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MODULAR SUBLATTICES OF THE LATTICE OF
VARIETIES OF INVERSE SEMIGROUPS

N. R. REILLY

Kleiman used the variety £ of all groups to define two
endomorphisms ¢ and ¢~ of the lattice &£7(_7) of varieties
of inverse semigroups as follows: ¢% (?7) = Vv 2 and
0, ()= ZFANZ. This introduced two congruences v, and
v, on & (-*) which have been very important in recent studies
of L (7).

This paper is devoted to studying further properties of the
v, and y; = y; Ny, congruence classes.

The first main result establishes that each v;-class is a
complete modular sublattice of <~ (-#), although, in some cases,
the class may just consist of a single element.

It is not difficult to see that each v;-class has a minimum
member. On the other hand, it is shown that not all v;-classes
have maximum members. However, it is established that a
large class of v;-classes do have maximum members. If Z is
a variety satisfying an identity of the form x**!ff x™» =
x*t 'x™ then the v;-class containing % has a maximum
member. The condition that a variety satisfies this identity
is equivalent to a member of conditions, one being that every
member of 7" is completely semisimple and such that 27 is
a congruence.

The nature of the maximum element in these cases is very
interesting. If Z satisfies the above identity, then the funda-
mental inverse semigroups contained in % constitute a variety,
7 say. Letting ¥ = N %, the maximum element in the v;-
class containing % is shown to be the Mal’cev product £ o~
of the varieties ¥ and 2. It is shown that this is not valid
in general. Other properties of the Mal’cev product are ob-
tained.

1. Notation and terminology. We shall adopt the basic nota-
tion and terminology for semigroups from [2] while, for basic results
in the theory of varieties of groups, the reader is referred to [10].

The variety of all inverse semigroups, (groups, abelian groups)
will be denoted by (T »Z”) and the trivial variety by .7~
Throughout the paper the term variety, if unqualified, will always
mean a variety of inverse semigroups.

We will denote by F(G;) the free inverse semigroup (group)
on a countable set X.

For any semigroup S, 7°(S) will denote the variety generated
by S. For any variety 7, F(7°) will denote the relatively free
inverse semigroup in 7° of countable rank and o(7") will denote the
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verbal congruence on F'y = F(_#) defining the variety 77 In addi-
tion, (7°) will denote the lattice of varieties contained in 77

For any group variety &, we denote by Z(Z) the fully
invariant subgroup of G, determining the variety &. We shall also
denote by (%) the class of varieties 7° such that 7" N € = <.
In particular, £7(.“") denotes the class of those varieties that contain
no nontrivial group.

For any inverse semigroup S, we will denote by E(S) the semi-
lattice of idempotents of S and by ft; the maximum idempotent
separating congruence on S. For the basic properties of s, the

reader is referred to [8].
For more extensive information on the background and context

of this paper, the reader is referred particularly to the papers by
Djadchenko [3], Kleiman [5], [6], and Reilly [12].

2. The modularity of y,classes. For any inverse semigroup
S, we denote by 4(S) the lattice of congruences on S and write
0(S) = {(0,, p) € A(S) X A(S): o, N Es X Es = 0, Eg X Hg} .
From Reilly and Scheiblich [13], we have the following result.
LEMMA 2.1. For any inverse semigroup S,

(1) 6(S) is a congruence on A(S);
(2) each G-class is a complete modular sublattice of A(S).

Let 6 & Fy X F'y and, for each (u, v;)€d let t; be an element
of X which does not appear in either u,; or v,. Then we write
0 = {(witt'uz?, vitit7'v): (uy v;) €6} .
The following result is due to Kleiman [5].

LemmaA 2.2. If  is a basis for the identities of a wvariety 7~
them 6 is a basis for the identities of Z ) TP

From this we immediately obtain the following corollary:

COROLLARY 2.3. Let 7 be any variety. Then 7V CF =
{Se 7 S/pse7}.

This leads us to the main result of this section. For varieties
7, " with 7 © % we write [ 7; %] for the set of varieties
with 7" € % & 7.
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THEOREM 2.4. For any varielty 7 of inverse semigroups, the
wnterval [ 7; 7V CF] is a complete modular sublattice of (7).

Proof. Let o, = o(7" vV £F) and p, = p(77). Then F(7" V &)
is just Fy/p, and F(?") is just Fy/p,. Let v = p,/Jo,. Then (F,/p,)/t
is isomorphic to F'y/0,.

Since Fy/o,e 7 Vv £, it follows from Corollary 2.3, that
(Fy/o)/pre 7; where p is the maximum idempotent separating con-
gruence on F;/p,. Suppose that we denote by p, the congruence on
Fy inducing ¢ on Fy/p,, that is, such that F/po, is isomorphic to
(Fy/p)/pe. Then Fy/o,€ 7" and so 0,Sp0,. Hence v = 0,/0,Z0,/0, =
Thus 7 is an idempotent separating congruence on F/p,. Hence
(0,/0.) € O(F ).

Now let 7 e[ 7,7 v £&°] and p, = o(%#"). Then p, < p, S 0..
Hence, p,, o, and p, are all § = 0(F) equivalent.

Let us write (7, 7V EP) =7, 7V €FPand F'( 7,7 V
<) for the lattice of fully invariant congruences of the form
o), # el 7 VEZPl. Then F'(7,7 VvV £F) is the set of
all fully invariant congruences between (and including) o(7") and
o7V £Z7) and is anti-isomorphic to (7, 7V ).

From the above, we see that Z'( 7, 7 V £.°) is contained in
a single #-class A, say, which, by Lemma 2.1, is a modular sublattice
of A(Fy). Since (7,7 V £P) is a sublattice of A(Fy) and so
of A, it follows that &'( 7, 7" V £7) must be a modular lattice.
Hence, A (7, 7" V £€P) is also modular, as required.

Since <~ (.#) is a complete, it follows that [ 7, 7 Vv €] is
a complete sublattice.

Let two mappings @Y and ®” be defined on () as follows:

PUT) =9V P, PNT) =T N LA, for all 7 e~ (7).
LemMA 2.5. Kleiman [5]. The mapping ®¥ is a homomorphism

of ZL(F) onto the lattice of varieties containing £ and ®" is a
homomorphism of L (7)) onto F(TF).

This leads to certain useful partitions of ¥ (_#). Let v,(v,) be
the congruence on (_#) induced by ®V(®") and v, = v, N v,. Thus,
(7, # )ey, if andonly if ¥V &F =% VvV EF,
(7, % )ey, ifandonly if ¥Y'NLFP =X NLF.

Of course, for any group variety &, the y,-class containing Z is
just &(Z).
Recall [8] that an inverse semigroup is said to be fundamental
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if it has no nontrivial idempotent separating congruences or,
equivalently, no nontrivial congruences contained in Green’s relation
57,  Such semigroups have also been called antigroups ([3] and
elsewhere). We shall denote the class of the such inverse semigroups
by AZ.<” It should be noted that this class is not itself a variety
although it does have a role to play.

PropPOSITION 2.6. Kleiman [5]. Let 7, % € X (*). Then
NEP =% NP if and only if V"N ACTF =W ( ACA.

This result provides us with a further deseription of v,. Thus,
for 7, % e £ (*),

(7, % )ey, if and only if 7" NATCF =% N ALF.

Let us now focus our attention on a single v,-class _#7 Let
7" e._4. Then clearly 7 = 7"V £ is the maximum element of
47 On the other hand, by Proposition 2.6 _Z N AZZF < 7, for
all 7 e_#. Hence, #,=7(#NAZZ) is a minimum element of
A and A = _#\ €7 Combining this with Theorem 2.4 we
have the following result.

THEOREM 2.7. Let _+~ be a v-class of (7). Then 4" has
both a minimum element, _#,, and a maximum element, 7 = _#\N
P Moreover, 4~ is a complete modular sublattice of L (7).

Since the minimum element of any v,-class is generated by its
fundamental elements and, conversely, any variety generated by its
fundamental members is the minimum in its y,-class, we say that
any such variety is fundamental.

For any fundamental variety 9, leto”: FA(CFP)—[7,7 V
ZZ] be defined by

" (Z)=7 V¥, forall e LA (LZF).

Then 9 maps L (£P) into (7")v,, the y,-class containing 77

It is interesting to note some of the situations that arise in this
context.

Let Y, denote the two-element semilattice, B, denote the Brandt
semigroup of rank two with trivial structure group and B} denote
B, with an identity adjoined.

Then Djadchenko [3] has shown that for 7” equal to 7°(Y,) or
7°(B,), ®” is an isomorphism of £(£<°) onto (¥ )y,. Although
7°(By) covers 7°(B,) in (), an example in [12], shows that @7,
where 7” = 7°(B;) does not map F (&) onto (7°(BY))v,. However,
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@ is still one-to-one.

