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ON THE LATTICE OF ALL CLOSED SUBSPACES
OF A HERMITIAN SPACE

HANS A. KELLER

The purpose of the paper is to prove the following
THEOREM: Let E be a vector space over a field K with

char K Φ 2, and let φ be a nondegenerate hermitian form
on E. Then the lattice of all orthogonally closed subspaces
of (E, φ) is modular if and only if E is finite dimensional.

Introduction* It is well known that the lattice of all orthogonal-
ly (=topologically) closed subspaces of a Hubert space H is modular
only if H has finite dimension (see Birkhoff—Von Neumann [1]). We
shall prove here that this is true generally for vector spaces E over
commutative fields K with char K Φ 2, supplied with nondegenerate
hermitian forms φ: The lattice of all orthogonally closed subspaces
of (E, φ) is modular if and only if E is finite dimensional. Non-
modularity in the infinite dimensional case is due to the fact that
then there are always two closed subspaces with nonclosed sum. In
a Hubert space one can exhibit such pairs of subspaces in a con-
structive way (see [3]); our general case is much more involved,
and their existence will follow from an indirect proof.

1* Denotations* Let £ be a (left-) vector space over a com-
mutative field K, and φ: E xE —> K a hermitian form with respect
to an automorphism a\-+a of period 2 of K. We always assume
that char K Φ 2. We usually write (x, y) instead of φ{x, y), and we
write xly if (x, y) = 0, x,yeE. Let F be a subspace of (E, φ).
The orthogonal space of F is FL = {x eE: xly for all yeF}, and
the radical of F is r&dF = Fd F1. F is called semisimple if
radjP= 0. In particular, E is semisimple if E1 = 0, i.e., if φ is
nondegenerate. A subspace F is called orthogonally closed if F =
F11(~(F1)1). All bases of vector spaces are algebraic. F is termed
euclidean if it is semisimple and admits an orthogonal basis. Semi-
simple subspaces of countable dimension are always euclidean (see
[2]). Every xeE induces a linear form φx on F, given by φz(z) =
Φ(z, x), zeF. We let F * denote the antispace of the dual space of
F, i.e., the if-space of all linear forms f:F->K, where (/ + g)(z) —
Λ*) + ΰ(*) and (af)(z) - ά•/(«), f, geF*, ae K. If F1 = 0 then E
can be considered as a subspace of F*, identifying xeE with φx.

If E = (BieiEt* and Ei±Ed for ί Φ j , we write E = 0 ^ ^ .

2* The lattice J*f(E, φ). Let (E, φ) be a semisimple hermitian
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space over K. The orthogonally closed subspaces of (E, <j>) form a
lattice £f = £f(E, φ) under the operations FAG = Ff\G and FvG=
(F + G) 1 1 . This lattice is modular iff for all i*7, G e ^ we have
FVG -= F + G (see [4], Theorem 33.4). Thus modularity of £f{E, φ)
is equivalent to the following property of (E, φ):

(A) The sum of two orthogonally closed subspaces is always closed .

If dim i? < oo then (A) holds trivially. We now prove the converse.

3* Nonmodularity of Sf{E, φ) in case of infinite dimension*
We start with two technical lemmas. Their importance for our
problem will become evident later (cf. the proof of Lemma 3 below).

LEMMA 1. Let {E, φ) be semisίmple. Let F be a subspace with
dim F = ^ 0 such that for all subspaces U, VaF we have: If
U + V - F then U±A- + V±λ = E. Then F = E.

Proof Taking U = V = F we get F1A = E and FL = 0. The-
refore E may be considered as a subspace of i*7*. Let F = φieSF8

be an orthogonal decomposition of F into finite dimensional sub-
spaces and let yeF*. y is determined by the restrictions y\Fβ.
Every Fs is semisimple since F1 = 0, thus y\Fs is induced by a uni-
que yseF8. This allows us to represent y as a formal sum y =
ΈisesVs, and we call the ys's the components of y with respect to
the decomposition F = φ^F8. In particular every xeE has the
form x = Σ s #*•

Now suppose that E Φ F.
( 1 ) We first show that then E = F*. Let xeE with ££2^.

