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AN INTRINSIC CHARACTERIZATION FOR PI FLOWS

DougrLAs C. MCMAHON AND Louis J. NACHMAN

An intrinsic characterization for a minimal flow (X, T)
to be a PI flow is given. This characterization is then
combined with some recent techniques of R. Ellis to prove
the general PI and HPI versions of the Veech Structure
Theorem.

0. Introduction. A pointed minimal flow (X, x,, T') is PI if
there is an ordinal 4, a collection of pointed minimal flows {(X}, x,):
N £ 4}, and a homomorphism =, z: (X,, x,) — (X, x,) such that

(i) X, is the trivial flow

(ii) for each M < /4 there is a homomorphism @it!, @i+t (X4, ®10)—
(X, ) which is either proximal or almost periodie,

(iii) for each limit ordinal N\, < 4, (X;, ;) is invlim {(X;, 2,):
A < N}, and

(iv) =« is proximal.

The collection of flows {(X;, x;): <4} and the associated maps {@i*'},.,
are called a PI tower for (X, x, T). (X, x, T) is strictly Pl if =
is the identity map. For a discussion of the role of PI flows in
topological dynamics, see part 2 of Veech’s article [9].

With the exception of the definition, the only condition equi-
valent to PI in the literature is that the group for the flow, G(X,
%,), contain the group G.. (See [10] for a characterization of PD
flows.) In this paper we give an intrinsic characterization of PI.
Section 1 is devoted to this characterization.

In a recent paper, [3], Ellis proved that the Furstenberg
structure theorem holds for any distal flow. Modifying Ellis’s
technique and applying our characterization we show, in §2, that
for a large class of properties of flows, all flows with one of these
properties are PI iff all metric flows with the same property are
PI. As a corollary, we show that every point-distal flow is PI.
Using this fact we establish that every point-distal flow is actually
HPI (the proximal maps in the PI tower are highly proximal) thus
proving the General Veech Structure Theorem.

We assume throughout this paper that the reader is familiar
with the general theory of PI flows as contained in [5] or [6]. Our
notation is primarily that of Glasner’s book, [6], with the obvious
modification that our group actions are written on the right. In
particular, for a fixed topological group T, M(T), or just M, is a
fixed minimal right ideal in BT with the usual semi-group structure.
J(T), or just J, is the set of idempotents in M(T). If UZ T then
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[U Ul={peM(T)| there is a tc U such that pte U} where U is
the closure of U in BT.

If (X, x,) and (Y, y,) are pointed minimal sets and @: (X, x,) —
(Y, y,) then R(p) = {(x,, ;) € X x X | (@) = P(,)}, Q@) is the relative
regionally proximal relation, S(@) is the relative equicontinuous
structure relation, D(9) is the set of almost periodic points in R().
G(X, x,) and G(Y, y,) are the groups for (X, x,) and (Y, y,) relative
to a fixed uecJ(T). We denote the map from BT to X given by
» —xp by e,. We use ¢y, or just ¢ to denote closure in X.

We wish to ;thank the referee for pointing out an error in an
earlier version of Lemma 1.1 of this paper and for suggesting
shorter proofs of (1) implies (2) of Theorem 1.1 and of Lemma 2.3.

1. PI Flows. The characterization of PI flows we present
involves the nice behavior of a certain class of closed subsets of
the flow. The nice behavior involves a relation which looks like a
strong localization of the regionally proximal relation. (See [9]
where a nonlocal version of this relation is mentioned.) To be
specific, if (X, T) is a flow, K a subset of X, and x and y belong
to K, we say « is strongly regionally proximal to y in K, which
we abbreviate x € SRP(K, y), if there are nets {k,} in K and {¢,} in
T such that limk, = v, limk,t, = 2, and lim ¢, = .

The easiest way to describe the class of closed subsets we are
interested in is by using J(T) = J. The closed subsets we need are
those sets K contained in X which contain at least two points (we
will call them nontrivial) and for which Kw is dense in K for some
wed.

The referee noted that by 2.2 of [5], if «, y<€ Ku, then x¢
SRP(Ku, y) iff y is in the X closure of Ku N U for every F-neigh-
borhood U of #. In particular, x € SRP(Ku, y) implies y is in the
F closure of Ku N U for every F-neighborhood U of x. A proof of
(5) implies (1) in the following theorem could be given by exploiting
these ideas.