At the other extreme, (7")v, can be much smaller than £ (ZF)
and can even consist of a singleton, as the following example
illustrates.

EXAMPLE. Let T = #Z°(1; Gy, G4; 4) and S = T U Gx. Define a
multiplication on S by defining it to be the given multiplication
within T and G, such that the zero of T is the zero of S and
such that, for any geG,, (1;h, k) e T,

g(L; b, k) = (1; gh, k)
(L; hy k)9 = A5 h, g7k) .

It is a routine matter to check that S is an inverse semigroup with
respect to this multiplication. In faet, S is a subsemigroup of the
translational hull 2(T) of T. Moreover, S is fundamental. Hence,
7°(S) is fundamental. But clearly Gye 7°(S). Therefore, 7°(S) V
.7 =77(S) and the v,-class containing 7°(S) contains only 7°(S) itself.

Now S satisfies the identity 2’xz~* = 2% ~* and so z’x~® = z%x~? is
an identity that is valid for 7°(S). Consequently, any element of
7°(S) is completely semisimple (for details see [12]). Thus 7°(S) is
certainly not the variety of all inverse semigroups, and, in some
sense, is not far up the lattice ~(.7).

3. Maximum elements in y,-classes. Since vy,-classes are sub-
lattices of v,-classes, it follows from Theorem 2.7, that each y,-class
is a modular sublattice of (). In this section we will show
that each y,-class has a minimum and, in some cases, also a maximum
member.

PROPOSITION 3.1. Let V be a v,-class. Let %7 €V, & =% N
CP and 7 = 7 (¥ N ACP). Then Z = <& V 7 18 the minimum
member of V.

Proof. Since # NACP S % = < V7 & 77, it follows that
w NACP =7 N A2, Sinmilarly,

CCUNTP VW NCT =% .

Hence NP =#" N<EFP. Thus (%, # )ey, and % < .
Since & and 7" are independent of the choice of %7 ¢ V, it follows
that % is the minimum element of V.

Although we shall see in §5 that not all v,-classes contain a
maximum element, some do and we can identify the maximum
element for a large family of v,-classes.
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Let 977 denote the class of all completely semisimple inverse
semigroups on which 5% is a congruence. This class is not itself
a variety, however if we denote by #(&.9%7°) the set of varieties
contained in &5%%, then L (E.S5#) is a sublattice of the lattice
F(F) of all inverse semigroup varieties.

The class &€52# was introduced in [12] where the following
result was established.

THEOREM 3.2. Let 7 be a variety of inverse semigroups. Then
the following statements are equivalent.

(1) Forevery Se 7; S is completely semisimple and 5% is a
congruence: that 1s, 7" € L (&.F2F);

(2) 77 satisfies xtt'a~"' = x"tt'x", for some positive
integer n.

(38) 7N AL satisfies x = x™, for some positive integer n;

(4) 7 NAZCZL 13 a variety;

(5) Y'NACF e ().

Further insight into the nature of the conditions in Theorem
13.2 can be obtained from the next observation due to Djadchenko

[3].

LeEMMA 3.3. A wvariety 7 contains mo montrivial groups, that
is 7e& (), if and only if an identity of the form x™*' = z™ is
valid im 7~ for some positive integer n.

Note that, in the light of Lemma 3.3 and Proposition 2.6, con-
ditions (8) and (4) of Theorem 3.2 imply that 7" is y,-equivalent to
a variety in &2(97).

We shall show that v,-classes containing varieties of the type
identified in Theorem 8.2 or, equivalently, y,-classes contained in
v,-classes that intersect nontrivially with (9 ) have maximum
members. In order to identify the maximum member, we shall
need the concept of the product of two classes of algebras introduced
by Mal’cev [7].

DEFINITION. If % and 7 are subclasses of a class %" of
algebras, then the product Z o, 7" is defined as consisting of the
algebras A from .2¢” such that for some congruence p on A, A/oe?”
and each p-class which is a subalgebra of A4 is in Z.

If %, 7 are varieties of groups and .2 is the variety of all
groups, then %/ o, 7" is just the standard product of group varieties,
as studied in [10].



MODULAR SUBLATTICES OF THE LATTICE OF VARIETIES 411

Although the product of two varieties of inverse semigroups
has not been studied, in general, the work of Houghton [4] followed
by that of Bales [1] has provided considerable information on the
product of a variety of groups and a variety of inverse semigroups
in the variety _“ of all inverse semigroups.

Since we shall only be considering products in the variety .7
we shall denote the product of two subvarieties %/, 7" of .7 simply
by Z o 7, without any subscript.

