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WEAK CHEBYSHEV SUBSPACES AND ALTERNATION

FRANK DEUTSCH, GUNTHER NURENBERGER AND IVAN SINGER

Let T be a locally compact subset of R and C,(7T) the
space of continuous function which vanish at infinity. An
7 dimensional subspace G of Cy(T) may possess one of the
three alternation properties:

(A-1) For each fcCy(T) which has a unique best approx-
imation g,€G, f — g, has » + 1 alternating peak points;

(A-2) For each f€Cy(T), there exists a best approxima-
tion g,€G to f such that f—g, has n» + 1 alternating peak
points;

(A-3) For each feCy(T) and each best approximation
9,€G to f, f— g, has n 4+ 1 alternating peak points.

In this paper, for each 7€{1, 2, 3} we give an intrinsic
characterization of those subspaces G of Cy(t) which have
property (A-i).

1. Introduction. The classical alternation theorem states that
if G is an 7 dimensional Chebyshev subspace of Cl|a, b], then for
each feCla, b] and its unique best approximation g,< G, the error
f — g, has n + 1 alternating peak points. It is natural to ask whether
such a result remains valid if we replace Cla, b] by C(T), where T
is an arbitrary compact subset of the real line R or, more generally,
by C(T), where T is any locally compact subset of R. [Here C(T)
denotes the Banach space of all real-valued contionuous functions f
on T “vanishing at infinity” (i.e., {t € T'| | f(£)]| = ¢} is compact for each
e > 0), and endowed with the supremum norm: || f|| = sup;er | f(t)].
When T is actually compact, we often write C(T) for C,(T).] And
if such a result is not valid, characterize those % dimensional subspaces
G of G(T) for which the result does hold.

Properties (A-1) and (A-2) above, in the special case T = [a, b],
have been considered by Jones and Karlovitz [6] who proved that
an n dimensional subspace G of C|a, b] has property (A-1) if and only
if G has property (A-2) if and only if G is “weak Chebyshev” (i.e.
G has property (W-4) defined below). Furthermore, Handscomb,
Mayers, and Powell [5; Theorem 8] showed that an » dimensional
subspace G of Cla, b] has property (A-3) (if and) only if G is a
Chebyshev subspace. (The “if” part is just the classical alternation
theorem.)

In this paper, for each 71¢e{l, 2, 3}, we give intrinsic character-
izations of theose subspaces G of C,(T) which have property (A-i).

It turns out that, contrary to the case when T = [a, b], properties
(A-1) and (A-2) are not the same in general; and property (A-3) does
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not characterize Chebyshev subspaces. In giving our characterizations
of the alternation properties, the following kinds of “weak Chebyshev”
subspaces play the major role. (In the definition below, the letter
“W?” is an abbreviation for “weak Chebyshev”.)

DEFINITION 1.1. An = dimensional subspace G of C,(T) is said
have property

(W-1). If for each 1 <m =< n and each set of points —c =
<t <o <tp,<t,=o with {,eT(t=1, 2, ---,m — 1), there
exists 0 # g € G such that

(—1)yg(t) = 0 for all teft,tspNT (=01, -+, m—1);

(W-1"). If it satisfies the condition of property (W-1) only for
m = n;

(W-2). If for each 1 < m < % and each set of points —co = ¢, <
<<ty <tp=c0 with t,eT (+ =1,2, ---, m — 1), there exists
0 +# g € G such that

(—=1gt) = 0 for telt, t )N T (:1=0,1,---,m—1);

(W-2). If it satisfies the condition of property (W-2) only for
m = n;

(W-8). If for each basis {9, ¢, ---, 9.} of G and each set of
points ¢, <t, < ---t, and 8, <8, < --- <s, in T,

D(gxgz gn> .D<glgz a QWB >0,
tit, - t,) 818y * 8,/
where

91(7'1) e g1(7'4n)
D(g1g2 e gn) _ gz("‘s) e gz(’r%)
7‘172---7"” )

= det [9.(r)] ;

ga(13) =+ - (1)

(W-4). If each g€ G has at most n — 1 sign changes, i.e., there
do not exist n + 1 points ¢, < ¢, <---<{t,4, in T with g(t)g(t,+,) <0
(1 :172, cer, M),

In §2, we study the various relationships between these weak
Chebyshev properties. The main result here is Lemma 2.2. In §3,
we establish that property (A-1) is equivalent to property (W-1)
(Theorem 3.1). In §4, we prove that property (A-2) is equivalent to
each of the (equivalent) properties (W-2), (W-2'), (W-3), and (W-4)
(Theorem 4.1). In §5, we show that property (A-8) is equivalent to
G being Chebyshev and having one of the equivalent properties (W-2),
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(W-2'), (W-3), and (W-4) (Theorem 5.1). This allows us to give an
example (Example 5.4) showing that the Handscomb, Mayers, and
Powell characterization of Chebyshev subspaces is not valid in general
if T is not an interval. In §6, we give some examples of weak
Chebyshev subspaces which are not Chebyshev. In §7, we characterize
the n dimensional Chebyshev subspaces of C,(T) for certain locally
compact Hausdorff spaces T (including 7 metric, but not necessarily
a subset of R).

It is worth mentioning here the motivation for the original use
of the term “weak Chebyshev”. Recall the classical result that an
n dimensional subspace G of Cla, b] is Chebyshev if and only if for
any basis {9, 9., -+, 9.} of G and each set of points t, <t, < -+ <
t, and s, <s, < --- <s, in [a,b],

D<glgz"'gn> .D<glg2..'gn>>0.
tlt2-o¢ tn 8182 e Sn

Karlin and Studden [7] generalized this determinant criterion and
defined a weak Chebyshev subspace in C[a, b] as one having what we
have called property (W-3). It is mainly for this historical reason
that we have kept the term “weak Chebyshev subspace”. However,
in contrast to the case when T = [a, b], not every Chebyshev subspace
of C,(T) has property (W-3) (see Example 3.3).

We conclude the introduction by recalling some basic terminology
and notation. A best approximation to feCy(T) from G is any
element g,€ G such that ||f — g¢,|| = inf,.¢||f — g||. The set of all
best approximations to f from G will be denoted by P.(f). G is
called a Chebyshev subspace if Py(f) is a single element for each
feCy(T). An n dimensional subspace G of Cy(T) is called a Haar
subspace if 0 is the only element of G having » (or more) zeros in
T. It is well known (at least when T is compact) that G is a Haar
subspace if and only if it is Chebyshev. A peak point for f e Cy(T)
is any te T with | f(¢)| = || fl|. (This differs from what many authors
call “peak points”.) A set of points £, < ¢, < --- < ¢, in T are called
alternating peak points for f if each ¢, is a peak point of f and
the f(¢,) alternate in sign, i.e., f(t,) = o(—=1)| fllt =12, ---, k) for
some c€{—1,1}. By an interval in R, we shall mean any set of
the form (a,b), (a, b], [a, b), or [a, d], Where —cc < a < b < c and
a = —o or b= o is possible on the open end. Note that every
interval in R is locally compact.