THEOREM 1.1. Suppose (X, T) is minimal. Then the following
are equivalent:

(1) (X, T) is not PIL.

(2) For some weJ there is a closed, nontrivial set K< X
such that K = cy(Kw) and such that for each xe¢ K, x€ SRP(K, y)
for all ye K.

(8) For some wedJ there is a closed, nontrivial set K< X
such that K = ¢y(Kw) and such that for some x € K, x € SRP(K, y)
for all ye K.
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(4) For some wed there is a closed, nontrivial set K< X
such that K = cy(Kw N K) and such that for each x <€ K, x € SRP(K,
y) for all ye K.

(5) For some wedJ there is a closed, montrivial set K< X
such that K = cx(Kw N K) and such that for some x € K, x € SRP(K,
y) for all ye K.

Proof. Clearly (2) implies (3), (2) implies (4), (4) implies (5),
and (3) implies (5). We show that (1) implies (2) and that not (1)
implies not (5).

(1) implies (2).

Throughout this proof we use the notation of [6] with the
modification mentioned in the introduction and all references are to
[6].

Let (X, T) be a flow which is not PI. Let M be the universal
minimal flow and let uweJ. Consider G.(u)= G. for the pointed
minimal flow (M, u) as defined on pages 135, 138. Fix ueJ, let
F = G,(u), and let weJ for which Fw is an F minimal flow with
F acting on the left (see page 142). Consider (M, w) and note
that G.(w)=Fw. Applying 6.2, page 143, with « replaced by w, F'
by G.(w), and A = {w}, and noting that H(G.(w)) = G.(w), we have
that, for each neighborhood U of w, the set {peM: wte U and
pte U} is dense in ¢,(G.(w)). Now suppose P €c,(G.(w)), then
D6 (Go(w)) = pwey(Go(w)) = cy(PWG(W)) = ¢y(G..(w)) since pw € G(w)
by Lemma 1.5, page 115.

Now fix z, in X with x;w = x, and take K = x,c,(G.(w)) which
is c¢y(@,G(w)). Let ze K and note that wxc,(G.(w)) = K. Then
clearly x ¢ SRP(K, y) for all ye K. Finally note that Kw is a dense
subset of K and thus (1) implies (2).

Not (1) implies not (5).

Let (X, T) be PI and let {X;:: » < 4} and {®}"};c, be a PI tower
for (X, T). Let n:(X, T)— (X, T) be the proximal map. We
will use ¢; for closure in X, ¢ for closure in X. Let w be any
element of J and let K be any nontrivial closed set in X such that
cKwn K)= K. (Note if ¢(Ku N K) is trivial for all K < X, then
Not (1) implies Not (5) immediately). Let K* = ¢,z [K]w Nz [K]).
Note that = maps K* onto K.

For each N < 4, let ¢;: X, — X; be the obviously induced map.
Let 8 < 4 be the smallest ordinal for which @,(K*) is not a single
point. We note that, because of condition (iii) of the definition of
PI flows, B8 is not a limit ordinal. Therefore, 8 — 1 is also an
ordinal.
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We first show that ¢f ;: X, — X, , is not a proximal map. To
see this, note that if it were, all points in @,(K*) would be proxi-
mal since @5_@,(K*) is a single point. Since 7z [K]w N 7z K] is
dense in K*, @z [K]w N x7'[K]) is dense in @, K*). Let 2* and
y* be in 7 [KlwnNnz'[K]. Then z* y*ez[K]w and therefore
z*w = o* and y*w = y*. Thus @;(a*)w=p,(x*) and @(y*)w=ps(y*).
So, if all points in @,(K*) are proximal, @s;(x*) = @4(y*) and @,(K*)
has a dense subset of only one point, contradicting the choice of j.
Since @;_, is not proximal, it must be almost periodic.

We show that K does not satisfy (5) of the statement of the
theorem by demonstrating that for every xc€ K there is a ye K
such that x¢ SRP(K, y). With this in mind, let x€ K and choose
x*e K* such that n(x*) = x. Let y* be any element of K* such
that @,(y*) = @,(x*) and let ¥y = n(y*). If = and y are equal, then
x* and y* are proximal and thus @,(x*) and @,(y*) are proximal.
But @4_, is almost periodic and hence does not identify any proximal
points. Therefore, since @ (x*) # