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HOLOMORPHIC MAPPING OF PRODUCTS
OF ANNULI IN C*

ERIc BEDFORD

Let 2,92, C* be bounded pseudoconvex Reinhardt
domains with the property that 2z, :---2z,#0 for all
2y +++,2,) €2;. A holomorphic mapping f: 2, — 2, is discuss-
ed in terms of the induced mapping on homology fy:
H,(2,R)—> H,(2,,R). Specifically, there is a norm on
H,(2,, R) which must decrease under fx. As a consequence
we prove that a domain £ as above is rigid in the sense of
H. Cartan: if f:2—> 2 is holomorphic and fy: H,(2,R) >
H,(2, R) is nonsingular, then f is an automorphism.

1. Introduction. Let A(R;) ={2¢C:1/R; < |z| < R;} be an
annulus in the complex plane. If f: A(R,) — A(R,) is a holomorphic
mapping, then the topological behavior of f is restricted in terms
of the moduli R, and R, (see Schiffer [6] and Huber [4]). With the
methods of Landau and Osserman [5] it will be possible to generalize
this result to certain domains which are (topologically) the products
of plane annuli. Domains satisfying (2) are also shown to be rigid;
see Theorem 2 and Remark 1. In [1] the homology group H,, , was
used to prove rigidity; here we discuss H,.

Let 2 cC™ be a complex manifold and let

Z ={ueC¥Q), 0 <u <1, w pluriharmonie} .
If ye H(2, R) is a homology class, then a seminorm on v may be
defined by
(1) N{v} = sup S d°u
wes J7T

where d° = (0 — d), (see Chern, Levine, and Nirenberg [2]). If
F:2,— 2, is a holomorphic mapping, then the map on homology
F.: H(2, R)— H(2,, R) must decrease this norm.

2. Computation of the intrinsic norm. We will compute this
norm for domains 2 C C* satisfying

2 is connected, bounded, pseudoconvex, Reinhardt (i.e.,
(2) (e, + -, e%2,)e R if zeQ and 6, ---, 0, R), and if
z€ 2, then z,---z, # 0.
Let @ C R* be the logarithmic image of 2, i.e.,
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w = {(El’ Tty E“)eRn: (351, Tty e5n)eg} .

Since 2 satisfies (2), @ is convex. Choosing a point { € 2, we define
v;€ H(2, R) to be the homology class of the circle 6 —((, ---,
e, -++,%),0=60 < 2. Thus {7, -, 7.} forms a basis for H,(2, R).
For u e &, we set

Wy, e, 1) = 1 Y” .. S%u(rlewl, e, @) d, - - - do, .
(@) 0

Since d° is linear and invariant under complex rotations,

ij d'u = Srj d°u’

for all ue #. Let F'={ue Fu=ulr, - ---,r,). We note that
every element of % ° has the form uw =¢ +¢,logr, + --- + ¢, logr,.
For u’e %, the function I(&, - -, &) = u’(e®, ---, ') is affine (linear
plus constant). A simple computation gives

S d°u°=S 0% \ 4, — 2 9L .
7§ 7§ a"’j 3&_.;

Thus we conclude that

— aI LY aI
Niasy, + -+ + a,7.} = 2x ls:agp <ala—&- + + a, 85,,>

where
F(w) = {l(&) affine: 0 < (&) < 1, fcw}.
We define the norm
I = maaxl — n;&inl
so that & is identified via the map | —1 — [(0) with I" = {l linear:
|I1]] £1}. Clearly I'= —I and I' is convex. Let R} denote the

Banach space R* with I" as its unit ball. By (8) the unit ball B of
H,(2, R) is

B={r= e |Nas 5 for & i <1}
J=1 J=1

3&:
which is 1/27 times the unit ball of (R})".

If w = —w, then (R = Ry, and thus B is naturally identified
in R? as B= (1/mr)w. If w is any convex set, then the convex set
@=nBCR" satisfies @®=—& and has the same unit ball, B, as ®. For
a general convex set w, we may assume that 0 c® and let p(¢) be
its support function, i.e., o(¢) is the distance from 0 of the hyper-
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plane which supports @ and has outward normal & It follows that

_ _ . 21/2 1
I'= {I(E) = Z 6:15:1' (Z C,) é (p(C) + p(_c))} :

In terms of the basis {dd,, ---, d6,}, I' may be identified as a subset

of HY(2, R), and so H*' inherits the dual norm. Thus, for each ac

H'(R, R) with a € oI, there exists v € H,(2, R) such that v-a = N{v}.
For we #, lel’, we will use the notation:

Lu(g) = u'(e’)
I() = L(log | ).