We note in passing that the Mal’cev product of varieties of
inverse semigroups is not always a variety of inverse semigroups.
If we let 2 denote the variety of semilattices, then it follows from
the construction of the free inverse semigroup due to Scheiblich [14]
that F, e 20.2.2°. Hence, any variety containing 2o << must
contain % However, any element S of 2o £ must be E-unitary
(that is, a €S, ¢ and ea € E(S) implies that a € E(S)) while not every
element of _# is E-unitary.

However, Bales [1] has shown that the product Z -7  is a
variety whenever % is a group variety.

As observed by Bales [1], any inverse semigroup identity

w(@, ---, x,) = v, -+, x,) is equivalent to the following two
identities:
Uy, -0, )@, v, T,) 7
= v(wlr Ty wn)v(xly ) xn)_l
@y, -+, )" U@y, -0, T,)
= 'U(xu tt Ty xn)hlv(xh Tty x’n) .

Thus, for any variety ¥, there is a basis of identities of the form

u(wu Tty x%) = /I:(xly ) x%)
where (x,, ---, ®,) is an idempotent in F',. For convenience, we
abbreviate expressions of the form u(x, ---, z,) to u(%).

If we write

Idem (") = {(u(®), 1)) € F'y X Fy: w(X) = +(Z) is an
identity in ° and (%) is an idempotent in F,},

then as observed above, Idem (7°) provides a basis of identities for
7.

Combining Theorems 3.2 and 3.6 from Bales [1], we obtain the
following important theorem.

THEOREM 3.4. Let & be a variety of groups and 7° a variety
of tnverse semigroups. Then € o7 is a variety.
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Moreover, the identities
u(vl(a_cx); Yy 'Un(-'zn)) = 7:1(9_'71) et %n(in)

for all w(®) e U(Z) and for all (v(E,), 1;(Z;)) € Idem (), form a
basis of identities for £ o 7.

We now combine Theorems 3.2 and 3.4 in order to show that a
large class of y,-classes contain maximum members which can be
described by the Mal’cev produect.

THEOREM 38.5. Let % € ¥F(&.#). Let © = N<EF and
V=% NALP. Then Z o7 is the maximum member of the v,
class containing # .

Proof. Let %77 be any element of the v,-class containing %.
Then 7 N ACP = % N AZP = 7. Therefore, for any Se %7,
S/pse 7. Also, for any idempotent ee S, since ¥ NP =% N
P =<, we have eu;e &. Therefore, p; is a congruence on S
such that S/use 7" and each class of p; that is a subalgebra of S
belongs to &. Hence, Se & o 7. Therefore, ¥ < € o 7.

To complete the theorem, therefore, it is only necessary to
show that (o 7, ) ev,.

Since Z € L (%% ), it follows from Theorem 3.2(3) that an
identity of the form z**' = x* is valid in 7" = ¥ N AZ.<7, for some
positive integer n. Therefore, if v(x) = "2~ then (v(x), x"x") e
Idem (7).

Now let G be any group in & o7 and let (%) e U(¥). Then

w(v(@,), v(®,), - -+, v(x,) = @™ - - - T7X"

is an identity that is valid in & o 7. But, since G is a group, for
any €@, v(x) =« and so the identity u(wx, ---, x,) = 1 is valid in
G where 1 denotes the identity of G.

Since this is the case for all w (%) e U(Z¥), it follows that Ge Z.
Hence, (G- 7")N TP < & and so, since it is clear that € S (£ - 7°)N
z., it follows that (Z -7V NZF = & and so (Z o 7, %) €v,.

On the other hand, if Se€ & o7 then there exists a congruence
o on S such that S/jpe?" and each p-class that is an inverse sub-
semigroup of S lies in &, that is, in particular, is a group. Hence,
o must be an idempotent separating congruence, and, by Corollary
2.3, we have SeZF Vv ¥. Hence, £ o7 S £ V 7 and so

CPNTV SCPN (TS TF N 7.

Therefore,
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CPN (NS GSPNT,

and (Z o 7, Z)ey,. Hence, (£ 7"), Z) <€y, as required.

Since each y,-class is determined by a fundamental variety and
a group variety and vice versa, it will be convenient to denote the
v,-class determined by a group variety & and a fundamental variety
7 by v(Z, 7).