Throughout this paper, unless explicitly stated otherwise, we
assume that n is some arbitrary but fixed positive integer and T
is a locally compact subset of R which contains at least n + 1
points.
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2. Weak Chebyshev subspaces. We shall use the following
topological result [1] (I. 9.7. Propositions 12 and 13, and I. 8.3,
Proposition 5).

LEMMA 2.1. A subset Y of a locally compact I-Ia_usolo'nﬁr space X
is locally compact =Y\Y is closed. In particular, T\T is closed.

It is sometimes a useful technical device to extend the functions
in C(T) to functions defined on the smallest closed interval IT with
contains T (i.e., the intersection of all closed intervals containing T').
Since each function f € Cy(T) is uniformly continuous, it has a unique
extension on to a continuous function f on 7. Obviously, we must
have f =0 on T\T. Since R\T is open, it has a unique representation
as a countable union of disjoint open intervals. Hence also IT\T =
U, I;, where (I;) is a countable collection of disjoint open intervals.
We now define f on IT\T by extending f linearly across each interval
I;. It is easy to verify that the resulting function fisin C,IT).

Summarizing, each f € C,(T) can be extended to a unique function
feCIT) defined by f =0 on T\7 and f is linear on each of the
disjoint open subintervals whose union is IT\7. In the sequel, the
notation f will be reserved for this unique extension of f to all of
IT, and we let G = {§|g € G} denote the extension of the corresponding
subspace G.

LEMMA 2.2. Let G be an m dimensional subspace of C,(T).
Consider the following statements:

(1) G has property (W-1);

(1) G has property (W-1');

(2) G has property (W-2);

(2) G has property (W-2);

(3) G has property (W-3);

(4) G has property (W-4).

Then ') =(1)=(2) = (2') = (3) = (4). Moreover, (1)=(2) and
1") = (1) wn general. In the case n = 1, all the properties are equi-
valent to the existence of a monzero function g€ G with g(t) = 0 for
all teT.

Proof. The last statement is obvious as are the implications
(2)=(2') and (2)= ()= (1).

(2) = (3). Lets, <s, < ---<s,in T be such that D(-‘{;gz S g) -
0. For each integer ke{l, 2, ---, n} define u,€G by o "

9.9: 0 Gt ---gn> D('gxgz ---g%)“‘
R 88 008,

(1) () = D<
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Note that
(2) u(s) = (=10 (4, k=1,2,---,m).
Set xy= —c, x;,=8, (1=1,---, k—1),2,=8,, =k, ---,n—1), and

x, = oo, By property (W-2'), there exists 0 = v, € G such that
(—1iv(x) =0 for all zxelx;, 2., JNT

(t=0,1,---,n—1). In particular, v,(s;) =0 for all v+ k and
(=D* v (s,) = 0. Since {u,, u,, ---, u,} is a basis for G, it follows
using eq. (2) that v, = \u, for some )\, > 0.

Now let ¢, <t, < --- <&, in T with D(gtl%2 g"> #0. Suppose
there is a k& such that s, @(t, &, ---,t,). Since u, =0, it follows
that there is an m such that u,(¢,) 0. From eq. (2), t,.¢{s, -,
Skoty Sitty * 7y Sube Set {ry, 1y, oo, v} = sy, 00, Semy, Sk, 0y 8a} U (T}
with r, <74, for all <. Then ¢, € (x;, 2,+,) for some 7€{0,1, ---, n—1}
implies

0 = (—D'wtn) = (—DNua(ts)

. o . o o -1
—\D (gl.% gn> D <glgz gﬂ>
7‘11'2 o o o 7'”’ 8182 o o sﬂ

SO

D(.algz---gn) _D<glg2---gn>>0.

7‘17’2 LY 7"‘” 3182 « . S"

By a repeated application of this argument, we obtain that

D<glgz--~g”> .D<91g2---gn>>0_
t1t2 "'tn 8185 *** 8,

Thus G has property (W-3).
At this point it is convenient to isolate some useful facts which
will simplify the proof of Lemma 2.2 and are of independent interest.

CLAIM 1. G has property (W-3) (resp. (W-4)) in Cy(T) < G has
property (W-3)(resp. (W-4)) in C,(IT).

Proof of Claim 1. If G has property (W-3)(resp. (W-4)) in C,(IT),
then the restriction G = G|, obviously has property (W-3) (resp. (W-4))
in C(T).

Next suppose G has property (W-3) in C,(T). If G fails to have
property (W-3) in C,(IT), there exist points 3, <5, < --- <§, and
t,<t,<---<t,in IT such that
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s . s e

slo-. ﬂ

Let % be the smallest index such that #,¢ 7T, and set ¢, =%, T
(t=12,---,k—1). Define
g\ tce gk—lﬁk?j}ﬁx e g»

- > (tell).

git) =D ~
70 (tl s byl e T,

Then §eG and §(Z,) > 0. Now i, I, = (a, b) for some open interval
I, (where IT\T = U I,), and § is linear on I, implies §(a) > 0 or
gd) > 0. We may assume §(a) > 0. But the endpoints of I, lie in
the boundary of IT\T, and hence in 7. Since § =0 on T\T, acT.
Set ¢, = a. Then

D&~ﬁw~m

tl"'tkzkﬂ""fn

)=mm>m

Continuing in this way with %,., ---, f,, We obtain points ¢, <t, <
<.« < t, in T such that

D@“mﬁ=D@”ﬁﬁ>m
t - t, t, ooty

where ¢, = §;|r€G. Similarly, we obtain points s, <s, < --- < s, in
T such that

D(g"”g”><o.

Sl"'sn

But this contradicts G having property (W-3). Thus G must have
property (W-3) in C,(IT).

