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THE TWO-DIMENSIONAL ANALOGUE
OF THE CATENARY

REINHOLD BOHME, STEFAN HILDEBRANDT,
AND ENGELBERT TAUSCH

In this paper we consider the following isoperimetric prob-
lem: let I” be a prescribed Jordan curve in R3. Determine a
surface of given area spanning /", which has minimal potential
energy under gravitational forces. This will be of importance
for the construction of “perfect domes.”

1. Introduction. Ever since the derivation of the law of re-
fraction light by Pierre Fermat in 1662, the one-dimensional problem

(1.1 Sw(w, ¥, 2V dx* + dy* + dz* — Extreme

has been of great interest. According to Fermat’s principle, this
variational problem governs the propagation of light in an isotropic
but inhomogeneous medium where » = 1/w is the velocity of the light
particle. On the other hand, the motion of a mass particle in a
conservative force field grad U can also be described by an extremal
problem (1.1) where @ =V"2(U + h), according to Maupertuis’ principle
of least action as it has been formulated by Jacobi.

As is well known, the modern history of calculus of variations
started with the brachystochrone, the problem of quickest descent,
proposed by John Bernoulli in 1696 [2]. It consists in minimizing
the integral
(1.2) 517171/@2 Tz
which is a special case of the integral
(1.3) S oz, 2V 3+ A

treated by Leonhard Euler in his classical treatise “methodus
inveniendi lineas curvas ---” in 1744. In particular, he dealt with
the cases w(x, 2) =1, 1/V'x, xz, o, (& + 29", 2*/z", N + 2.

An excellent discussion of these and of other important examples
can be found in the well known lectures by Bolza [5].

The integral

(1.4) S zVde +dzt2, 2>0,

leads to the celebrated problem, to determine the surfaces of revolu-
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tion minimizing area. The regular extremals of (1.4) are the
catenaries

r—x
2 =acosh<——°) .
a

They are closely related to the following isoperimetric problem:
What are the curves of given length connecting two points P, and
P, in the =z, 2-plane which have the lowest center of gravity?
Introducing a Lagrange multiplier /¢, one is led to the problem

(L.5) S (¢ + V& T d& —> min

which, clearly, can be reduced to the minimization of (1.4). Thus

the catenary describes also the equilibrium position of a heavy chain.
The two-dimensional analogue has only recently found some

interest although the nonparametric version

(1.6) S o, y, 2)V'1 + 2¢ + 22 dedy — min

had already been considered by Jellett [16] in 1850. To our know-

ledge, the first existence results for (1.6) with nonconstant @ are

due to Tausch [20]. Let us now consider the parametric problem

. S ®@)| 1. X 1.|dudy — min

for z = g(u, v) = (x(u, v), y(u, v), 2(u, v)). Introducing conformal
parameters, #, v, we have

. X 5| = %{xi + 3}
while in general,
1,
L, X 5| = —Z—{x.; + 13-

Hence, we may replace (1.7) by the Plateau problem for the
generalized Dirichlet integral

1.8) @) = | o) 7z dudo

belonging to the special metric
1.9) ds®* = w(x) |dg > = w(){dx* + dy* + dz*} .

It is a special case of the Dirichlet integral
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(1.10) S 0w + vieidudy .

The Plateau problem for this functional has been solved by Morrey
[18] (cf. also [19] and [15]) for a fairly large class of positive definite
metrics

{1.11) ds® = g,;(0)dxidx’ .
The conformality relations associated with (1.10) are
(1.12) 9wl = gl s guwe] =0 .

However, for important examples, the metric ds® is only semidefinite,
or even indefinite. For instance, the two-dimensional analogue of
the catenary problem (1.4) leads to

(1.13) S 2|7y Pdudv — min .

To get a regular problem we have to restrict the surfaces to
the upper half space {# > 0}. That is, we have to minimize (1.8) or
(1.10) under Plateau boundary conditions as well as under obstacle
conditions. A general approach to obstacle problems for (1.10) has
been given in [21], [15], [13], and [14]. In the present paper, we
shall treat obstacle problems for (1.8), and, in more detail, the
obstacle problem z > 0 for (1.13).

Professor Frei Otto suggested to us the following isoperimetric
problem: Let I' be a preseribed Jordan curve in R®. Determine a
surface of given area spanning I°, which has minimal potential
energy under gravitational forces, that is, a surface having the
lowest center of gravity.

Hence, we look for a mapping r: &% — R® of the closure of the
unit disc in a w, v-plane into R°, which maps 6.7 monotonicly onto
I, such that

S‘K 2lt, X L, dudv
assumes a minimum while the value of
S,. L X 4| dudv
is a prescribed number.
Introducing a Lagrange multiplier £, we can replace this problem

by the following simpler one:
Minimize
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(1.14) Sg & + 1|5, X 1| dudo

among all surfaces 3: < — R® spanning I, and such, that z + ¢ > 0,
Using the argument mentioned in connection with (1.7) we can
replace (1.14) by

(1.15) L (z + t)|Fz|*dudv

which, by an obvious coordinate transformation, leads us to the
problem (1.13).

In the following, we shall concentrate on the discussion of this
variational problem which, according to a remark by Professor Frei
Otto, will be of importance for the construction of “perfect domes.”
We wish to thank him for proposing this question to us. Further-
more, we are very grateful to Prof. Ernst Holder, who drew our
attention to the variational problem (1.7) and to the formula (2.13),
which had been derived for the nonparametric case by Jellet [16].
The analogue for the one-dimensional problem (1.8) is due to GauB
(cf. [4], pp. 84-85).

Outline of the paper. In §2, we discuss the Euler equations for
the variational integral

(1.16) S 0@ 7e P dudy .

In §8, we list the existence and regularity results for the
solutions of the Plateau problem for (1.16) with an obstacle as addi-
tional side condition. A variant of the maximum principle due to
Chiceo is presented.

In the following three sections, various inclusion theorems for
the solutions of obstacle problems for

1.17) g 2| 7x P dudy

are derived. These inclusion theorems yield conditions guaranteeing
that the solution surfaces do not touch the boundary of the obstacle,
and thus that they satisfy the Euler equations of (1.17) at all points.
Therefore, the solutions are the perfect two-dimensional analogues
of the catenaries. Combining the variational approach with a con-
structive method, say, with the finite element method, it should be
possible to compute the solutions. The inclusion theorems yield a
general impression of the shape of the solution surfaces. Most of
the inclusion results are derived from Chicco’s maximum principle,
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except for the results of §6 which are based on a technique due to
Allard [1], and Michael and Simon [17].

We conclude our discussion with a remark on “perfect domes.”

For useful suggestions and remarks, we wish to thank professors
E. Giusti, R. Finn, E. Holder, K. Steffen, and H. C. Wente.

2. The Euler equations for Sa)(x)lVg;Pdudv' The Euler equa-
tions for the integral (1.8) are

2.1 0.{2w(2)0,x} + 0.{20(x)0.x} = @'(x) |7y *
where
au:'é%; av:g;—)r a)':(og:gradéa).

For the sake of simplicity, we write @ instead of w(x) or woy,
similarly @’ instead of ®'(y) or w'ox, etc., whenever no misunder-
standing can occur. Equation (2.1) is equivalent to

(2.2) 2wdy = @' |Vy P — 20,.{xix, + xit.} , J=123,
or

L . {w' } {w' s
2. dr ==L P - 1E. — 4 ety
(2.3) L 2wlm 5 Dk PR

Introducing the vector valued funection

wl

(2.4) k= — = grad,log ®
o)
we can rewrite (2.3) as
(2.5) s = ThIPEF = (- 2z — G-,

The conformality relations (1.12) reduce to
(2.6) =%, Lt =0.
In virtue of (2.6), and of the identity

(2.7) 3 X (axb) =@ -ba—@G-ab

which holds for arbitrary vectors 3, a, b e R?, we obtain

@8 o B n] = B IR ol x B + SR,

U ST I
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and
[xu X ?':1:] X k= (k * gu>gv - (IC : z"v)gu ’

whence

[xe X 8] X ([z. X 2] X k) = (k- x)lx. X 1] X 1,
— (k- )L X L] X La

= (e xx + (-2 EIPx
and therefore,

(2.9) %ﬁﬁwqumxm=~mﬂm—Mmmw

[T X 1.

By (2.8) and (2.9),

. gu >< ]':'v - —_ _1_ 2 — . — . N
(2.10) {k Texel Xm}[xu X T, P ek — (k- x)t, — k-1, .

Defining the surface normal N by

(2.11) fNo= L XL
[Xu X 3]

the Euler equation (2.1) takes the form

(2.12) Ay = (k- Wz, X 5] -

On account of (2.6), equation (2.12) shows that the extremals

L = x(u, v) of (1.8) are surfaces with mean curvature
oy 1 1 0

(2.13) () = zlc(x) N = Ea—%loga) .

Hence, we have the following interpretations of (2.1):

(1) The extremals of (1.8) are minimal surfaces with respect
to the metric (1.9).

(ii1) The extremals of (1.8) are surfaces having the mean curva-
ture (2.13) depending on the position vector r as well as on the
surface normal Jt.

According to these two interpretations, different maximum
principles can be derived.

3. Existence and regularity of solutions of the Plateaun
problem for S () |[VyPdudv. Let .2 be a closed set in R’, which
is the closure of%) its interior, and suppose that @ = w(y) is a funection
of class C¥ %, R) with w(x) = ¢ >0 for all xe.27 By [’ we denote

?
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a closed rectifiable Jordan curve contained in int .27 Define the
class &(I") by

CN): = {x € H(<Z, R®: t(u, v) € 2 for almost all (u, v) e <&, and

1:0% — I' is a weakly monotonie, continuous map of
0<% onto I'}.

For re@&(I"), we can define the integral

Jw) = | o@|rskdudo.

THEOREM 1. There exists a solution x€&(I") of the wariational
problem

B): J — min on (I .
Every solution of P(I") satisfies a.e. on <& the conformality relations
ﬁt :Ii,Zu'gv =0.

In addition, if ¢ is quasiregular (cf. [15]), each solution of P(I")
1s Holder continuous on <7, and continuous on 2.

Proof. The result can be proved by a technique due to Morrey.
A complete proof is presented in [15], in particular, pp. 198-200.

THEOREM 2. If 5 is a quasiregular set of class C*, each solu-
tion of PU) is of class H2. N CY*(Z, RY), for all s€[l, «), and
for all ¢ €(0,1).

Proof. Cf. [13, 14, 20].

THEOREM 3. If I' is a regular curve of class C*!, 0 < g < 1,
and 27 1is quasiregular and of class C°, each solution of P(I") s
of class HXZ, R®) N C**(<Z, RY), s€[l, «) and ac(0, 1), and it is of
class C** in a sufficiently small strip around 0.<7.

Proof. Because of Theorem 2, it suffices to prove the last state-
ment. Since I' is assumed to lie in int.97] and since 1€ C°(<Z, R
in virtue of Theorem 1, r satisfies the Euler equation for J in a
sufficiently small strip around 0<Z. Then, [11] can be applied.