It is useful to know, given a homology class v € H,(2, Z), whether
there is an imbedded annulus @: A(R) — 2 such that ¢,(|z| =1) =«
and N{|z| = 1} = N{v}. We do not know this in general, but this
happens when w = —®. For integers m,, ---, m,, we define the map
@: A(R) — C* by @(t) = (z™, - -+, ™), and thus @,(|z]| =1) = 3, m;v;.
It is easily seen that p(A(R))cQ for log R = p if (um,, ---, tm,) € ®.
By the identification B = (1/7)w, we have

(4) N(0) = = = N{p.(0)} = N{Z m;v;}

KO
)
for ¢ =log R and pg(m,, ---, m,) €0w.

3. Extremal functions. To study holomorphic mappings we
will need to know that the function achieving the supremum in (1)
is unique.

PROPOSITION 1. If v is the homology class of {|z| = 1} in the
annulus A(R), then

_ log B|z|

u
2log R

is the unique function in F satisfying
(5) N} = Srd”u .
If ve F satisfies

cN{v} = Srd%)

then

1 Slev(reio) —u(r)|df = 41 — ¢)
2 Jo
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Jor 1/R < r <R.

Proof. The first assertion is well known. The idea of the proof
is that if ve.&#, and if {u > v} is nonempty, then the homology
class of 7' = o{u > v} is homologous to v. Thus if v satisfies (5),
then

Srd”(u — ) = &’ A —v)=0.

Thus /(w — ») = 0 on 7/, and by unique continuation, u = v on A(R).
For details, see Landau and Osserman [5], or [1].
For the second assertion, we consider the Laurent expansion

v(z) = cu(z) + ¢, + Re g(2)

where ¢g(z) = 3};.¢;#°. Since Re g(z) is a bounded harmonic function
on A(R), it has nontangential boundary limits a.e. on |[2| = R and
lz| = 1/R. 1t follows that

Szﬂ Re g(re®)dd = 0

for 1/R<r < R. Since ve.7, it follows that ¢, +¢=<1 and
Reg(z) £1—c¢—¢, for |2| =R; and ¢, = 0, Reg(r) = —¢, for |z| =
1/R. Therefore

1 S |Re g(re")|d0 < 2(1 — )
2r Jo

for » = R and r = 1/R. Since Reg is harmonic on A(R), this bound
holds for 1/R < » < R. Thus

1 27 . 1 or X
—S () — v@e?)|df < 1 — ¢ + ¢, + _S |Re g(e)| do
2T Jo 2w Jo

whieh gives the desired estimate.

PROPOSITION 2. Let Q2 satisfy (2), and let v€ H(2, R) be given.
If u satisfies (5), then u(z) = u(z) for all 2€ Q2 such that log|z|
belongs to the convexr hull of {£e€odw: Lu(&) = 0 or 1}. In particular,

if
there exist
P, p.€®, Lu(p) =1, Lu(p,) = 0
(6) ¢c=1(y, +++,C,) = D, — D, and the
set {¢,, - -+, ¢,} 18 rationally
independent
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then wu(z) = u’(z) for all z€ L.

Proof. Let us begin by recalling that Srd”(u" —u) =0 for all
ve H(2, R). Thus there is a holomorphic functionf € £°(2) such that
u = u® + Ref. If the first part of the proposition is proved, then
it follows that Re f(2) =0 on S={ze2:log |z| = Ne, M€ R}, if p,= 0.
If (6) holds there is a one-dimensional complex manifold M =
{(ze1, -+, 7»): 7€ C} N 2 which is dense in S. Since M is complex,
it follows that f =0 on M. Thus f =0 on S, and so f =0 on Q.