Now let G have property (W-4) in C,(T). If G fails to have
property (W-4) in C(IT), there exist Fe G and points £, < %, < --- <
t, in IT such that §(Z)§(f.+) <0 (1 =1,2, ---, m). If all #, are in
T, then the function g = §|, € G satisfies

9(@)9(F) <0 (i=1,2 -, n)

which contradicts G having property (W-4) in C,(7). Thus let & be
the smallest index such that 7, ¢ Tandsett, = ;e Tfori=1,2, ---,
k—1. Since § =0on T\T, t,e IT\T so t, ¢ I, for some open interval
I.. We may assume §(7,) < 0. By the same argument as in the
above proof of the implication “G has (W-3)— G has (W-3)”, we
obtain a point ¢, € T such that

~

b<t, < oo <t < T < oor < Tony
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and §(t,) < 0. Continuing in this way with %, ---, £,.,, We obtain
points ¢, < t, < --+ < t,4, in T such that

g(ti)g(ti+1) = g(ti)g(ti+l) <0 ('L = 1, 2; tt Ty n) ’

where g = §|,€G. But this contradicts G having property (W-4) in
C(T).

CrAmM 2. Let I be an interval in R, H an n dimensional subspace
of C(I), and (I;) an increasing sequence of compact intervals such
that I = U7 I, and H|, is n dimensional. Then, for any given i ¢
{1,1,2, 2,3, 4}, H has property (W-i) in C(I) = H|;; has property
(W-i) in C/(I,) for each j.

Proof of Claim 2. Clearly, if H has property (W-i) in Cy(Z), then
the restriction H|;; has property (W-i) in C(;) for each j.

Conversely, suppose first that H|,, has property (W-2') in Cy(I;)
foreach 5. Let —c0o =1¢, <t <---<t,, <t,= o, where t,€l (1=
1,2, ---,n —1). Choose N sufficiently large that t;eI, (1 =12, ---,
n — 1). For each k = N there exists h, € H|,\{0} such that

(=LYh(t) = 0 for all telt, ¢, ] NI,

(1=0,1,---,n —1). Choose g, € H such that h, = g,|,, and let g be
a cluster point of the sequence (g./|/g:||]). Then ge H\{0} and

(—1y¥g(t) = 0 for all telt, tilnI

(t=20,1, ---,n — 1). Thus H has property (W-2') in CI).

The proof of the implication “<" in the case when 7 =1 1’, or
2 is similar to the case 7 = 2’ proved above.

Next, assume that H|;, has property (W-4) in Cy(I;) for each j.
If H fails to have property (W-4) in C,(I), there exist points ¢, <
t, <---<t,in I and he H such that r(t)h(t;+) <0 1=1,2, ---, n).
Choose N sufficiently large that ¢,eI, for all <. Then hy =h|, €
H|,, satisfies

hN(t¢>hN(ti+1) <0 (1, = 1’ 2, e, n)

which contradicts H|,, having property (W-4) in Cy(Iy). Thus H has
property (W-4) in C,(I).

The proof of the implication “=’
similar to the above proof when 7 = 4.

H

in the case when 7 =3 is

CrAam 3. Let I be an interval in R and H an n dimensional
subspace of Cy(I). Then H has one of the properties (W-2'), (W-3),
or (W-4) = H has them all.
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Proof of Claim 3. There exists an increasing sequence of compact
intervals (I;) such that I = Uy I; and H|, is n dimensional. By
Jones-Karlovitz [6], H|;; has one of the properties (W-2'), (W-3), or
(W-4) in C(I;) = H|;; has them all. The result now follows from
Claim 2.

CLAIM 4. Let I be an interval in R and H an n dimensional
subspace of C,(I). Then H has property (W-2') < H has property
(W-2).

Proof of Claim 4. The implication “<=" is obvious. Thus assume
H has property (W-2'). Let 1=m=<n and —co =¢ <, < -+ <
by <t,=occo witht,€l(1=1,2,---,m—1). We may assme m < n.
If ¢, , < supl, choose points t¥ < t¥, < -« <t®, <t¥ = o, with
by <tP, tPel G=m,m+1,---,n—1), and t¥ —>supl as k— co.
Define t¥ = ¢, if 0<i<m — 1. If ¢,_, = supl, choose points t{,
R < e <t <P = o, with ¢, ,<t®  tPel t=m—1m, ---,
n—1), and t¥, —>supl as k— . Define t) =¢ if 0 i< m — 2.
In either case, there exists h, € H\{0} such that

(—1)hy(t) = 0 for all telt¥, tP]nI

(i=0,1,---,n — 1), and all k. Let h be any cluster point of the
sequence (h,/||h,|]). Then he H\{0} and

(—1ynt) =0 for all telt, t,, NI

(t=0,1, ---, m — 1). Hence H has property (W — 2).

We can now easily complete the proof of Lemma 2.2,

(8)=(4). If G has property (W-3) in C(T'), then Claim 1 implies
G has property (W-3) in C,(IT). By Claim 3, G has property (W-4)
in C,(IT). By Claim 1, G has property (W-4) in C(T).

(4)=(2). If G has property (W-4) in C,(T), then G has property
(W-4) in C,IT) by Claim 1. By Claim 3, G has property (W-2') in
C,IT). By Claim 4, G has property (W-2) in C,(IT). Clearly, G =
G|, has property (W-2) in Cy(T).

We show that (1) = (2) and (1') >~ (1) in examples below. This
completes the proof.

The proof of the implication (2') = (8) is an obvious modification
of the proof given in [6] for the special case T = [a, b]. The implica-
tions (2') = (8) = (4) have been verified independently by Zielke [10]
using a different argument, and in the more general setting with G
any n dimensional subspace of R7: the set of all real-valued functions
on 7, where T is any subset of R.
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The following two examples show that the the implications (1) =
(2) and (1’)= (1) in Lemma 2.2 are false in general.

2.3. Example of a subspace having property (W-1') but not
(W-1). Consider the set T = {1, 2, 8, 4} and G = span {g,, 9., 9;} < C(T),
where g, =6, — 0,, 9. =0, — 0,, 9, = 0; — &, and 9,(j) =1 if i =7, 0if
1% 7. Itis easy to see that there is no ¢ # 0 in G such that g = 0.
Thus G fails (W-1). To see that G has property (W-1'), we show
that for each pair of points ¢, <t, in T, there is a nonzero geG
such that (—1)g(¢) =0 for all te[t, t,+)NT (2 =0, 1, 2) (where ¢, =
—oo and &, = ). We list all the possible choices of ¢, < ¢, and the
corresponding g below. If {¢, t,} = {1, 2}, {1, 3}, or {1, 4}, take g = —g..
If (¢, t.} =1{2, 8} or {2, 4}, take g = ¢, — ¢,. If {¢, t,} = {3, 4}, take
9= 6,

2.4. Example of a subspace having property (W-1) but not
(W-2). Let T be the set of natural numbers and let G = span {g,, 9.} C
CAT)(=¢,), Where g, = 9,, g, = 6, — 05, and 6,(j) = 1 if 1= J, 0 otherwise.
It is easy to check that G has property (W-1). However, the function
g = ¢, — g, has two sign changes so G fails (W-4). By Lemma 2.2,
G fails (W-2).

Under certain conditions on T (e.g., if T is an interval or if T
is unbounded), the properties (W-1) and (W-1') are equivalent. This
is the content of the following result.

PROPOSITION 2.5. Suppose that either T is unbounded or inf T
or sup T s an accumulation point of T (in R). Then an n dimen-
sional subspace G of Cy(T) has property (W-1) < it has property
(W-1").

Proof. By Lemma 2.2 it suffices to verify that (W-1') = (W-1).
Let G have property (W-1'). If sup T is an accumulation point of
T or if sup T = o, then the same proof as given in Claim 4 of
Lemma 2.2 shows that G has property (W-1). If inf T is an accumula-
tion point of T or if inf T = — o, a similar proof works.

We next give a condition which insures that property (W-1) is
equivalent to (W-2).

DEFINITION 2.6. A function 6: T'— R is called a delta function
if 6 is the characteristic function of a point in 7. That is, for some
t,eT, 6 =X, where 2,(t) =0 if t # ¢, and x,,(%,) = 1.

“Since a delta function Y., is continuous iff ¢, is an isolated point
of T,C(T) contains delta functions iff T contains isolated points.
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Observe also that a subspace G of C(T) cannot contain a delta
function if some f e Cy(T)\G has a unique best approximation g,eG.
(For otherwise, some scalar multiple of the delta function, added
to g,, would another best approximation to f.) In particular, a
Chebyshev subspace of C,(T) cannot contain delta functions.

PROPOSITION 2.7. Let G be an n dimensional subspace of Cy(T)
which does not contain any delta function. Then G has property
(W-1) = G has property (W-2).

Proof. It suffices by Lemma 2.2 to show that if & has property
(W-1), it has property (W-2). Fix any integer m,1 < m < n. We
must show that for each set of points —co = ¢, < ¢, < -+- < ¢, = oo
with ¢,e T (1 =1, ---, m — 1), there exists 0 ## g€ G such that

(a) (—U%t) =0 for all teft,ts)NT (2=0,1,---,m — 1)
and

b)) gt)=0@G=12,---,m— 1).

If m = 1, condition (b) is vacuously satisfied and (a) follows by
property (W-1). Thus we may assume m > 1. What we will show
is that for each integer k, with 1 < k < m — 1, and each set of points
—oo =, <t < -0 <ty = c0 with t,eT (i =1, ---, m — 1), there is
0 % g, €G such that (—1)ig,(t) =0 foralltelt, t,..)NT :=0,1, ---,
m — 1) and g¢,(¢) =0 (¢ =1,2, ---, k). Then the function ¢ = g,._,
will satisfy (a) and (b). We proceed by induction on k.

Assume first that k = 1. By property (W-1), there exists 0 #
g €G such that (a) holds. If g¢(¢t,) =0, set g, = g and we are done.
If g(t) #+ 0, then g(t,) < 0.

Case 1. t, =sup 7.
Choose ¢, € G\{0} such that g,(¢) = 0 for all teT.

Case 2. t, <supT.
Let c =inf{teT|t >t}. Thent <7 <Ht,.
We consider three subcases.

Case 2.1. 7 =t,.

Choose a sequence (z;) in T,t <7t; <t, such that z; »¢ = .
Set t{? =¢, if i1 and ¢ = z;, Choose g9 €@, |[|¢g"]] =1, such
that (—1)¢¥(t)=0 for allte[t?, t¥)NT (1 =0,1, ---, m — 1). Let
g, be a cluster point of the sequence (g').

Case 2.2. T =1,
Set {,= —o and f, = t;4,(i = 1,2, ---, m — 2). Choose 0 = g, &
G such that (—1)ig,(t)y=0 forall te[t, t.nINT (:=0,1, ---, m — 3).
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Case 2.3. t, <t <t,.

If ceT,let t,=¢ if i1 and , =7. Choose 0 # g,€G such
that (—1)'g,(f) = 0 for all te[t;, t.)NT (:1=0,1, -+, m — 1).

If 7¢ T, choose a sequence (t;) in T with 7 < 7; <¢,and 7;— 7.
Set ¢ =t¢, if i1 and t = r,. Choose ¢V €@, ||g?|] =1, such
that (—1)'¢¥(¢) = 0 for all te[t?, t2)NT (¢=0,1, ---,m — 1). Let
g, be a cluster point of the sequence (g*).

In every case, we have obtained a function g,€ G\{0} satisfying
9,)g(t) = 0 for all te T\{t,} and g,(t,) = 0. If g, (t) =0, set g, = go.
If g4(t) # 0, then g,(t,) > 0 and set g, = g — (9(¢.)/9.(t.))g,. Since @ =
g(t)/g,(t) < 0, it follows that g, satisfies (—1)'g,(t) =0 for all te
[ty ta)NT (1=0,1, ---, m — 1), and ¢,(¢t,) = 0. If g =0, then g =
ag,. Since G contains no delta functions, there exists a point f ¢
T\{t} such that g,%) = 0. Hence

0= g(f>go(z) = a‘[go(f)]2 <0

which is absurd. Thus g, = 0 and the proof of the first step k¥ =1

is complete.
The proof of the induction step is analogous.

REMARK 2.8. Example 2.3 above is of a subspace G which does
not contain any delta function, has property (W-1'), but not (W-1),
and hence not (W-2), (W-2'), (W-3), or (W-4),

COROLLARY 2.9. Let I be any interval in R and let G be n
dimensional subspace of CyI). Then G has one of the following
properties <= it has then all: (W-1), (W-1"), (W-2), (W-2'), (W-8), (W-4).

Proof. Since I contains no isolated point, C,(I) contains no delta

function.
If I were bounded, then both sup I and inf I would be accumu-
lation points of I. The result now follows by Lemma 2.2, Proposition

2.5, and Proposition 2.7.

We note that when [ is an interval, the equivalent properties
(W-1), (W-1'), (W-2), and (W-2') simplify somewhat. For example,
if I is a bounded interval and @ = inf (I), b = sup (I), then an =
dimensional subspace G of C,(I) has property (W-2') iff for each set
of points

a=t <t <<t ,<t,=b,
there exists g € G\{0} such that
(—1ig(t) =0 for all telt, tirl
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t=0,1,---,n —1).