In the following, we suppose that the assumptions of Theorem
3 are satisfied. For a solution 1 of PB(I"), we introduce the “touching
set”
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T ={(u, v) € Z" t(u, v) €0F%},

which is mapped by r onto the boundary of .27 and its open com-
plement

By=F — T

which is mapped into int .57
On %, 1(u, v) satisfies the Euler equation

3.1) dy = %mmﬁ — o zr, — (o- 21,

where

’

k= % o' = —grad, ® = grad, log @

g~

or, equivalently,

3.2) dy = (k- Wz, x 1l on .
But on .7, g(u, v) satisfies a.e. the equation
3.3) 4y = 22270t X 1]

when S7°*(x) denotes the mean curvature of 0.2 in the point .
In particular, we have

(3.3") 4; =0 a.e. on 9

where 0.9 is a plane.
To each solution y of B(I"), we form the linear operator

L=4+4
where
A = a(u, v)o, + b(u, v)o,
and where
a(u, v) = k@, V)r.(u, v),  bu, v) = kx(u, v).(u, v) .
That is,
L =4+ {kQ) - tJou + (k) - 5.}0, .

Because of Theorem 8, the functions a and b are certainly of class
L*(<#). The Euler equation (3.1) can now also be written as

(3.4) Ly = %k(zOle,P :
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By an observation due to Chicco, H}(<Z, R)-subsolutions of L satisfy
the strong maximum principle, i.e., if ¢ ¢ H}(<Z, R) fulfills

(3.5) SWmV¢+Am¢wmw§0fmau¢eﬁ%@unwﬁh¢go,

we have

(3.6) supo < supo,
=4 om

and sup.;» 6 = sup. ¢ for some ball <2’ C C <% implies that ¢ = const
a.e. on &Z. (Here, sup means the essential supremum; cf. [6], and
also [8], Theorems 8.1 and 8.19, pp. 168 and 188-189.)

This maximum principle can also be formulated in the following
way:
LEMMA 1. If we have o € C(<Z, R), and
Lo =0 a.e. on &,
then
max o = maxo,

and o assumes its maximum on B in an interior point of & if
and only if o = const.

REMARK. Note that each composition ¢ = foyg of the considered
solution of P(I") with a C*(2; R)-function f is of class C(<Z R) N
H3}(<Z, R) by virtue of Theorem 3, so that we can apply the lemma
to such a composition.

4, Inclusion theorems for the solutions of (/") when J(¥) =
S 2|Vy’dudv, and when % reduces to {r:z >¢}, ¢ >0. Let
o(t) = z, thus, ' = (0, 0, 1), and

4.1) k@)z(&O,%).

Suppose that
(4.2) O ={z2z=¢}, e>0,

and that I"c{x:z > ¢}.
Let ¢ = x(u, v) be a solution of (/). The associated operator
L =4+ 4 is now given by



256 R. BOHME, S. HILDEBRANDT, AND E. TAUSCH

(4.3) a =%, b=2,  A=qd, + b, .
z z

(Note that 2z, = 2, = 2,, = %4, = 2,, = 0 a.e. on .7)

Furthermore, by (3.3) and (3.4), we obtain that the Euler (in)-
equalities take the form

dx = —%{xuzu + ,2,}
(4'4) Ay = __i.—{yuzu + yvzv}

Az

ll

—l{zi + 23} 4——1—|I7zr_l2 on <5, =0 a.e.on ..
z 22

Equivalently, we have

dx = —Ax
(4.5) dy = —Ay

Az=—/1z+-2}—ll7;,|2 on <%, =0 a.e. on U .
2

By (3.2), this can be written as

1
A = - ,
v W ¢
1
4.6 Ay = —— 7.
(4.6) V=T n-C,
Az:%—-éz on &, =0 on o,

if W =0, where

L.XL=¢n0, and

@D W=l X5l =VE+py+{ =%le!2 = =x.

Clearly, the third equation of (4.6) implies that 2z is subharmonic on
% whence

(4.8) z(w, v) = maxz for all (u,v)e<Z.
0B

This follows also from the third equation of (4.4) by means of the
conformality relations. In fact,

L=, Lt=0
implies that
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1, =0, where we have set r, = %(xu — L),

whence

(4.9) Vel = [Fel* + [Fyl* .
Therefore,

(4.10) Va2 = -—;—l Vel

whence, by (4.4),

42=0 on 2.
Furthermore, let us introduce
(4.11) (u, v) = (x(u, v), y(u, v), 0)

which is the orthogonal projection of x(u, v) onto the plane {z = 0}.
Then, (4.9) becomes

(4.12) [Pzl < |Pe]? in &2,
and, secondly, we infer from (4.5) that
(4.13) Lr=0 in <#.

Hence, 1(<%) is contained in the convex hull B, of the cylinder
Br: = v X {z-axis}, v being the orthogonal projection of I" onto the
plane {z = 0}.

Combining this result with (4.8) we arrive at the following first
inclusion theorem:

THEOREM 4. Let t(u, v) be a solution of the variational problem
B(I"). Then, for each (u, v) € &, the point L(u, v) 1s contained in the
cylinder int 8, N {(zx, y, 2): ¢ = 2 < hy} where

(4.14) hr = max {z(u, v): (u, v) € 0.7}

denotes the maximal z-component of I'.

Next, we note the identities

(4.15) Ap* = 2pAp
and
(4.16) Ap* = 2|V @|* + 2pdp

holding for arbitrary functions @ € C¥(<# R). Let g, = (x, ¥, 2,) be
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an arbitrary constant point, and let 1, = (%, ¥, 0). On account of
(4.5), a straightforward calculation shows that

4.17) Lt — 1) = 2|/t

and

2|7z* + Z "2 \prr on <,
(4.18) L(z — z))* = 2

2|7z a.e on 7.
Hence, for some real parameter ¢ > 0,
Lit = + 26 —

}—z—;—zww on G,

(4.19) 5
=2|Vr12+;;{7z12+{02

0 a.e. on 7 .