It is interesting to note that in the proof of the second half of
Theorem 3.5, it is established that, for any variety #° in which an
identity of the form x"*' = z" is valid (that is, for any 7 e & (7))
and for any group variety &, & o7 €vy(Z, 77). This enables us to
restate Theorem 8.5 in terms of the group variety and fundamental
variety determining a v,-class.

COROLLARY 3.6. Let & be a wvariety of groups and let 7" €
&( 7). Then L o7 is the maximum element in v(&, 7).

4, Further results on the Mal’cev product. In this section
we show that the Mal’cev product respects the lattice operations in
L (2).

We recall (see [10]) that, for any subset U of G,, and, in
particular, for any subgroup U of G,, and any group G, the verbal
subgroup U(G) of G is the subgroup generated by the set {a(u):
w e U and a is a homomorphism of G, into G}. A verbal subgroup
is always fully invariant.

For a given variety of groups ¥ corresponding to a fully
invariant subgroup U of G, U = U(G,). Furthermore, for any
group G, U(G) is the smallest normal subgroup of G such that
G/U(G)e & and, in particular, G belongs to < if and only if
UG) = {1}.

LEMMA 4.1. Let 77 be a variety and {<;: ne 4} be a family of
varieties of groups. Then

(\/gx)°7‘ = V({f;oy) and (/\gz)"% = A(gx°%) .

Proof. It is clearly the case that (¥,7") S (V%7 and so
that V(Z,077) S (&) 7

Let Se(VvZ,)o 7. Then there exists an idempotent separating
congruence p on S such that S/joe?” and N, =epc V%, for all
e€ E(S). For each ), let U* = U(¥)), U = U(\V <, and N? = U*Né).
Since {N,:ec E(S)} is the kernel normal system for an idempotent
separating congruence, N = U{N,: e<c E(S)} is, in particular, a semi-
lattice of groups. It ecan then be verified quite routinely that {N%
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e € E(S)} is a kernel normal system for each A. Let the correspond-
ing congruence, which is necessarily idempotent separating, be
denoted by p,.

Now NU?= U. Hence, since N,e V%, for each ec E(S), we
must have N N? equal to the trivial subgroup of N,. Therefore,
Np; is the identity congruence. Now, for each A, p/p; is an
idempotent separating congruence on S/p; and (S/p)/(o/py) is
isomorphic to S/p and so lies in 7. Let ep; be any idempotent of
S/p;. Then the p/p;-class containing ep, is isomorphic to N,/N: and
so, by the definition of N?, lies in &,. Hence, for each A, S/p;€
&,07" and N, is the identity congruence. Therefore, S¢ V(£;°77)
and the first half of the lemma is established. ‘

With regard to the second assertion, it is again the case that
the inclusion one way is trivial, namely, (AZ) o7 S A(Z327").

Let Se A(£,;°77). Then SeZ,;o 7, for all n.. Hence, for each
N, there exists an idempotent separating congruence p; on S such
that ep; € &, for all ec E(S), and S/p,€ 7°

Let p = Np;,. For each ec E(S), ep = Nep:€ NZ,; while S/p, as
a subdirect product of the S/p,, lies in 9. Hence, Se(AZ}) 7"
and the second part of the lemma is established.

From Corollary 3.3 of [1] and Corollary 2.3, we have the follow-
ing result.

LEMMA 4.2. If 7 s a variety such that € & 7, then the
mapping & — £ o7 18 a one-to-one order isomorphism of F(EF)
nto [ 7, €F V 77].

Combining Lemmas 4.1 and 4.2 we then have the following.

THEOREM 4.3. If 7 is a variety such that £ L 7" then the
mapping T — F o7 is a complete lattice isomorphism of L (T P)
into [ 7, €F V 7).

5. A detailed study of a vy,class. In this section it will be
shown that there exist y,-classes that have no maximum elements.
Moreover, the class used to demonstrate this will contain a variety
of the form % o 7; where ¥ is a group variety and 7° is a funda-
mental variety, thus showing, in addition, that such varieties are
not always maximum in their classes.

We denote by & the bicyclic semigroup.

Let G be a group, @ an endomorphism of G, and N the set of
nonnegative integers. Then we denote by B(G, @) the set NXG X N
under the multiplication
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(m; g;n)(0; h;9) = (m + p— r;a?"(g)a”"(h);n +q— 1),

where 7 = min (n, p).

With respect to this multiplication B(G, a) is a bisimple inverse
semigroup. For the basic properties of such semigroups the reader
is referred to [9] and [11].

For any elements z, ¥ of an inverse semigroup S, we denote
by [z, y] the “commutator” element x~'y~'zy. We require some
elementary facts about elements of this form.