3. A characterization of property (A-1).

THEOREM 3.‘1. Let G be an n dimensional subspace of C,(T).
The following statements are equivalent:
(1) G has property (W-1);

(2) For each feCy(T) which has a unique best approximation
9. €G, f — g, has at least n + 1 alternating peak points;

(3) Each feCy(T) which has 0 as its unique best approximation

in G must have at least n + 1 alternating peak points.

REMARK. In particular, if G is “very non-Chebyshev” (i.e., each
feCy(T)\G has more than one best approximation in G), then G has
property (W-1).

Proof. (1)=(2). Suppose G has property (W-1). Fix any fe
C(T) with Py(f) = {g,} a singleton. If f =g, any »n + 1 points in .
T work. Thus we assume f # g,. Choose a compact set K in T so
that

l<f—go><t>|<é—nf—gon for all teT\K .

We define a set of points in 7T inductively as follows. Let

t,=minfee K| [(f — g)O)| = [|f — all} .

We may assume (f — ¢,)&,) = ||f — g,l|. Having chosen t,, we set
by = min{t € KN [t;, ) [(f — g)@) = —(F — 9.)(t)} .

Now either this procedure yields % + 1 points ¢, (which clearly satisfy
(—1)HYf — g)(t) = ||f — 9.|]) and we are done, or this process ends
with m points ¢;,, 1 <m < n (i.e., the set KN [t,, «)N{t € T|(f—g)(t) =
—(f — 9,)(tn)} is empty). Thus we assume the latter case.

Set z,= — and 2, = . If m > 1 we define additional z, as
follows: for each ¢ =1,2, ---, m — 1, set

z; = max{t € K N [t;, t,;+.]|(—=1)"*'(f — go)(¢) = 0} .
It follows that ¢, < 2, < t,+, and so
—o0 =2, <2< <L 2 <Ry =0,

For 1=0,1,---,m — 1, let
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M; = max {(—D™(f — g)@®) |t €[z, 2] N K}

and M = max{M,|i=0,1, ---, m — 1}(=0). By compactness of K and
the choice of the ¢; and z;, it follows that M < || f — g,

Since G has property (W-1), there is 0 = geG such that
(—1)*'g(¢t) =0 forall te[z;, 2. )NT (1 =0,1, ---, m — 1). By scaling
g We may assume

0 <llgll < min {2417 = aull, 1f — ool =M } .
If te T\K, then

uf—%~MM§uf—wwuwwn<%w—%u+wn

sIf =gl

If telz;,, 240N K (1=0,1, ---, m — 1), then

(=D = 9o — 0)@) = (—1""(f — g)(®) — (=1)""g(?)
=M+ gl =11f — oll

and
(=" — g, — 9@ = (=D)"(f — g)@®) = — | f — g0ll

Thus [(f — 9o — 9)®)| = || f — g,|| implies that || f — g, — g]| = [|F — ]|
and hence g, + g € Py(f) = {g9,}, a contradiction.

(2) = (3) is obvious.

(8)=(1). Assume (3) holds and let 1< m<m and —c =1¢, <
<o <t ,<t,=co, where t,eT (1 =1,2, ---,m — 1). Weshow
there exists g € G\{0} such that (—1)‘g(¢) =0 for all te[t, t,.)NT
(1=0,1,---,m —1). Let T, = T\T and for each positive integer
N, let

T, = {t e T| dist(t, T)) = %}

if Ty @ and Ty =T if T,= @. It is easy to verify that T, is
a closed subset of R, hence of T, Ty C Tyiy, and T = U Ty.
Thus the sets

KN,0=|:t1‘"N, tl—l—l\f:lm Ty,
KN,i:-l:tz,ttﬂ"‘]lv]n Ty 1=12,---,m—2),

and
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KN,m = [tm—h tmfl + N] n TN

are disjoint compact subsets of T. (K, may be empty for all N
in which case we simply ignore it in the subsequent argument.) By
Urysohn’s lemma (or our linearization procedure) there exists functions
Jui€C(T) (1=0,1,---,m — 1) such that 0= fy . <1, fy.=1on Ky ,,
Sw:=0 off (¢, — 12N, ¢,,, —1/2N) (1 =1, 2, ---, m — 2), fy,, =0 off
(t, — N —1/N, t, — 1/2N), and fy n_; =0 off (¢,,.,—1/N, t,..,+ N+ 1/N).
Set fy = Dt (—1)fy:. Then fyeC(T) and fy has only m — 1 <
n — 1 changes of sign so f, has at most % alternating peak points.
Thus 0 cannot be the unique best approximation to fy. Choose any
g € Po(f)\{0}. Then g, must have the same sign as fy on the sets
Ky .. Thatis, (—1)gy(t) =0forallte Ky, (i=0,1,---,m —1). Let
hy = gu/llgx]l. Let g be a cluster point of (hy). Then gegG, |lg|| =
1. Since Ky, "(—oo,t)NT as N— oo, Ky, /t, ) NT (1 =1, 2,
ceo,om —2), and Ky, Nt )N T, it follows that (—1)'g(t) =0
for all telt, tw)NT (4=0,1, ---, m — 1).

COROLLARY 3.2. Let G be an n dimensional subspace of Cy(T)
which does not contain any delta function (e.g., if T is an interval
or if G 1s Chebyshev). Then:

(a) The following statements are equivalent:

(1) G has any one of the equivalent properties (W-1), (W-2),
(W-2'), (W-3), or (W-4);

(2) For each fecCy(T) which has a unique best approximation
9. €G, f — g9, has at least n + 1 alternating peak points;

(8) FEast feC(T) having 0 as its unique best approximation
wm G has at least n + 1 alternating peak points.

(b) If T satisfies the hypothesis of Proposition 2.5 (e.g., if T
is an interval), and if G is a Chebyshev subspace, then the above
statements are equivalent to

(4) G has property (W-1).

(e) If T is an interval and G is a Chebyshev subspace, then G has
all of the weal Chebyshev properties (W-1), (W-1"), (W-2), (W-2"), (W-3),
and (W-4).

Proof. The proof of (a) follows from Theorem 3.1, Lemma 2.2,
and Proposition 2.7.

The proof of (b) follows from part (a) and Proposition 2.5.

To prove (c), let T be an interval and G a Chebyshev subspace.
Then for each feC(T), f — Py(f) has » + 1 alternating peak points.
(This follows, essentially, by a result of Bram [2]. It can also be
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deduced just as Remez did in the classical case T = [a, b]; see e.g.,
[8].) The result now follows from (b).