Suppose that 2, >0, 0 <e¢ <2, and that 2¢* + 1 — z/2 =2 0. Using
(4.12), the right hand side of the inequality (4.19) can be estimated
from below by

%’:cz +2 — -zl]lelz or 0, on <%, or on .&, respectively.
c z

Thus we infer

LEMMA 2. If 0<e <2< 2, and if zje < min{2¢ + 1, ¢* + 2},
then

L{(t — 1) + lz(z — zo)z} =0 a.e. on .
c

Next, we consider the composition
0= (r — 1) — —:?(z — 2,)°
fore¢ =1and z, = 0. Using (4.12), (4.17), and (4.18), we obtain that
Lo = -;—2;(02 —DFP=0 on .,
and that

Lo = 32[02 o4 %]]Vzlz ae. on .
C
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Hence, we arrive at
LeMmA 8. If2,=0,0<e=<2zZh; and if

c=1 and c2—2+i°-go,
hr

then we have

L{(x —r) — Zlg(z - z0)2} >0.

Thirdly, we consider = = (r — 1) — (1/¢®)(z — 2,). Since

1

—|Fx]* on <&,
Lz — 2,) =Lz={221 &l ’

0 on 7,

we infer that
Lz =z 2|t on &,
and that

1o 1\ iper
Lng(ZG z)um on <Z .

Thus we obtain

LEMMA 4. If 0< e Z 2, and if ¢* = 1/2¢, it follows that

L{(r — 1) — ;12-(z — z,,)} =0 ae. on <.

To be somewhat more systematic we shall investigate for which
>-functions a = a(z) we can prove that

Lo=0 ae.on £,

where
o(u, v) = (x(u, v) — 1,)° — a(z(u, v)) .
Because of the identity
da(z) = a"(2)|Vz]* + a'(2)4z

and of the Euler equations

Lz=§1-|172;|20n%, Lz=0on 7, A=0on 7,
2
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we find that

Ja@@) = a'(2) |F2|* — (&) Az + 2—1za'(z){l7g[2 on <,

da(z) =0 a.e. 7.
Therefore,
(4.20) Lo=2[Ft*=0 a.e.on .U .
Since
Aa(z) = a'(z)4z ,

we infer that
La(z) = a"()|Vz|* + %:)]Vg{'z on <7, .
Therefore,
“21) Lo = [2 — M]lmz — {a"@) + M} \7zF on 7.
22 22
To obtain Lo = 0, we must assume

(4.22) PG
2z

Then,

Lo > [2 _ Q_Z(Z_) — a"(z)]wziz on Z.

The optimal choice is

(4.23) 2 — 2‘? —a"z) =0,

which is equivalent to

d( d 3
(4.24) E?{zd_za(z)} =2 .

The general solution «a(z) of (4.24) is given by

z?
a(z) :E + ¢, logz — ¢,

where ¢, and ¢, are arbitrary constants. However, this solution has
to satisfy (4.22) which amounts to
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*=e .
Since z = ¢ > 0, this is certainly satisfied if
(4.25) ¢, = 3e?.

This leaves us with three kinds of solutions of (4.23) which are
admissible:

(4.26) cle:a(z):zé—cz, 2>0.

(4.27) O<01§352:a(z)=%+cllogz——cz, z=c.

2
(4.28) cl<0:a(z)=%+cllogz——cg, z2>0.

The solution (4.26) with ¢, = 0 leads to the composition used in
Lemma 3 with ¢ =172, 2, = 0.

Let us choose an arbitrary number z, = 0. A straightforward
use of (4.26-4.28) yields the following result:

LEMMA 5. We have

L{(x —x) — ()} =0 on

for
1 2 2
al(z)=§(z —Z), 2>0,
_ 1., 2 2 z
ag(z)———(z—z0)+3510g(—>, z2=e>0,
2 2

a3(z)=—zzi—clogz+%{logc—%—log2}, z>0, ¢c>0.

The function a,(z) increases monotonically on z >0 and vanishes
for z = z, if we suppose that z, > 0.
The hypersurface
F = {9, 2):( — 1) —ak) =02>0}

meets the parallel to the z-axis through 3, = (&, Yo, 2,) exactly in .
For all points x of F different from x, we have z > z,, The func-
tion a,(z) vanishes for z = z*, where

z*:N/%
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Moreover, ay(z) increases for z = z*, and it decreases for 0 < z < z*,
The hypersurface

F* = {(xy Y, Z): (r - r0)2 - aa(z> = Oy z > O}

- meets the parallel to the z-axis through ¥, = (&, Yo, %) exactly in
X = (%, Yo, %), since () > ay(2*) for z >0, z # z*.

Now we use the various subsolutions of L obtained in the
Lemmata 2-5 to derive further inclusion theorems. As before, we
shall assume for the rest of this section that x(u, v) is a solution of
the minimum problem (") with the obstacle condition (4.2). The
existence of such solutions for boundary curves I contained in
{z >¢}, ¢ >0, has been established in §3, together with their
regularity properties. We proceed by applying Lemma 1 to the
subsolutions of L which have been discussed. Note, that each solu-
tion x(u, v) = (x(u, v), y(u, V)hr2(u, v)) of P(I') satisfies

e = 2(u,v) = hr for all (u,v)e <,

by virtue of Theorem 4, where h, is the maximal z-component of
I’ defined by (4.14).

THEOREM 5. Let &3(x,) denote the solid ellipsoid defined by
@ — 2 + (y — 9o + %(z — 2 < R

with center L, = (%o, Yo, 20), and with the semi-axes R, B, cR. Suppose
that z, > 0, I' C &%(x,), and that

% < min{2¢® + 1, ¢* + 2} .
&€

Then,
1) cint £35(x,) .

Assume now, that the interior of € %(5,) ts contained in the open
half space {z > €} which can always be achieved by appropriate choice
of the parameters ¢, ¢, z,, B. Then

2(u,v) >¢ on &,

and the set of coincidence 7 1is empty. Therefore, x(u, v) is real
analytic in <&, and it satisfies the Euler equations and the con-
Jormality relations
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L =0
(4.29) Ly =0, =85, L'&=0
1,0
Lz = —|rg]
2 2zl zl
on B, where
(4.30) L=4+4, =ﬁa,,+?zzav.
2

COROLLARY 1. In particular, we can choose z, = hy and ¢ = hp/8.
Then, z,/e =3, and the choice ¢ = 1 is admissible for the parameter
c.

