces
y B, E

fnw‘lj’ Jf;~kl

F,. 5 F,
nt1 1[)"':1 nt1 e

From the construction of a realization f,i,op, = *; if [for0vop,]#
0, 2.5d, has no chance of being satisfied. Suppose [f,+,°o7°p,] =0.
Then proy*o(f,+)* = 0 which implies v*((f7+,)*(2"X,+,)) is contained
ker p¥ly, = Q"ker d,_,. Since (f,.)#(2"X,,;) = Q"kerd,_,, it follows
that v*(Q2*kerd,_)c Q2"kerd,_,. By 2.5c¢, and the naturality of the
fundamental sequence we get the following commutative diagram:

(farD* ,
X = Qkerd,

X, — Q" kerd,_, .
(f’n'l'l)*
Since F,., and F,., are gEMs the commutativity of this square
implies 2.5d, and hence v is an n-realizer.
Observe that |Y, F,.,| = H*(Y; z.(F,..)); this with Theorem 2.1
gives

THEOREM 2.7. 7 is an n-realizer if and only if | fl.ovew,] =0
in H¥(Y; n (F,..).

The map v as constructed above was a single candidate for an
n-realizer. Since ’p»™': K, — K,_, is a principal fibration we can vary
v by the principal action p: QF, X E, — E;. That is, if {e[E,, E,]
and |'p2 o] = ["pov] = [#,_.o pr '] then there exists a w e [E,, 2F,]
such that [pto(wxv)ed] = [{] in |KE,, E,]. If { is a map obtained in
this manner from v and the principal action, then { satisfies 2.5a,,
b, and c, and hence Theorems 2.6 and 2.7 hold when < is replaced
by Z.

Suppose we are given an (n — 1)-realizer. Define I',: [E,, QF,| -
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[Y, F,4] to be the composite [E,, 2F,] ) [E., E.] Foa [E,, Foil e
[Y, F!.,] where Fq] = [go F] and F*q] = [Foq]. By the previous
paragraph the obstructions determined by all possible candidates

for an n-realizer for ¢ lie in the image of I, in [Y, F,;,]. Let
< .(g) denote the image of I,.

THEOREM 2.8. Given an (n — 1)-realizer for g, it extends to an
n-realizer for g if and only if 0e Z,(9) H*(Y, w,(Fpir))-

If an n-realizer exists for all », then by Theorem 2.4 we have
that ¢ is realizable. From this and Theorem 2.1 we conclude

THEOREM 2.9. g s realizable if and only if, for all n, 0 € Z,(g).

In [6] Harper proves that the principal action, y: QF, X K] — E,
is primitive in the following sense: If H*(¥E,; Z,) = U(N,) and y € N,
then #*(%) = 1® ¥ + (42)*(¥) Q® Lin H*(QF,; Z,) ® H*(H,; Z,). From
the definition of a realization of a resolution, the map f,.,°5,: 2F, —
F,,, is determined by 2°d,: 2"X,., — 2"X,. Since 2F, and F,,, are
gEMs, the map f,+, 0 J, determines a primary operation E,: H*( ;=x,
(QF))) > H*( ; m(F..)). Utilizing Harper’s result we obtain

THEOREM 2.10.  7.(9) is the coset [frriovop.] + EH*(Y; 7, (QF)))
in H*(Y; T(Faiy)).

Proof. Without loss of generality we will assume F,,, =
K(Z, m) and so take [f,.,] =v, a homogeneous class in N,. An
arbitrary class & in #,(9) may be written as the composite

YTE“TE”XE"WQF;XE’:—T)E’:T w1
n J: n+1

where w is in [E,, F,]. Thusé = [fano(w, v)odep,] = plod*o(w*®
v*)o p*(w). By Harper’s result we have

E=prodo(w* @YHNARv + (I)* X1
= proL* AL Qv*(W) + w*o(Ju)*(v) @ 1)
= pa(7*(v) + w* o (52)*(v))
= Py o7*(¥) + plow* o (§.)* ()
= [farovo D] + [fariodnowen,]
= [farev o] + Euwop,] .
If we let w vary over [E,, 2F,| = H*(E,; 7,.(2F,)) we obtain all of

the set ,(9). Hence we ecan write 7.(9) = [furo70D.] +
prE H*(E,, 7, (2F,). Now observe that pko-E, = E,op* because



384 J. MCCLEARY

primary cohomology operations are natural. Furthermore py takes
H*(E,; n,(2F,)) onto H*(Y; n,(2F,)). Thus we can write &,(g) =
[freovopr] + B H*(Y; w, (QF,)).