Now we establish the first part of the proposition. Let p,, », €
ow be such that Lu(p,) = 0 and Lu(p,) = 1. Without loss of generality
we may assume that p, = —p,. We first consider the case where
the ratios ¢;/c, are all rational. Thus there are integers (m,, ---, m,)
such that ¢; = um; for some e R. The mapping ®,(t) = (™, ---, t™)
maps the annulus A(e”) into 2, and the logarithmic image of @(A(e*))
is the segment (p,, p,). It follows that u(®) and u%®) both satisfy
(5), and thus by Proposition 1 u(®) = u’(®) on A. Since this argu-

ment applies to all mappings @(7) = (e*ic™, - .., ¢*“»z™»), we conclude
that w(z) = u°(z) for all z such that log |z| € (p,, D).
For general ¢, we may take a sequence {c*}, ¢’ = p,(mi, ---, ms3),

U, € R, micZ such that +c¢°c® and ¢* converges to p,. As before
we set @, = @,: Al(e*s) — 2. Thus

s
wip.) = DEEUEL 1 o

where ¢(s) is a function on A(e*s) such that

{{qjlle(S)ll = 0 (here [[e(s)|| = sup [e(s)]) .

acets)

If o is the class of {|z] = 1} in A(e*s) then
| duie) = @ — Il NG} -
Since

S d'u = S du’,
(95)x0 (0 )xa

we have
| aue) = @~ s DN} -

By Proposition 1, then,
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2
e — wip.))do = 4l
2 Jo
Clearly the same holds if @, is replaced by @(v) = (eiz™, ..., ¢'ng™n)
with 6, ---, 6,€R.

Finally we will show that w(») = u’(») for » = x¢, 0 <N < 1. If
this does not hold, then there exists 6 > 0 such that |u(z) — u°(Jz])| > o
for all 2z such that |z — 7| <d. Now we may cover the set T =
{ze:|z;| = r;} with K balls (K large) of radius ¢ and centers
Qy, -+, 9x€T. At least one of these balls has the property that

27” < measure {0 < 0 < 27: |p,(0e*) — q;] < 6},
where ¢,(0) = r. Denote Arg (q;) by (44, -+, ). It follows that

| 1u@t00) — wr)ds

= 0 measure {0 < 0 < 27: |P,(0e?) — r| < 0} = 2;{0
where ¢, = (e""ir™, ... ¢ *War™s), Sinee this contradicts our previ-

ous estimate, we conclude that u(z) = ') if |z] = », which was
what we wanted to prove.

PROPOSITION 3. Let w C R" be a bounded convexr set. Given
ceR", ¢+ 0, there exists u €. F, D, D, €0w such that p, — p, = \c,
MeR, and Lu(p;) =37 for j=0,1.  Furthermore, there exist
Uy ** =, Uy €F satisfying (6) and such that Lu,, - - -, Lu, are linearly
independent.

Proof. Let us first suppose that dw is smooth and strictly con-
vex. Let a:S"'-— 0w be the Gauss map, i.e., the outward normal
to ow at «a(g) is £&. Consider the map B: S — S*™* given by

) — a(—g)
B = T —a=a]

Clearly B(¢) - £ > 0, and thus 8 has degree 1, so that 8 is onto. Let
& be a vector such that B(¢,) = ¢/|¢|. Then we take p, = a(g), », =
a(—&), and grad Lu = 5(8).

For general @, we take an increasing sequence {w;} of smoothly
bounded strictly convex sets. If u?, p{, p{ have the desired proper-
ties on w;, we pass to a convergent subsequence to obtain u, p,, ..

Now we show that we can obtain the family {u,, ---, u,}. Let
us suppose that we have found f{u,, ---,u;} with {Lu, ---, Lu;},
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1< j<n, linearly independent and satisfying (6). Pick ce
Ne<; Ker Lu,, ¢ # 0. It follows that if w;., satisfies the conclusion
of the first part of the proposition, then {Lu,, ---, Lu;,} are linearly
independent. Now we perturb ¢ slightly so that (6) is satisfied and
the set is still independent.

4. Application to holomorphic mappings. Let F: 2, — 2, be
a holomorphic mapping of domains satisfying (2). Then by the
integer matrix 7T, we will denote the map on integral homology
classes F, = T;: Z* — Z" in terms of basis {v,, ---,7.}. It follows
that T.(B,) C B, and T:(I",) cI',, where T, is the transpose of T,,
and T, gives the action of F* on H'. If I(§) = 3 ¢,&;, then F*dl
represents the same cohomology class as Th(c). Writing u(z) = [(F(z))
we have Lu(&) = Ty(c) - &.