Hence Theorem 5 applies to the ball
Ba(to) = {x:|x — 8| = R} = &%) .

Every R > 0 is admissible but a very good choice will be

2
R ="—h,.
3"

This is the largest radius such that int Bi(z,) {z > ¢}, whence 7~
is empty, and g(u, v) satisfies (4.29) on .
THEOREM 6. Let &,(x,) denote the solid cone

@ — )" + (¥ — 9o — -j;(z 2P <0

with vertex L, = (%o, Yo, %), and let & 7 (x,) denote its upper part
(L) N{z = z). Suppose that 2,>0, ¢ =1, I' c &), and that

¢c—2+2>0,
hr

Then,
() cint (1) .
If, in addition, int €} (g,) C {z > ¢}, then
2(u, v) > on #,

and the set of coincidence 7~ is empty. Therefore, t(u, v) is real
analytic in &, and it satisfies (4.29) on 7.

Proof. The maximum principle implies that 1(<#) C %.(x,). Yet,
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1(<Z) could be partially contained in the lower part
G (%) = E (%) N {2 = 2}

of the cone &,(x,). This will be excluded by the following reasoning:
By virtue of the regularity results mentioned in §3 we may apply
the — by now standard — Hartman/Wintner technique to obtain an
asymptotic expansion of g(u, v) around branch points which is of the
same form as in Heinz-Hildebrandt [11]. This implies that g(u, v)
possesses a tangent plane even in branch points. For this reason,
1(u, v) cannot pass through the vertex x, of the cone &,(x,) whence
either (&) Cc & (x,) or y(#) ;7 (x,) must hold. Since I' = %} (x,)
we infer that (<) C & (x,).

COROLLARY 2. In particular, ¢ =12 is always admissible
whatever the walue of e, 2, and h, may be. Choosing & =z, =
he — R, c =V'2, I C& 51, 1 = (&, ¥, &), we infer that

1(Z) Cint 7 5 (x)

whence
2(u, v) >¢ for all (u,v)e.Z.

Thus 7~ 1is empty, and x(u, v) satisfies (4.29) on <£Z.

REMARK. The results of §5, and, in particular, Theorem 11,
will furnish an improvement of Corollary 2.

THEOREM 7. Let 245, denote the solid paraboloid
@ — @) + @ — 9~ —2) <0
where

c2

v

1
2’
and I' C F(x,). Then,
U(F) Cint F (L) -

Moreover, .7~ is empty and x(u, v) satisfies (4.19) if int . F(x,) C
{z > ¢}

COROLLARY 3. Determine R >0 by hy = 3R/2, and let z, = ¢ =
R/2, ¢ =1)V'R, I' € P, vz(x). Then
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() Cint 7, (k) C{z > ¢}
whence g(u, v) satisfies (4.29).

THEOREM 8. Let z, > 0, and denote by ~(x,) the set

{(x, Y, 2): (@ — @) + (Y — %) < %(z? — 2) + 3¢’ log (_Z_)} .

2

Suppose that I' C F(5). Then
y(Z) cint L(x) -
Furthermore, .7~ is void, and g(u, v) satisfies (4.29) if int <y, C
{z > ¢}
THEOREM 9. Let ¢ >0, z* = V¢/2, 1F = (%, Yo, 2*), and
AUL) = {(w, Y, 2): (@ — @) + (¥ — 9)°
< %2 —clogz + %[logc ——;——log.z]} .

Suppose that I' is contained in the wpper part

A7) = A5 N {z = 2%}
Then,
W) cint 47 (x¥) .

Moreover, .7 1is empty, and x(u, v) satisfies (4.29) if int _+77(x¥) C
{z > ¢}.

Remark concerning the proof. The same reasoning as in the
proof of Theorem 6 applies. Because of the asymptotic expansion
of g(u, v) in the neighborhood of regular or branch points, r(u, v)
cannot fall below the “vertex” yF.

Further maximum principles can be obtained by Hildebrandt
[12], Theorem 8, where x(u, ») can either be interpreted as minimal
surface in the Riemannian manifold R% and ds® = z{dx* + dy* + dz%,
R = RN{z >0}, or as S#~surface in the euclidean space E°, 5¢
defined by (2.13). This technique yields, for instance, the following
result the proof of which will be omitted.

THEOREM 10. Let 2z, >0, 0 > 0, I' © *(x,) where

Fralr) = {(r —r)r< %(z ) — 52} Nz =z} .
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Let ¢ >0 be a real parameter such that

i(l-{——1—>(z——z[,)2——ﬁz-éé2 for ¢co=z2z=h,.
ct ct 4

Suppose that x(u, v) 1s a solution of the Plateau problem

S 2lPfdudo—min, i) .Sl
| X: 0% —— 1" monotonically .
Then,
1(Z) Cint (k) ,

I is empty, and x(u, v) satisfies (4.29).

(ii) Another maximum principle (functioning already for
harmonic maps with obstacles) is contained in Hildebrandt-Kaul [15],
Lemma 9, Theorems 8 and 9, pp. 217-221. Here we consider g(u, v)
as minimal surface with respect to the metric ds* = z- {da* + dy® +
dz*} which has been extensively studied. The geodesics are parabolae,
and the geodesic balls (used in [15] for the maximum principle) are
explicitely determined, cf. [10], and, in particular Darboux [7].
However, we have not worked out details.

ReEMARK. In view of Gulliver’s theorem in [9], a solution of
the Plateau problem has no interior branch points if it does not
touch {#z = ¢}, the boundary of the obstacle.

Two further methods to obtain inclusion theorems will be
presented in §§5 and 6. The first one is a refinement of the tech-
nique used in this section, while the second one is based on an
application of some isoperimetric inequality.

5. Inclusion theorem for the solutions of (/") when J(X) =
S 2|Vt [Pdudv, and when %" is the upper part of the solid hyper-
boloid {1: 22 = (x — x,)* + (¥ — ¥,)* + €. In this section, we consider

once more the variational problem PB(I”) for the integral
5.1) J(x) = S 2 |Pxdudy
which, for conformal parameters u, v of t, agrees with

(5.2) 7 =2 | zlx % xldudo

Let 1, = (x,, 4,, 0) be a fixed point in R?, and denote by = = ="(x,)
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the cone
{12 =@ —a)" + (¥ —9)’ = — 1)} .

It turns out that each Gauss representation { = g(u, v) of &' =% —
{r,} furnishes a solution of the Euler equation belonging to (5.2).
This can easily be checked by proving that

w@, y) = V@ —2) + W —y)’ = £t — 1], rFTI,

is a solution of

ST T M — VI

which is the Euler equation of the integral
S w/T T Ful dedy .

However, this integral is the nonparametric counterpart of (5.2).

This observation suggests that the upper part of the cone
{r:2*=|r —1,]’} forms a domain of inclusion for the variational
problem $B(I°). This is in fact true. Since the cone has an unpleasant
singularity in its vertex r, we perfer to look at the upper sheet

Ste=8S_.N {z = 0}
of the two-sheeted solid hyperboloid
Se={@—2)+Wy—v)+e=2}, e>0.

The reasoning is similar to the one used in §4 but more elaborate.
We begin with two observations which can be considered as a re-
finement of the inequality

\Pal* + [Py < |Pz)

following from the conformality relations

(5.3) L =1
and
(5.4) L. %, =0.

LEMMA 6. Let x(u, v) = (x(u, v), y(u, v), 2(u, v)) be a function of
class C'(<Z, R*) which satisfies (5.8) and (5.4). Denote x, X t, by
(,m,0). Then, the following relations hold:
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4 ={lryl* + [Pz} — (=)
(5.5) = {\Fxl* + P2y — [Pyl
4 = [l + [Py} — P2l

Moreover,
(5.6) Fzl*=0 of &+7°=0,
and
1 .

5. V 2: V 2 2 2 2
G Pal = e lPa Y i & >0
and

._ L

c P

Proof. The relations (5.6) and (5.7) follow from (5.5) by a
straightforward computation. Moreover, the second and the third
identity of (5.5) can be obtained from the first one. Thus it suffices
to prove that

A =A{{Fy " + [Pz} — [Pzl
By (5.4), we get
& = (Yu2 — Yo2)’ = (Vo + 20)(Y% + 20) = @il .
On the other hand, by (5.3),

{Iryl® + [Pz|F — [F=|*
= 2(y% + ) y: + 22) + (B2 + 2 + (¥ + 22 — (22 + x2)
=2y% + )W +2) + (B + 2+ xd — 2l 4+ (Y + 2 — (@) 4+ )
= 2(y% + 2N + 2) + () + 2) + (@) — )} — 4ol
= 4(y% + ) + 2) — dalal

Thus, the lemma is proved.
THEOREM 11. Let x(u, v) be a solution of Plateau problem
S 2\Prldudy — min,  ((B)CSte =%, 1B —T
@z

where
Ste={1|r — 1>+ £ 7 and z = 0}

for some t, and some ¢ > 0. Suppose I' is contained in the interior
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of Sto. Then, y(<#)Cint Ste.  In particular, t(u, v) is a solution
of the Euler equation (4.29).

Proof. Without loss of generality, we may assume that z, =
¥, = 0. Note that y(u, v) is of class HX(<Z R) N C**(Z R)H 0 < a < 1.
Let o(u, v) be defined by
(5.8)  o(u, v) =2 (w, v) + y(u, v) — 2, v) = t(u, v) — 2°(x, v) .

In virtue of Lemma 1, the theorem is proved if we can find
functions a(u, v), b(u, v) of class L*(<Z, R) such that

(5.9) Lo =0 ae. on &
where

1 0 0
5.10 L ==-(4+a—+ b—).
( ) 2< aau * av>

The construction of the functions ¢ and b will be carried out in four
steps.

First, we observe that

(5.11) do =0 a.e. on .o~
where
(5.12) I = {(u, v) € F: t(u, v) € 6St.q}

denotes the “set of coincidence” of the solution veetor x(u, v). The
boundary o0S*. of the set of inclusion is nothing but the graph of
the function

z=Uk,y)=VE F+y +e&

in R®. In virtue of 0 € HX<%, R) and of o(u, v) =0 on .&, (5.11) is
an immediate consequence of a well known result due to Morrey,
cf. [19], p. 69.

On <Z — 7, t(u, v) is real analytic and satisfies the Euler equa-
tions

Af:%%:z;VXMX&’ W:lgux&l'

Choosing

1 5 . .0
5.13 L=2Yly4q9 1390,
(5.18) 2{ toa T av}
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where a(u, v) and b(u, v) are to be determined later on, we arrive at

Lo = |/t — [Pz + (x, ¥, —2)- {az-:u + br, + % } .
Since {t./|z.], /1%, N} form an orthonormal system for each
(u, v) € &, there exist uniquely determined numbers a(u, v), B(u, v),
v(w, v) such that

(¢, y, —2) = ats 4 /3———3:” + yAU

[zu ] [xv|
whence
LU::lVr[2—1Vz|2+(aa+b,8)71_—2=lVgl+Zz§
and
az, , Bz w V2 2 ..
—z = + BB TS Y S, + B2,) + —C .
Tl W T e AR T
Therefore,
7€ _1Pel(IFEl | az. B2
2 1/—2—{ 2 + z + z}
and

Lo = %;mz — %Wz{? + 'V—;-'[a(a - %) + 3<b — %)} .