Observe that if =, is trivial on H*(Y; 7. (RF,)), then the only
obstruction to the existence of an n-realizer for ¢ is the class

[f;+1°7°p:]-

3. Applications. Itisa consequence of Borel’s structure theorem
for Hopf algebras that if Y is an H-space without p-torsion in its
integral cohomology then H*(Y; Z,) = A(® 41, * * *, Taone+s) Where dim
z, = r. For those primes for which Z** acts trivially on H*(Y; Z,),
Y shares the same cohomology as the space S, (Y) = S¥+'x...x
S*+t If there is a map S,(Y) —Y inducing an isomorphism in mod
p cohomology then, from the theory of localization, S,(Y), and
Y, are homotopy-equivalent and the mod p homotopy information
about Y is determined by the product space S,(Y),. If such a
map exists, we call the prime p regular for Y.

Now consider those primes for which &7 is the only element of
&7 (p) to act nontrivially on H*(Y; Z,). Mimura and Toda [14] have
introduced complexes, B,(p), which are sphere bundles over spheres
with cohomology H*(B,.(p); Z,) = A ®sm+1, PP Cm+). If P! acts non-
trivially we can ask whether or not Y “looks like” a product of
spheres and B,(p)’s at the prime p. More precisely, if H*(Y; Z,)=
A(xzmlﬂ, '-qumﬁn cty Lamgtyy 'gnxzmkﬂy Tompy gty *°*y Lomytr), then we wish
a map K,(Y)— Y which induces an isomorphism in mod p cohomo-
logy where K, (Y) = 1%, B, () X II5=4+, S**'. If such a map exists,
K, (Y), =Y, and we say that p is quasi-regular for Y.

We can translate these questions of regularity and quasi-regu-
larity into questions about the realizability of morphisms in % #
by observing that H*(Y; Z,) = A(%sm,4s, =+, Ton+) = U(My) Where
M, is a direct sum of modules Tr(2m; + 1) = {«,,,;+,} and MB, (p)=
{41y T Com, ). As unstable algebras, H*(Y, Z,) = HYK,(Y); Z,)=
U(My) so we can ask if there is a map R,: K,(Y),, — Y, which re-
alizes the map of modules id: My — M;. The existence of such a
map implies that K(Y), = Y, as desired.

The strategy of the proofs of Theorems A and B will be to
employ the obstruction theory to realize each projection from the
direct sum, My — Tr(2m; + 1) or My — MB,,(p) by a mapr;: S5 —
Y, or 7;: B, (p), — Y,. We then consider the composite map

2 +1 2 +1
R, Bml(p)(p) Koo XBmk(p)(p) XS x e x Sy
YaXYypx- XYy, —‘5"’ Y,
s

X o X X P X oo X7

where &Y, Yoy Ys, -, Ys) = (- (¥ %)+ ¥y)+ - +)- ¥, is induced by the
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multiplication on Y,. To see that R} is an isomorphism it suffices
to check Rj: H*(Y; Z,) — H*(K,(Y); Z,) on the indecomposables
(=the primitives in this case) to determine that R gives the ob-
vious isomorphism. Let w be an indecomposable in H*(Y,,; Z,).

Riu) = @r; Q -+ Qr¥(&l(w))

—_—'r;"®7.;®...@rg<§1®1®...®u®...®1>
l
sth place
=3 IRIR - QW - ®1),

Now observe that « is an indecomposable implies u € M, and without
loss of generality we may assume w is in the jth direct summand
of My. Since

r} = proj;: My — Tr(2m; + 1) or MB, (p) then r}(u)
w, if 1=7,
0, if i#7.

Thus Ry(u) = u, the corresponding class in H*(K,(Y)y; Z,) and we
will obtain the desired homotopy equivalence if we can realize each
projection My, — Tr(2m; + 1) or MB, (p).