There seems to be a commonly held belief that statement (2) of
Corollary 3.2 is always valid for Chebyshev subspaces G of C(T), if
T is a compact subset of R. The following example shows this to
be false.

3.3. Example of a one dimensional Chebyshev subspace of
C(T) which fails to have any weak Chebyshev property. Let T'=
{1, 2}. Consider the one dimensional subspace G spanned by the
function g, defined by g,(t) = (—1)! (t e T). Then G is Chebyshev since
g, has no zeros. Since g, changes sign, it follows by Lemma 2.2
(when n = 1) that G fails to have any of the weak Chebyshev pro-
perties. Hence by Corollary 3.2(a), some f € C,(T) has the property
that f — P,(f) has less than two alternating peak points. (More
explicity, define feCy(T) by f(1) =0 and f(2) = 2. Then Py(f) =g,
and f — g, is of one sign.)

4. A characterization of property (A-2).

THEOREM 4.1. Let G be an n dimensional subspace of Cy(T).
The following statements are equivalent.

(1) G has any one of the equivalent properties (W-2), (W-2'),
(W-3), or (W-4);

(2) For each feCy(T), there exists a g,€ Py(f) such that f—g,
has at least n + 1 alternating peak points.

Proof. (1)=(2). Suppose G = spani{g,, ¢,, -+, 9.} has property
(W-4) and feC(T)\G. Assume first that T is a compact interval
[a, b]. Then the result follows from Jones-Karlovitz [6]. Next let
T be an arbitrary interval. Then there is an increasing sequence
of compact intervals T, such that UP T, = T. For k sufficiently
large, G|, will be » dimensional and we assume this to be the case.
Set G, = G|y,. Then each G, has property (W-4) (in C(T)|, cC(T\)
since G does. By the first part, there exist h, € Py (f|7,) and n + 1
points ¢, <, < -+ <{&441, in T, such that

(1) ’ o(—D(f —h)t) = If — el (=12, ---,n+1)

for some o,€{—1, 1}, where [kl = ||h]ls, = suDier, |R(®)]  Since
hy € Ps(flz,), we have

lhalle = 201 F 1l = 2][F1] for all k.

By passing to a subsequence, we may assume all the o, to be the
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same, say 0, = 1. Write h, = >\, @4.0:|7,-

Claim. sup,|a,| <o (=12, ---,nm).
Indeed, we may assume that dim G, = n. Since T, T, and
hu€ Po(fls) (& =1,2, ---), we have

W=kl slf =i =lIfl=lfIl B=12 ),
SO
Hhells = 110+ LN = 2] 7] k=12 --).

Now G, is isomorphic to I (the space of all n-tuples of real
numbers endowed with the maximum norm) by the mapping

g{ Bigi[Tl__—) (Bl, 62, Y Bn) .
Hence there exists a constant M, (depending only on %) such that

max |8;| = M,
1=isn

;Bigi ]T1

for all real numbers B, B, ---, Ba Since hyls, = S @ugils, and
IRl < 2] fll, we obtain

fgglﬁkil§M,,Hhklllé2ManH k=12, --)

from which the claim follows.

Using the claim, we can pass to a subsequence and obtain «,, —
a; (i=1,2, ---,n) for some a;eR. Let g,= Sra,9;€G and h, =
S aug:€G. Then h,| r,=h, and h,— g,. Since ﬁle,,:hk e Py (flr,),
we have,

If =kl =1f —gl=lIf —all  GEB=12--).

On the other hand, we can choose ¢,€ T such that |[(f — g.)(&)| =
|f — gll. Since Uy T, =T and the T, are increasing, we have
t,€ T, for all k sufficiently large. Also k, — g, implies that for each
e > 0, there exists k. such that |[(f — h)(&)| = |(f — 9)(&,)|—¢ for
all k = k.. Thus for all k sufficiently large,

”f - Ek”k = I(f - Ek)(to)I = I(f - go)(to)l —& = ”f - go” —€.
Hence ”f - ﬁk”k - Hf - go“- Thus for 1+ =1, 2,--,m+1,

I(f — 00)(E) | = [(f — B (ts) — (9o — i) ()|

Z I f = hlle = 1190 — Rill — 1 f — g4l ,

and hence
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tue K= {teT||(f — 0)(®)] = 7 — aoll}

for k& sufficiently large. Since K is compact, by passing to a sub-
sequence, we may assume that ¢, —¢t,eT (1=1,2, ---,n + 1).
By passing to the limit in eq. (1),

(=D —g)t) = Ilf —gll (=1,2---,m+1),

and t, <it, < -+ < tuy. If g,€ Py(f), then for any g € Py(f) we obtain
[(f — 9)t)| < IIf — gl and

(=DXg — g)(t) = (=D(f — 9.)(t) — (=1)(f — 9)(¢)
=If = gl = (=D(f — 9)t) >0

fori=1,2,.--,n + 1. Thus g — g, has » sign changes, contradicting
property (W-4). This shows that g,€ Py(f) and proves the result
when T is any interval. _
Finally, let T be any locally compact subset of R. Let IT, f¢€
C,(IT), and G be as described prior to Lemma 2.2. Since G has
property (W-4) and since each §e@ is linear, hence monotonic, on
each interval in IT\T, G also has property (W-4). Fix any fe
C(T)\G. Then feCIT)\G and by the result proved for intervals
there exist §, € P3(f) and points %, < %, < -+ < %.4, in IT such that

o(—D(F —F)E) = I F = Gollw#0 (i=12 ---,m+1)

for some oce€{—1, 1}.

Claim. We may assume £,€T (i =1,2, ---, n + 1).

If 7,e T, set t,=1%,. If some Z,¢ T, then (since f—§,=0 on T\T) %,
is in one of the disjoint open intervals I, whose union is IT\T. But
f — §, is linear on each such subinterval and |(f — §)(Z)| = || F—ollir
imply that f — §, is constant on I,. We then replace 7, with either
one of the endpoints ¢, of I,. Clearly, the resulting £, e T, ¢, <t, <
coe < th4y, and

o(—D(F =Gt =1 F = Goller (i=1,2 ---,n+1)

which proves the claim. 5

Since ||f — Gollzz < |If — gl for all g € G and since || ||,z = || ]
for every h e Cy(T) (because h is linear on each of the subintervals
whose union is IT\T), it follows that ||f — g,/ < ||f — g|| for all
ge@G. That is, g, € Py(f), and using the claim,

o(=D(f —9)(t) =lIf —gll (i=12---,m+1).