We choose a(u, v) and b(u, v) in the form

(5.14) a:%—}—V?aolVgl, b=%+1/?bo|7gi
where a,(u, v), b(u, v) are to be determined later on. Then
(5.15) Lo = %IVW — %[Vz{z + (@ + ,8) P .

If &2+ 7% =0, we have |[/'z]* =0, on account of (5.6). Choosing

(5.16) @ =b =0 if &+7°=0,
we find that
(5.17) La:%wwgo when 2+ 7°=0.

Now we consider the case & + 7= 0. By (5.7),
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2

g+

[Pr]2 = (2¢® + 1)|Fz[?, where ¢° =

and we infer from (5.15) that

(5.18) Lo ={(c* — 1) + 2(c* + L)(a,@ + b,R)}|F2z|> if &+ 7*+0.
Choosing

(56.19) a,=0=0 if ¢=1,

we obtain once more

(5.20) Lo=(—D|FzP=0 for ¢c=1.

The condition ¢ > 1 implies that % lies inside the cone {z* = «* + ¥?.
Moreover, we claim that

(5.21) 1] < L/_f_}%il/a'f TF if 0<e<1.

Let us put off the proof of this inequality for the moment, and
choose

2 a 2 B .
5.22 = — e, b = ee— e S .
(6.22) 6 e Vo + g T e Val t g if 0=e<t

Then, we obtain from (5.18) that

Lo = {(cﬂ —1)+ %(02 FWET 52} 2%
> {(02 —D 42/ TVIF 'c'flg-_la _ c)} 72

Since 0 £ ¢ < 1 and |x| = ¢, we infer that

(5.23) Loz{c—1+20—0e}Fz)*=0 if 0<e<1.
Note that r is of class C(<Z R®. Choosing

(5.24) a=b=0 on 9,

we have a, be L”(Z#) taking (5.14), (5.16), (5.19), (5.22). and (5.24)
into account, and

Lo=0 ae.on Z

by virtue of (5.11), (5.17), (5.20), and (5.23).
It remains to prove (5.21) where

(5.25) C=c-&+79Y, 0<e<1l.
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Since (u, v) € S*, we have also
(5.26) ¥+ Y sz,
and

g*:(x,y,—z):ai‘——{—ﬁ xv _‘_’7%.
2] .|

Let @ be the angle between ¢* and . Then

1/0(2+ﬁz =1/a2+52=1/a2+32.
vVadl + 5+ 7 lg*| lt]

sinp =

Furthermore, let + be the smallest angle between It and the cone
{«* + y* = 2%}. By virtue of (5.25), « is simply the angle between
the two lines z = » and z = ¢» in (7, 2)-plane whence

1 1-—e¢
V2VvVi+e
Finally, the relations (5.25) and (5.26) imply that

sin =

sin+ < sing

which, in turn, yields the desired estimate (5.21). Thus, the theorem
is proved.

6. A further inclusion theorem based on an estimate due to
Allard-Michael-Simon. The inclusion theorem of this section is
based on the following

LEMMA 7. Let . be a C*-submanifold of RY of dimension n
and codimension p, i.e., N=mn + p. For an inner point & of Z,
and for peR*, we define

mo) =mo) =L | dosw),
" Jiz—ti<e
where d.o7(x) denotes the n-dimensional area element of F at «x.
Suppose that, for some p, > 0, the boundary of the set F, = {xe 7.
|# — x| =< p}, considered as compact submanifold with boundary, 1is
contained in the sphere {xe€ R":|x — &| = p,}. Moreover, we assume
that the absolute value of the mean curvature 57 of F 1is bounded
on #, by some number H = 0. Then we have
(i) lim,.iem(p) = m(0) = @,,
where @, denotes the volume of the n-dimensional unit ball;

(ii) ——d%[mm)] < Hm(p) for 0 < p < py;
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(ili) m(p) = w, exp (—Hp) for 0 = p = p,.

Proof. (i) is an obvious consequence of the manifold structure
of % at & (ii) is a very special case of an important Sobolev type
inequality due to Michael and Simon [17]. A variant of this estimate
was first derived by Allard [1]. (iii) follows immediately from (ii)
by integration.

LEMMA 8. Suppose that the assumptions of Lemma T are
satisfied, with the ewception that F# is not a C*-submanifold of RY
but only a C-immersion into R¥ of dimension n and codimension
». Then, the total area A(F,) of 7, can be estimated from below
by

(6.1) A(F) =z p; exp (—Hp,) .

Proof. If ,is a submanifold of R" the assertion follows from
(iii) of Lemma 7. If &, is only immersed and H = 0 the estimate
can be obtained from [1]. If H = 0 we can proceed as follows: If
F, is an immersion into RY, then it is also immersed into R¥*,
q > 0, if R” is canonically embedded into R**?. Clearly, the codi-
mension of .#, is now p + ¢q. It is elementary to approximate .&;
in R¥* Dby a sequence of n-dimensional submanifolds % with
boundary on {Xe R |X — 5| = pg}, & = (& 0), such that the mean
curvature of the .#, tends uniformly to the mean curvature of 7,
as ., tends to F,, at least, if ¢ is sufficiently large. Lemma 7,
(iii) applies to each of the ,f;t, and, by passing to the limit, we
obtain (6.1).

Suppose now that /" is a closed regular Jordan curve R® of class
C*?, 0 < 8 <1, which is contained in the slab

S(hy, b) = {(x, y, 2) e R*: h, < 2 £ h}
where
(6.2) 0<h =h.
Then we choose a number ¢ > 0 such that
(6.3) h, > be .
Moreover, let w(z), z€ R, be a function of class C* such that
(6.4) wiz) =z for z=¢.