Now suppose we want a map, W, — Y, to realize each pro-
jection My — N, where W, = S** or B, (p) and N, = Tr(@m, + 1)
or MB, (p). Consider those dimensions in which W, has nonzero
cohomology and those dimensions in which possible obstructions can
occur; these dimensions are calculable from knowledge of the direct
sum decomposition of M, and determination of certain modules in
convergent resolutions of the summands Tr(2m; + 1) and MB,, ().
If these two sets of numbers can be shown to be disjoint then the
obstruction theory implies that a map exists realzing each projec-
tion. With this in mind we provide the following table which lists
the dimensions in which an obstruction might occur when M, has
the appropriate summand. To obtain the table one would compute
the first few modules (X, X, X,, and X;) in a convergent resolution
of each possible summand. The calculations only involve a routine
application of the Adem relations and the unstable axioms and so
are left to the reader.

TABLE 1

Tr(3)-summand  Tr(2m+1)-summand MB;(p)-summand  MB,(p)-summand
& 4p—1,4p—2 2m+4p—3 4p—1 2m—+4p—3
7, 6p—4 2m+6p—5 6p—3 2m+6p—5
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Proof of Theorem A. Recall that the dimension of P4, is
r+2p-—-10. If

r = 2n, + 1 then r4+2(p—1) = 2n,+ 1+ 2(p—1) = 20,4+ 1+ 2(n—n,+1)
= 2n, + 3 + 2n, — 2n,
>2n +1

since n, < n, for all 7. The image of a primitive under the action
of .97(p) is also primitive and since all of the primitives lie in
dimensions less than or equal to 2n, + 1, then we can see that &
acts trivially on H*(Y; Z,). Thus H*(Y; Z,) = U(M,) where M, =
Tr@2n, + 1)P --- ETr2n, + 1).

Suppose we wish to realize a projection M, — Tr(2n, + 1) by a
map Sit'— Y. From table 1 we see that the lowest dimension
in which an obstruction may occur is 2n, + 4p — 3. The inequality
p=mn —n + 2 implies 2n, + 4p — 3 > 2n, + 1 and so any obstruec-
tion must vanish since the '(2n, + 1)-sphere has cohomology only in
dimension 2n, + 1. Hence there is a map Si;i*'— Y, realizing each
projection M, — Tr(2n, + 1). By the discussion in the beginning of
the section, this proves the theorem.

Before proving Theorem C, we first observe the following

LEMMA 4.1. If Y and Y' are modp H-spaces whose cohomo-
logy 1s primitively generated and if Y and Y' are very mnice spaces
and g: My — My, a morphism in Z .#, then the class [fyovop,]e
7(g) is primitive.

Proof. By Corollary 2.3, E, and E, are mod p H-spaces and f7
is an H-map. From 2.1E) we see that p: Y — E, is an H-map. It
suffices to note that v is an H-map. However this is clear since v
lifts the commutative square

B2 E,

it
and the assumption that Y and Y’ are primitively generated gives

that ¢, f1, f; and +r, are all H-maps.

Proof of Theorem B. The spaces B, (p) have nonzero cohomo-
logy in dimensions 2n, + 1, 2n;, + 1 + 2(p — 1) and 2(2n, + 1) + 2(p — 1).
When p =5 the spaces B,(p) are mod p H-spaces [12] and so we
need only consider primitives as 7, obstructions. The inequality
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2p > n, — n, + 2 implies that the first obstructions to realizing maps
M, — MB, (p) or My — Tr(2n; + 1) lie in dimensions larger than
2n, + 1 and hence vanish for dimension reasons.

Now observe that the inequality 2p > %, — n, + 2 guarantees
that the highest dimension in which a product class z, U %, can
occur is less than 6p — 6. Thus the 7, obstructions all vanish for
dimension reasons. Since any higher obstructions lie in still higher
dimensions, we have that any projection M, — MB, (p) can be re-
alized. Similarly any projection M, — Tr(2n; + 1) can be realized.
This completes the proof of Theorem B.

We add that more can be said when the mod p cohomology data
for Y is known. In [11] the author obtains results of Mimura and
Toda [14] on the quasi-regularity of primes for compact Lie groups
without the need of the restriction p = 5.
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