THEOREM 1. Let 2., 2, satisfy (2), and assume that ®, = —w,,
w, = —®, Let T be an n X n matrixz with integer entries. There
exists a holomorphic mapping F: 2, — 2, with T, = T if and only
if T(w) Cw,. Furthermore T(w,) = w, (i.e., F, is an isometry) if
and only if F is a proper covering map, and in this case F has
the form

F(z) = (e'12h, e'lngin)

where 6, ---,0, <R and t,, --+,t, are the rows of T.

Proof. Let F:Q,— 2, be given. Since F, must be norm-
decreasing, and since 1/zw; = B;, it follows that T(w, C w,. Con-
versely, if T(w,)cCw, we set F(z, ---, 2,) = (&%, ---, 2»). Ex-
ponentiating the inclusion T(w,) C ®,, we obtain F(2,) C Q..

Now we assume that T, is an isometry, and let {u, ---, u,} C
Z (2,) be the set constructed in Proposition 8. We may assume
that d°u;eol’, so there exists {v, :---, 7.} C H, (2, R) such that
N{v;} = Sr_dvuj. Now we pick ul, ---,u,c.7%(Q,) such that the

cohomologgr class of d°u; is the same as F*(d'uj;). Thus
|, dws = Nev) = NiF) = | Fraeus)
Since F' is holomorphic,
|, Frau) = | awm .

Since u; satisfies (6), we conclude by Proposition 2, that u; =
w;(F'). This gives n independent equations which have the form
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g. ci;log |z, = ;‘;1 ci;log | Fi(z)|

for j=1, ..., n. Thuslog|F,z)| = X, a;;log|z;],7=1, -+, n. Since
T =T, it follows that a,; = ¢,;, and so F has the desired form.
Thus

oF, _ t;

St = .LJF

az_,,' 2j ¢

so that det (0F,/0z;) = (I]i-. Fi/z,)det T = 0. Since T(w) = w, it
follows that F is in fact a covering map and is proper.

Conversely, we shows that if F'isa covering, then F', is an isometry.
We consider first the one-dimensional case f: A(R,) — A(R,), where f
is a d-to-1 covering. If @: A(RY%) — A(R,) is given by @(z) = 2¢, then
taking a suitable branch of @ (f) we obtain a biholomorphism
between A(R,) and A(RY?). Since R, = RY¢, f, is an isometry.

For the general case, we consider integral homology -classes
v =S, myv;e H(2,, Z). Let @:A'— 2, be an imbedding of an
annulus so that ¢.(¢) =+ and (4) holds. If we set A = Fp4’),
then F|,: A — @A’ is a covering. F' is proper, so F~v' is a closed
curve in £2,; thus A is a 1-dimensional annulus and so (F,), is an
isometry. We let ¢ be the generator of H,(4, Z), and we let v = v,
be the induced element of H,(2,, Z). Thus F.(v) = v, and so N{y} =
N{7'}. On the other hand, since 4 < 2,,

N{y'} = N{o'} = N{o} = N{v},
and so N{v} = N{F,(v)}. Since this holds for all integral classes in
H(2,, R), it follows that F, is an isometry.

THEOREM 2. Let Q,, 2, satisfy (2). If F:2,— 2, is a holomor-
phic mapping such that F: H(Q, R)— H,(2, R) is .an isometry,
then F is a covering map of the form

F(Z) = (Clztly Tty c'nzt")
where ¢y, -+, ¢, €Cand t,, -+, t, are the rows of Tr. In particular,

if 2, =2, and F, is nonsingular, then F is a biholomorphism.

Proof. We repeat the appropriate portion of the proof of
Theorem 1 and conclude that if F, is an isometry, then

Coj+gciilog}zi| =c§,~+éc§,~log|Fi(z)|
forj =1, ---,n. Thus|F;2)| = b;|2|" -+ |z,|*, and so F' has the

desired form sinece F, = T,. As before, det (0F,/0z;) # 0. To show
that F' is a covering, we show that F' is proper. We have already
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shown that F(z) = (c,2%, -- -, ¢,2'*) and so for V'el, LV'(F)el,, We
set Uj(2) = supieor,; [(2). By the convexity of ®;, U, is an exhaus-
tion for Q,:02; = {ze 2;: U;(z) = 1}. As was noted above,

T.0' = V'(log | F'))
for I'el’,. Since F, is an isometry, F'*I", = I'}, and so
Ul(z) = Uz(F(z)) .