One readily constructs a decomposition F — (BsFs such that
dim F8 — 2 and # s =£ 0 for all s e S (choose an orthogonal basis
{βi'. iel) of F and observe that card {i e /: (β,, α;) ^ 0} = ^ 0 = card I ) .
Now let yeF*. We write i/ = Σ 2/ » where yseF8, and suppose
first that {#s, 2/s} is linearly independent for all s. Let U and F be
the subspaces spanned by {ys:seS} and {xs — ys:seS} respectively.
We have U + V = F, thus t / 1 1 + V11 - JS7. Write x = u + v,
where te = Σ s ^ s 6 U11 and i; = Σ 8 i;s 6 F 1 1 ^ , vs e Fa). Pick αβ 6 F8

with α8 ^ 0 and α s±τ/ s. Then αs 6 Z71, hence 0 = (α,, u) = (αβ, %,).
Since dim F s = 2 it follows that us — X8y8 for some λs e i ί . In the
same way we get vs — μs{x8 — y8), μ8 6 K. Since u8 + v8 = x8 we
have λ8 = μ8 — 1. Thus y8 = ^ s for all s, hence y = u and in parti-
cular yeE in this case. Next we consider y = ΣsVs in i*7* with
ys Φ 0 for all s. For every s choose z8eF8 such that {#s, z8} and
{̂ s, 2/3} are both linearly independent. Applying the above reasoning
to x and z = Σ * s. e F* as well as to z and ?/ we get first zeE and



CLOSED SUBSPACES OF A HERMITIAN SPACE 107

then ysE. The y's in F* with all components Φϋ generate F*.
Since all these y's are in E we have E — F*.

(2) Suppose F = φ ^ F99 where d i m F 8 < ^ 0 for all s. Let
x = Σis%s, V = Σs2/β be in £7, x8, y8eF8. We claim: if (x8, y8) = 0
for all s, then (#, ?/) = 0. To prove this let U and W be the sub-
spaces generated by {xg: s eS} and {y8: seS] respectively. We have
U±_ W, hence U11 ±W1L. Therefore it is enough to show that
xe U11 and ye Wλ±. Choose linear complements Vs of (x8) in Fs,
Fs= V8φ (a?.), and put V = φ ^ V.. Then £7 + F = F, hence
17±i + 711 = E Write α = u + v, where w = Σ* K € I/11, v=
^ ^ e F 1 1 . For every z8eF8 with 28JL#8 we have z8eUL and so
0 — (^, u) = (2;s, wβ). This gives ws €(ίc8)

±J- = (»,). In the same way
we get vs eVs

1JL— Vn. Since u8 + v8 — ccs it follows that vs = 0 and
us — x8. Thus x = ue ULL. In the same way we see that y e W11.

(3) Let {βi. iel) be an orthogonal basis of F. According to
F = φHfii) every xeE = F* can be written in the form x = Σ A βi
with ^ = (e<, αOfo, ej-1. For Γ c / w e put ίcr = Σ*f^t» where ί = ξt

for ΐ e Γ and ξ = 0 for ig Γ. We consider α = Σ i « A and 6 =
Σ i A î* where α̂  = (e<, e*)""1 and /3< = 1 for all i. a, beEby (1). Let
1 = SUT be a partitioning with cardS = card T. We show that

We observe that (aSf bτ) — (aTf bs) = 0 by (2). Thus it suffices to
show that a = as + aτ and c = bs — bτ are orthogonal. Let σ: S ~> T
be a bijection. For s 6 iS put F8 = iffe, β j . Then ί7 = ®£FS. The
corresponding components of a and c are αs = (es, esy

i-e8 + (βσs, O" 1 *
eσs and cs = es — eσ8. We find (αs, cs) — 0, and by (2) this implies
(α, c) = 0, as claimed.

We now choose t e T and put S' = SU {ί} and T' = T - {t}. We
have cardS' = card Γ', hence (α^, 65>) = (αΓ/, 6Γ/). On the other hand,
from the relations as> = a8 + (et9 e^-et, aτ> — aτ — (et, e^ βt and
bS' = bs + et, 6Γ/ = bτ — et we get

(a8>, bS') = (αs, 65) + 1 , (αΓ/, 6Γ/) = (αΓ, δΓ) — 1 .

It follows that + 1 = — 1 , a contradiction since char K Φ 2. This
completes the proof.

We can easily generalize the statement of Lemma 1.

LEMMA 2. Let {E9 ψ) be semisίmple. Let F be a euclidean sub-
space such that whenever U + V = F it follows that U11 + VL1 = E.
Then F = E.

Proof. Since FLL = E we may suppose that dimi*7^ ^o Let
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{βii i 61} be an orthogonal basis of F. Suppose that there exists a
x e E with x ί F. Then there exists a subset La I with card L = ^ 0

and [such that (ei9 x) Φ 0 for all i eL. Put ζ> = K{e^)ieL and 22=
2f(eί)ie/-z/, then F=Q(&LR and so E = Q11φ1R1±. Write α =
g + r where g e Q 1 1 , reR11. One easily verifies that the hypo-
theses of jLemma 1 are satisfied for (QX1, Φ\Q±±) and Q (in lieu of
(E, φ) and JP). Hence Q = Q 1 1 and in particular #eζ>. But this is
a contradiction since (e,, q) — (e*, a?)' ̂  0 for all i e L.