Approximation the Lipschitz function
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e for z<5¢
z for z>¢

®y(2) = {

in an appropriate way by functions @w(z), we infer that, for every
0 €(0, ¢/2), there exists a C>-function w(z) satisfying (6.4),

(6.5) e2<e—0=w(z) forall zeR

and

(6.6) 0<2® 1 5 forall zeR.
20(z) — 2¢

Consider now the Plateau problem
B): J——min on €U)

where
©6.7) JG) = S o) |7 Pdudo ,

and where €(I") denotes the class of all surfaces in H}(<Z, R*) which
map 0% continuously and in a weakly monotonic way onto I'. By
virtue of Theorems 1-8, there exists a solution of P(I"); and each

solution x(u, v) of P(I') is of class C(<Z R®) and satisfies
4y = 22 (g, Wlr. X L]

and
ﬁt:ﬁ:r ilfu'I.v'—‘O

on <%, where

0B =L@ N = (N, N, N
2w(7)

On account of Gulliver’s theorem [9], 1(u, v) possesses no branch
points in &Z Therefore,

(6.8) F = {z(u, v): (u, v) € F}

is a C*-immersion into R® of dimension » = 2 and of codimension 1,
the mean curvature of which is bounded by

1

— +94.
2¢

(6.9) | |57 | < H =

THEOREM 12. Let x = x(u, v) be a solution of the Plateau problem
PBU), and suppose that (6.2)-(6.6) are satisfied. Assume also that
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I < 8(h,, h), and that
(6.10) AF) = Ax) = § It X 1.|dudv < 2zete?
4

holds, where F s defined by (6.8). Then, F 1is contained in the
open half space {# > €}. Hence z(u, v) = @(z(u, v)) on . Therefore,
(u, v) 1s real analytic and satisfies (4.29) on Z.

Proof. Otherwise there is a point g, = (%, ¥, 2,) €% such that
2z, =¢&. On account of (6.6) and of "< S(h,, k) and 0 < ¢ < 5¢ < h,,
we can apply Lemma 8 with p, = h, — ¢ and with H = 1/(2¢) + ¢ thus
obtaining

A(F) > rpe for 0<p=p,.

The function p’e?¢ achieves its maximum for 2 — Hp =0, i.e.,
0 =2/H = 4¢ + 7(9), where %) >0, and %) — +0 as J¢— +0.
Hence, there is a d, > 0 such that

2
H

Il

o =4 +90)=<p,=h, —e for 0<d<9,,

whence
A(F) > n(de)ee .

But this is impossible, because of assumption (6.10). The theorem
is proved.

LEMMA 9. Let x = g(u, v) be a solution of P('), and suppose
that I' < S(h,, h), and that (6.2)-(6.6) hold. Then

h

(6.11) A(p) <
eE—20

a(l)

where a(l’) denotes the minimum of the area of all surfaces of the
type of the disc which are bounded by I' (i.e., are of class €(I)).

Proof. Let D(r) be the standard Dirichlet integral of r(u, v):
D) = | _I7aldudo .

Then
D(x) = 2A(x) .

On account of (6.5), we obtain



276 R. BOHME, S. HILDEBRANDT, AND E. TAUSCH

(¢ = 0)D() < J() -

Let f(u, v), (u, v) € &, be a minimal surface bounded by I" which is
of minimal area. That is, e €,

=0, f=%, f-fL=0in &,

and

Af) = %D(f) = a(l) .

Then,
J@) = J@ ,

because ¢ minimizes J in &'). Since I' < S(h, h) the maximum
principle implies that f(B) < S(h,, k) whence

J(f) = hD(H) .

Combining these estimates, we arrive at (6.11).
Theorem 12 and Lemma 9 imply immediately

THEOREM 13. Let ¢t = t(u, v) be a solution of P(I'), and denote
by a(I") the minimum of the area of all disc type surfaces spanning
I'. Suppose that I' < S(h,, h), and that (6.2)-(6.6) are satisfied as
well as

(6.12) a(l") < %n(%)z .

Then x(Z) C{z > €}, 2(u, v) = ©(2(u, v)) on Z, (u, v) is real analytic
on & and satisfies (4.29).

REMARK. A good choice of ¢ would be ¢ close to %,/5 in which
case the condition (6.12) takes the form

h 4h,\?
12! N< ™. M (2
(6.12) ar) < Z. L (56)

7. Remarks about perfect domes. Let x(u, v) = (x(u, v), y(u, v),
2(u, v)) be a solution of (4.29) and (4.30), bounded by I". Obviously,
the “reflected” surface

t*(u, v) = @*(u, v), 2*(u, v), y*(u, v)) ,
e*(u, v) = o(u, v), Y, v) =ywu,v), 2w, v) = —2(u,v),

satisfies the same equations, i.e.,
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Le* =0, Ly*=0, Lz*=-2|m*},
2z*

=, e =0,

L=d+4, 4=%55 15,
4 4

Therefore, g*(u, v) is also a stationary surface for the functional J
but bounded by the reflected curve I'* (the definition of which is
obvious). In fact, if r(u, v) is a solution of the minimum problem

J—min on €U, rcor

where &(I") is defined as in the beginning of §3, with % = {# = ¢},
¢ > 0, then ¢*(u, v) solves

J——max on C*(*), r*co*,

where €*(I'*) is defined by €*(I'*) = {y* ¢ H}(<Z, R°): t*(Z) C 2% %,
1*: 08 — I'* is continuous and weakly monotonic},

F* =" < —¢}, e>0.

However, whereas z(u, v) = 0 is a subsolution of L, z*(u,v) is a
supersolution. That is, g(u, v) is hanging below I (more precise:
below h;), *(u, v) is standing above I'* (precisely: above —hr).
Suppose now that we have found a “hanging solution” g(u, v) bounded
by I'. Let us build it from a homogeneous material like conerete
with uniform thickness the material being incompressible to a high
degree of accuracy. Turning it upside down we obtain a “standing
solution” which — according to Professor Frei Otto — may serve as
“perfect cupola” since it has a particular static behavior.
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