(2) = (1). Suppose (2) holds. We will show that G has property
(W-2"). We first prove the
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Claim. For each set of points —oo =¢, <t < -+ < ¢, = oo,
with ¢,e T (¢ =1,2, --+, n — 1), there exists g ¢ G\{0} such that

(—Ugt) =0 for all teft, t, )NT

(i=1,2,---,m — 1), and g(t) # 0 for some te T\{t, %, - -+, to_.}.

We construct the sets K ,(1 = 0, 1, ---, n) and functions fy € C(T)
exactly as in the proof of the implication (38) = (1) of Theorem 3.1.
Then fy has at most n alternating peak points. Choose gy € Pu(fx)
such that f, — g5 has at least n + 1 alternating peak points. Then
gy =0 and gyfy =0 on each set Ky, 1=0,1, ---, n). Let hy =
(gx/llgx1D) and let g be a cluster point of the sequence (hy). Then
ge@, llgll =1, and (—1)igt) =0 for all telt,t.)NT (1=0,1, ---,
n—1). If g =0 for all ¢teT\{¢, t, ---, tu—), then for such
t, |hy(t)] < 1/8 eventually (i.e., for N large enough) and hence | g, ()| <
1/4 eventually (since ||gy||< 2]/ =2). But if te T\{t, &, -+ -, tu_}s
then te K, ; eventually for some 4 implies that, eventually,

0 = 001 2 1O = o 21— 3 =2
Thus for some integer N,, we have ||fy, — gyl = 3/4. It follows
using the definition of fy, and the above properties of gy, that fy, —
gy, cannot have more than » alternating peak points, a contradiction
to the choice of gy. This proves the claim.

We next show that for each set of points —c0c =%, <, < --- <
ty, <t,= oo, with t,e T (1=1,2,-.-,n — 1), and each integer £k,
with 1 £k < n — 1, there exists ¢, € G\{0} such that

@) (=Yg, (t) =0 for all telt, t,.0NT (¢ =20,1, --+-,n — 1), and

(b) gt) =0 (=12, ---, k).

Once we have this, it is clear that the function ¢ = g,_, satisfies

(—D'g() =0 for all telt, t,,]NT

(t=0,1,---,n — 1) and this shows that G has property (W-2"). We
proceed by induction on k. The induction step is similar to the case
k =1 so we only prove the latter. By the claim, there exist g€
G\{0} which satisfies (a) and ¢(s) # 0 for some se T\{t, &, + -, t._;}.
If g(t) =0, set g, = g and we are done. If ¢(¢,) # 0, then g(¢,) < 0.

Proceeding exactly as in the proof of Proposition 2.7 we obtain
a function g, € G\{0} satisfying g,(t)g(t)=0 for all te T\{¢,} and g,(t)=
0. If g,(t)=0, set g, =g, If g,(¢) =0, then g,(¢)>0 and set
g, = g — ag,, where a = (g9(t,)/g,(t,)) < 0. Then (—1)‘g,(t) =0 for all
telt, ta)NT (1=0,1,---,n—1), and ¢,(¢&;) =0. If g, =0, then
¢ = ag,. Hence

0§%®M@=%M®P<O
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which is absurd. Thus g, # 0 and we are done.

Example 2.4 above, along with Theorems 3.1 and 4.1, show that
properties (A-1) and (A-2) are not the same in general. However,
there is one important case when they are the same.

COROLLARY 4.2. Let I be any interval in R and G an n dimen-
siomal subspace in Cy(I). Then the following statements are equivalent:

(1) G has any one of the equivalent properties (W-1), (W-1'),
(W-2), (W-27), (W-3), or (W-4);

(2) For each feCylI), there exists g,€ P,(f) such that f — g,
has at least n + 1 alternating peak points;

(8) For each feCyI) which has a unique best approximation
9. €G, f — g, has at least n + 1 alternation peak points;

(4) FEach feCyI) with Py(f) = {0} has at least n + 1 alternating
peak points.

Proof. Corollary 2.9, Theorem 3.1, and Theorem 4.1.

In the particular case when I is the compact interval [a, b], the
equivalence of properties (W-2), (W-3), (W-4), (A-1), and (A-2) was
first proved by Jones-Karlovitz [6].

5. A characterization of property (A-3).

THEOREM 5.1. Let G be an n dimensional subspace of C(T).
The following statements are equivalent.

(1) G 1is Chebyshev and has one of the equivalent properties
(W-2), (W-2'), (W-8), or (W-4);

(2) For each feC(T) and each g,€ Pu(f), f — ¢, has at least
n + 1 alternating peak points.

Proof. (1)=(2). This follows from Theorem 4.1.

(2) = (1). If statement (2) holds, Theorem 4.1 implies that G
has each of the equivalent properties (W-2), (W-2'), (W-3), and (W-4).
If G were not Chebyshev, G would not be Haar so there would exist
some nonzero ¢,€G = span{g,, g,, + -+, g,} Which vanishes on a set of
n distincet points T, = {¢, ¢, ---, t,} of T. We may assume [|g,|| = 1.
Then det[g.(t,)]r = 0 so there are scalars a, not all zero such that
S iagt)=0(G=12,---,m),1ie., Dra,git)=0forallgeG. Let
o, =sgna; if ;0 and o,=1 if a, =0. Since each ¢, is a G,
Urysobn’s lemma (or our linearization procedure) implies that for
each i = 1,2, ---, n, there exist f; € C,(T) and disjoint neighborhoods
U, of t, such that 0= £, <1, £t)=1,f,=0 off U, and fi(t)<1
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for all ¢+ ¢, (see e.g., [3; Cor. 4.2, p. 148]). Let z = 3\*0,f;. Then
2eCy(D), z(t;) =0,1=1,2, ---, m), and |2(t)| <1 if teT\T,. Set
S =21 —1g,) + g, Then feCy(T), ft.) — 9(t.) = 2(t) =0, (1 =1, 2,
-+, m), and
[ f(&) — g,@)| = [2() |1 — [g,®)])
<1 if teT\T,
S l1 i teT,.

Thus ||f — ¢,]] = 1 and the set of peak points for f — g, is T,. If
geG and || f — g|| <1, then since | f(t,)] = 1 for all 4,

sgng(t,) = sgn f(t,) =2(t) =0, 1=12,---,m)

SO
0= iaig(ti) = i la,| [g(t)]| >0

which is absurd. Thus ||f —g¢||=1=|f — g,|| for all geG and
hence g, P,(f). But f — g, has only n peak points (viz. the set T).
This contradiction to (2) shows that G must be Chebyshev.