We now pass to study spaces (E, φ) with property (A).

LEMMA 3. Suppose that the semisimple space (E, φ) has pro-
perty (A). Then for every euclίdean subspace F we have FLL =

Proof. We have r a d F 1 1 = r a d ί 7 1 , and F n ί τ χ = 0. Hence
there is a decomposition ί7 1 1 = Q φ 1 r a d ί 7 1 with F c Q . The space
Q with the induced form Ψ — φ\Q (restriction) is semisimple. We
shall show that the hypotheses of Lemma 2 are satisfied for (Q, Ψ)
and F (in place of (Ef φ) and ί7); then it will follow that F = Q,
proving our lemma. For UczQ we let U° denote the orthogonal
space of U formed in (Q, Ψ). Thus U° = {x eQ: x±y foτ all y e U} =
ULnQ. Now let U, V be subspaces of F with U + F = ί7; we
must show that Um + F0 0 = Q. It is immediate that Uw φ r a d F 1 ^ f/11

and F ^ Q r a d i ^ i D F 1 1 . By (A), U11 + V11 is closed in (E,φ), thus
I/ij. + 711 = (J711 + y11)-1-1- = (17 + V)LL = F 1 1 . It follows that
( ί 7 0 0 + F 0 0 ) © r a d ^ 1 i ) ? 7 1 1 + F 1 1 = F 1 1 , hence C700+F00=Q, as claimed.

Let (H, Ψ) be any hermitian, euclidean space over K. We
denote by H* the set of all linear forms f on H with the property
that ker(/), as a subspace of (H, Ψ), admits an orthogonal basis.
Let {hi. iel} be an othogonal basis of H, and let / be any linear
form on H. Put J = {iel: /(fe<) ^0}. / i s induced by some x e H iff
J is finite. In this case, of course, feH*. Suppose / is infinite.
Then ker(/) is semisimple and we have feH* iff card J — ̂ 0 ([2],
Satz 1). We now see that feH* if and only if there is a decom-
position H = Q φ 1 R with dim R <. ^ 0 and / | ρ = 0. In such a de-
composition Q is always euclidean (cf. [2]). We also see that H* is
a subspace of H*.

LEMMA 4. Suppose (E, φ) is semisimple and has property (A).
Let F be a euclidean subspace. Then every feF* is induced by
some y eE.

Proof. If / is not induced by a x e F then G — ker(/) is semi-
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simple and thus, by definition of JF0*, euclidean; furthermore
dimi<yCr = l. We have F1ΦG1, for otherwise by Lemma 3 we
would have

G φ r a d F 1 - G 0 r a d G x - G11 = F11 = i ^ © r a d F x ,

which is impossible. Hence there is a yeG1 with y£FL, and it is
clear that / is induced by a suitable multiple Xy(X e K).

We are ready to prove our main result.

THEOREM. Let (E, φ) be a semίsimple hermitian space over a
commutative field K with char K Φ 2. The lattice of all ortho-
gonally closed subspaces of (E, φ) is modular if and only if E is
finite dimensional.

Proof One half of the statement is clear. Suppose Jΐf(E, φ)
is modular. Then (A) holds for (E, φ). Let M = {̂ : i e 1} be a
maximal set of pairwise orthogonal anisotropic vectors of E (x e E
is anisotropic if (x, x) Φ 0). The subspace F spanned by the v/s is
euclidean. By the maximality of M we have φ\F±. = 0, hence
τaάF± = F1. Thus F11 = F&F1 by Lemma 3. Now suppose
that dim E ^ fc$0. Then dim F ^ fc$o since (E, φ) is semisimple. Hence
there exists an element feF* which is not induced by a xeF. By
Lemma 4, / is induced by some yeE. Clearly i / ί F φ F 1 ; since

F1 = F11 there exists veF1 with (v, y) Φ 0. Put G =
O n e readily verifies that G is semisimple. Since

feF? there is a decomposition F = Q®1 R such that f\Q = 0 and
dimi2 = ^ 0 ; here Q is euclidean. We have yeQL and so G =
Q φ 1 (R θ (y) θ (v)) which shows that G is euclidean. We define
a linear form g on G by g\F = /, βr(?/) = 0, flr(ι ) = (v, y) + 1. The
above decomposition of G shows that geG*. Hence g is induced
by some zeE. Since g\F = f we have z ~ y e FL, i.e., # = y + w
with w eFL. Now (v, j/) + 1 = g(v) = (v, z) = (v, y) + (v, w)f hence
(v, w) — 1. But this is a contradiction since v, weF1 and φ vani-
shes on F 1 . This completes the proof.
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