LeMMA 5.1. Let S be an inverse semigroup, G be a group and
a an endomorphism of G.

(1) If either x or y belongs to E(S) then so does [z, y].

(2) For any x,y €&, [z, y]l € B(¥).

(8) For any x,y € B(G, o), [z, y] belongs to a subgroup of B(G, ).

Proof. The observations can be verified by straightforward
computations.

We recall the definition of the wreath product of two groups
G and H. We denote by G¥ the group of functions from H to G
where the group operation is defined componentwise. Then, by the
wreath product G Wr H of G and H we mean H X G¥ with multi-
plication defined by

b, f)e, g9) = (be, f°9)

where f°(y) = f(ye™), for all ye H. With respect to this operation
G Wr H is a group [10]. In particular, (b, /)~ = (b7, (f%)"), where
d=>b"

For each positive integer ¢, let G, denote the product of 7 copies
of Z Wr Z. We denote the identities of Z Wr Z and G; by 1. For
k,beZ let f.,€ Z* be defined as follows:

b if 2=k

Fual®) = {0 it oz k.

Let a,: G, — G, be defined as follows: for all FeG,,

1 if n=1
“1<F)(’”)={F(n—1) if 1<n<i.

It is straightforward to verify that «, is an endomorphism of G,
such that a? is the zero endomorphism and, for all Fe@G,,

1 if 1=n<4

A (E)m) = {F(l) it n=1i.



416 N. R. REILLY

Since the group operation in Z is addition, we denote the group
operation in Z% by addition also.

Let B, = B(G,, a,).

Since G, is a product of wreath products of the integers it
follows that G, e Y& F - e, for all . Hence, the identity

[z, y], [u, 0]I" = [[=, ¥], [4, v]]

is valid in the group S#-classes of B,.

LEMMA 5.2. Let e denote the product of the words of the form
wwtww' where w = x, Y, u, v, xY, yx, uv, vu. Then the identity

(*) [[exe, eye], [eue, eve]]* = [[exe, eye], [eue, eve]]
18 valid in B,.

Proof. We omit the details of the proof which consists of
straightforward computations.

COROLLARY 5.3. 77°(B,) €vy( TP o XCP, 7 (&)).

Proof. Since B,/tt5, is isomorphic to &, we have from Corollary
2.8 that B, e|[7(%¥), 7(%¥) V £<°]. By Lemma 5.2, (*) is valid in
7°(B;) and so the identity

=, ¥, [, v]FF = [I=, ¥], [«, v]]
holds in 7(B)NZZ. Thus 7 (B,) N CF C.HECF o ¥Z 7. Since
Z Wr Ze7(B,) it follows that 7" (B,) N &L = K ECP o YE P
A simple argument using the fact that, for any group variety
& and any inverse semigroup variety 7, o7 N EFP =Z (7 N L P)

will now establish that the varieties 7°(B,) also contain .&/ZFo
7°(#). Hence, we have the following proposition.

PROPOSITION 5.4. For any positive integer 1,

(7" (B))ws = (HCP V(&) = V(HCFP 0o ATF, V(%)) .

We shall now show that even although the y,-class (.S7Z P o7 (%"))y,
contains a Mal’cev product of varieties, it has no maximum member.
We proceed by contradiction. Suppose that there is a maximum
member 2. Then 7°(B,) S 7, for all ¢, and so B;€ 7, for all 4.
Also, 7" N CF = WECFPo Ve and so must satisfy the identity

**) [z, ], [u, »]F = [[=, y], [, v]] .
Let S denote the inverse subsemigroup of the product [[{B;;i =
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1,2, 3, .-} consisting of those elements F' such that there exist some
fixed integers m and n (dependent on F') such that F(7) = (m; 4,; n),
for some A,€G,, forall i =1,23, ---.

Let X, Y, U, V be defined as follows: for all 1=1,2,8, ---,
X)) =U@E) = 1; A;0), Y(@) = (1; B; 1), V(@) = (1;C;;1) where, for
1=n=1,

A,(n) =1, the identity of Z Wr Z,
B(n)=(@, fo,) , Cin) = (2, fi,1) -

It can now be checked that there is no idempotent ¢ in S for
which ¢[[X, Y], [U, V1] is an idempotent. Therefore S/s, where o
is the minimum group congruence on S, does not satisfy (**).
Therefore, S¢ 7~ and we have the following result.

THEOREM 5.5. The y,-class containing TP o7 (%) has no
maximum member.
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