In a result related to Theorem 5.1, Gopinath and Kurshan [4]
essentially proved that an n dimensional subspace G of C,(T) is
Chebyshev and has property (W-4) < it has the property (G — K):
For each set of points —c =¢, <t, < - <¢,_, <t, = with ¢, ¢
T (1=1,2,---,n — 1), there exists g € G such that

(_1>ig(t)>0 if t€<tu ta) N T
(t=0,1,---,» — 1), and
gt)=0 (1=1,2 ---,m—1).

Theorem 5.1 can be strengthened in case T is an interval.

COROLLARY 5.2. Let I be an interval in R and G an n dimen-
stonal subspace of Cy(I). Then the following statements are equi-
valent:

(1) G 1s Chebyshev;

(2) For each feC(I) and each g,€ Py(f), f — g, has at least
n + 1 alternating peak points;

(8) For each feCy(I) and each g,€ Py(f), f — 9, has at least
n + 1 peak points.

Proof. ()= (2). By Corollary 3.2(c), G has all the weak
Chebyshev properties so the result follows from Theorem 5.1.
(2) = (8) is obvious.
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(8) = (1). This follows exactly as in the proof of (2)= (1) in
Theorem 5.1.

REMARK 5.3. The implication (1) = (2) in Corollary 5.2, in the
particular case when I = [a, b}, is just the classical alternation theorem.
Also, when I = [a, b], the implication (2) = (1) was proved by Hands-
comb, Mayers, and Powell [5]. We now show that implication (1) =
(2) fails in general if I is not an interval. Indeed, it fails if one
adjoins a single point outside the interval.

ExAMPLE 5.4. Let T =[a, b]U{c}, where c¢[a, b]. Let G =
span {g,}, where ¢,({) =1 if tela, b] and g.(¢c) = —1. Then G is
Chebyshev in C(T) since g, has no zeros. But if f(f) =1, then
Py(f) =0 and f — P,(f) does not have two alternating peak points.

6. Examples of weak Chebyshev subspaces. There are a
number of important subspaces which are not Chebyshev but are
weak Chebyshev. We give a few examples below.

6.1. (Polynomial Splines). Let T = [a, b] and fix any k(=1) points
8§, <8 < -+ <8, in T. For any integer m = 0 let

Sm,k = Span{ly t; Tty tm’ (t - 31)7:9 Tty (t - sk)T} ’
where
t—s)™ if t=s

t— s =
(¢ =) 0 if t<s.

S, is the n = m + k + 1 dimensional subspace of C[a, b] known as
“the polynomial splines of degree m with k fixed knots.” It is known
(see e.g., [7], p. 18) that S,,,, has property (W-3), and thus by Corollary
4.2 has all of the weak Chebyshev properties (W-i) (1 =1, 1', 2, 2/, 3,
and 4) as well as the alternation properties (A-1) and (A-2).

6.2. (Weighted Polynomial Splines). The example in (1) can be
modified as follows. Let T=R and k points s, <s, < -+ <8, in
T be given. Let we Cy(T) be any positive function such that w-p e
Cy(T) for any polynomial p (e.g., w(t) = ¢#). Then then =m+k+1
dimensional subspace ’

mr = {wg |9 €Sus},

where S, . is defined as in 6.1, obviously has property (W-3) since
S... does. Thus by Corollary 4.2, S5, ; has all the Chebyshev properties
(W-4) (i=1,1,2 2,8, and 4) and the alternation properties (A-1)
and (A-2).
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6.3. (Weighted Chebyshev subspace). Let T = I be any interval
in R and P any % dimensional Chebyshev subspace of C,(T). Let
w € Cy(T) be any nonnegative function which does not vanish iden-
tically, and set

G ={wp|pel}.

Then since P is Chebyshev, it follows that G is an » dimensional
subspace of C,(T) having property (W-3), and hence, by Corollary
4.2, all the weak Chebyshev properties (W-i) (+ =1, 1, 2,2/, 3, and
4) as well as the alternation properties (A-1) and (A-2).

6.4. Let T = N denote the set of natural numbers (so C,(T) = ¢,)
and let any » points k, <k, < --- <k, in T be given. Define g, ¢,
by

) = 1 if t=k,
948 = 0 otherwise
(t=12,---,mn). Then G =span{g, ¢,, ---, 9.} is an n dimensional

subspace of ¢, which is easily seen to have properties (W-1) and
(W-2). Thus by Proposition 2.5, Lemma 2.2, and Theorems 3.1 and
4.1, G has all the weak Chebyshev properties (W-i) (7 =1, 1,2, 2/, 3,
and 4) and the alternation properties (A-1) and (A-2).

We note that none of the above four examples is a Chebyshev
subspace in general.

7. A generalization. We can give the following generalization
of the equivalence (1) = (3) of Corollary 5.2. In particular, it provides
another characterization of Chebyshev subspaces in C,(T) for certain
T (including 7 metric). However, unlike Haar’s characterization
concerning the number of zeros of elements of the subspace, our
characterization is not intrinsiec.

THEOREM 7.1. Let T be any locally compact Hausdorff space
containing at least n + 1 points and let G be an n dimensional sub-
space of C(T). If each point of T 1s a G, (e.g., of T is metric), or
if each nonzero element of G has only finitely many zeros, then the
following statements are equivalent:

(1) G is Chebyshev;

(2) For each feC(T) and each g,€ Py(f), f — g, has at least
n + 1 peak points.

The proof of the implication (2) = (1) is similar to the proof of
the implication (2) = (1) of Theorem 5.1. The implication (1)= (2)
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is well-known and due, for compact T, to Remez (see e.g., [8]).

It is worth noticing that this characterization of Chebyshev spaces
is no longer valid in general if both the conditions on 7 and G (viz.
(i) each point of T be a G, and (ii) each nonzero element of G have
only ﬁnitely many zeros) are dropped. To see this, let SR denote
the Stone-Cech compactification of R and consider the space T =
BR\R. 1t is well-known that 7 is a compact Hausdorff space in
which no point is a G, (see e.g., [9; p. 150, prob 112]). A simple
induction shows that no finite subset of T is a G;. Thus each fe
C(T) has an infinity of peak points (since the set of all peak points
is a G;). By Urysohn’s lemma there exists a nonzero g € C(T') which
has a zero. Thus G = span{g} is not Chebyshev, but for each fe
C(T) and g,€ Py(f), f — g, has infinitely many peak points.
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