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FIXED POINT SETS OF 1-DIMENSIONAL
PEANO CONTINUA

JOHN R. MARTIN AND E.D. TYMCHATYN

It is shown that every nonempty closed subset of a 1-
dimensional Peano continuum X is the fixed point set of some
continuous self-mapping of X.

1. Introduction. A topological space X is said to have the
complete imvariance property (CIP) if every nonempty closed subset
of X is the fixed point set of some continuous self-mapping of X.
The term CIP was suggested by L. E. Ward, Jr. in [5, p. 5563] where
it was asked if every Peano continuum had CIP. Examples have
been given in [3], [4, 3.1] which show that =n-dimensional Peano
continua need not have CIP if » > 1. In [4, 3.4] it is asked if every
1-dimensional Peano continuum has CIP. The purpose of this note
is to answer that question in the affirmative by showing that every
1-dimensional Peano continuum has CIP.

2. Preliminaries. Let M be a metric space. A sequence of
subsets of M is called a null sequence provided that for any ¢ > 0
at most a finite number of its elements has diameter greater than e.
The space M is said to have property S provided that for each ¢ > 0,
M is the union of a finite number of connected sets each of diameter
less than e. A partitioning of M is a finite collection % of pair-
wise disjoint connected open subsets of M whose union is dense in
M. If the mesh of %/ is less than ¢ (each element of % is of dia-
meter less than ¢), % is called on ¢-partitioning. A sequence %,
%y, -+ of partitionings is called a decreasing sequence if, for each
positive integer i, %/, is a refinement of %/, and the mesh of %,
approaches 0 as ¢ increases without limit. It is well-known [1,
p. 545] that every Peano continuum has a decreasing sequence of
partitionings.

A dendron is a connected, simply connected, finite graph. The
closure of a subset A of a topological space shall be denoted by

C1(A).
3. The result.

THEOREM Ewvery l-dimensional Peano continuum has the complete
invariance property.

Proof. Let X be a l-dimensional Peano continuum and let A be
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a closed subset of X. Let %, %, --- be a decreasing sequence of
(1/7)-partitionings of X. Then each %/ is a finite collection of open
connected pairwise disjoint sets of diameter less than 1/i such that
for each 1 U{U|U € Z;} is dense in X and %/, refines ;. We suppose
% = {Ul,ly ) Ul,mo,l}
%, = {U,,.;|U,; U, €%, and jefl, ---, m,.}}
and for ¢+ > 1

‘?/i = {Uivjlv""ji] Uivfl""’ji C Ui—-l,jl.'- S (Z/i—l
and jz € {1, ey, m,;al,jl,...,ji_l}} .

©di—1

For each i =1,2, --- let
! ={Uez;|CLLU)N A # @}.
Without loss of generality,

#z, = {U,,,...,Uy,,} and for i>1
%i’ = {Uivflv"‘vfil Ui,jl ..... is C Ui—l’jl""lji—l € 7/,,,_1
and j;€{l, -+, My jpens 3}

Notice that A c C1(lU %) for each 1.

Let A, , be an arc in X which meets U,, and U,,. If A,,NU,,+* @
let A,=@. If A,NU,= @ let A,,be an arc such that A,, meets
U, and A, ,N A, is an endpoint of A4,,. Suppose 4,,U --- UA4,, is
a finite dendron such that A,, U --- U A,; meets U,; for each je
-, +1} If i+2=<m,, let 4, =0 if (4,,U---UA)N
U, .. + @, otherwise, let A,,,, be an arc which meets U, and
such that (4,, U --- UA,;) N 4,4+ is an endpoint of A, ,;,. By indue-
tion A, is defined for each 7€{1, ---, n,, — 1}. Let

B, = A1,1 u---u Al,n0,1—1 .

Suppose B, ---, B, are finite dendrons such that B, c B,C --- C B,,
B, meets U for each Ue %, and

B, — B...cU{U|Ue#.}.

For each U, ....;, € % let Ay j,oipn = @ if B, meets Uiy gy, i
otherwise, let 4., ;,,....;, be an arc in U, ;... ;, which meets Uy, ;... 5.
and such that B, N A.i1,i,,....5,. 1S an endpoint of A, ;,....5,.. Let
Ui, i, €%, and suppose A, ; .., is defined for i¢e{l, ---, m}
where m < nyj,,....5» 1 B U UTet Apts jy,eenrips me€ES Uiy iy mes 10T
Apisiyripmis = @, otherwise, let A,.y;,....7,ms be anarcin Uy ;,,....;,
which meets Ui, ,....;.,m+1 and such that (B, U U™ Asisipeipd) N
Apiiieeipmes 18 an endpoint of A,y ,....ipmi. Let
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— Sy
Bk'H - Bk U U {Ak'i—l fpm,jkvikﬂ} Uk FL dpe s d i € Z/k-H} .

By induction B, is defined for each k=1, 2,

Let B= AU B,UB,U---. Then Bis connected since B,C B,C- -,
each B, is connected and | B; is dense in B. The set B is compact
since B — U is contained in a finite dendron for each open neighbor-
hood U of A and A4 is compact. It is easy to show that B has
property S. To see this, let ¢ > 0 and let » be a positive integer
such that 3/m < e. Since B, has property S, there is a positive
integer m and continua K,, ---, K,, such that B, = K, U --- U K,, and
each K; has diameter < 1/n. Let Ue#,'. Let K,, ---, K; be the
members of {K,, ---, K,} which meet U. Then (K, U---UK, UU)NB
has at most 7, components, and each of these has diameter < 3/n < e.
It follows that B has property S and hence is locally connected (see
[6, p. 20]). By [2, p. 174] B is a retract of X.

It suffices to prove that there is a continuous mapping f: B— B
such that f(x) = x if and only if x € A. Since B is locally connected,
each component of B — A is open in B. Hence, B — A has at most
countably many components C,, C,, ---. Notice that every component
of B— A is a simply connected local graph. It follows from the
last sentence and from the construction of the sets B, that every
sequence of pairwise disjoint ares in B — A is a null sequence. Hence,
the sequence C,, C,, --- is null. It suffices to prove, therefore, that
for each ¢ = 1 there exists a continuous mapping g,: C1(C,) — C1(C))
such that g¢,(x) = « if and only if € C1(C,) — C,. The existence of
g, follows easily from the fact that C, is a simply connected local
graph in which every sequence of pairwise disjoint arcs is null.
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