Thus F' is proper.

In case 2, = 2,, then F,B, C B,. Since T has integer coefficients
and is invertible, det 7, = 1. Thus T, preserves volume, and so
TyB, = B,. The inverse mapping is easily constructed as G(z) =
(¢, ---, ") where {; = z;/c; and s; is the jth row of the inverse
S=7T"

REMARK 1. It follows that domains satisfying (2) are rigid in
the sense of H. Cartan [2]: if f: 2 — 2 is holomorphic and induces
a nonsingular mapping on H,(2, R), then f is an automorphism. By
topological considerations, it follows that if f, is nonzero on the
generator of H,(2, R), then f, is nonsingular on H (2, R) and is thus
an automorphism. If 7 is a complex 1-dimensional torus and if
DcCis a disk, then T x D is a complex manifold homeomorphic
to A(R) X A(R) but is not rigid. We would expect, however, that
a bounded domain in C”, homeomorphic to A(R) x --- x A(R), would
be rigid.

REMARK 2. The problem of finding nontrivial automorphisms
(i.e., other than z — (¢'%1z, ---, ¢'’»2,)) of domain satisfying (2) is thus
reduced to finding T eGL(n, Z) such that TB = B. For instance, if
1<p< o, this argument shows that the automorphisms of the domain

‘Q — . = lz.vl ?
= {zecn 3 (10g121) <4}
j=1 R,’
are generated by the nontrivial automorphisms z — (2, - - -, 27, - -+, 2,,)
and z; — 2, if R; = R,. Since a “generic” norm on R" does not have
any nontrivial isometries, a “generic” domain satisfying (2) has only
trivial automorphisms.

REMARK 8. Let us consider domains satisfying (7) for some
fixed j:

2 is connected, bounded, pseudoconvex, Reinhardt, if ze 2,
(7) then 2z, ---,2; #0, and there are points P, ---, P,e2
such that the kth coordinate of P, is 0.



280 ERIC BEDFORD

Let p: C*— C? be projection onto the first j variables, and set 2, =
p(2). Looking at the logarithmic image of 2, which is convex, one
may deduce that 2, x {0} £ 2. By the norm-decreasing property of
inclusion 1: 2, — £ and projection p: 2 — 2,, it follows that 7, and
P, are isometries of H,. Thus the norm of a domain satisfying (7)
may be computed in terms of 2, which satisfies (2).

REMARK 4. The following observation extends Proposition 2.

PROPOSITION 4. Let Q satisfy (2), and assume that for each
D EOw there 1s a unique supporting hyperplane at p. Then for
each homology class ve H(Q, R) there is a unique function u €. 7 °

such that Nfyt = | dw.

i

Proof. We show that the [€ & which achieves the supremum
in (3) is unique. Suppose, to the contrary, that [, [,€ & have this
property. Then so does [ = (I, + [,)/2. Since [ is extremal, there
must be points p’, p”’ €ow such that I(p’) =0 and ((p”) = 1. Thus
we must have [[(»"”) = L(»”) = 1, and so the half spaces {&: (&) =< 1}
and {&: (&) £ 1} both support w at p"”. By assumption, then, I, is a
multiple of l,. Since [(p') = L(»") = 0, it follows that [, = I,, which
completes the proof.

ExampLe. If Q = A(R) x A(R), then the homology class v =
v, + 7. has norm w/log B. For 0 <\ £ 1, the function

_1

Tog R(N log |z + (1 — \) log |2,])

U, =
belongs to .# ° and satisfies (5), and so the extremal function is not
unique.

A slight modification of the proof of Proposition 4 shows that
uniqueness holds if v = 3} ayv; does not have the property:

if ¢, > 0 is such that t,acol’,
(8) then there is a segment I Col’
containing ¢,a with I L a .

Clearly there is a dense subset of H, where (8) does not hold.
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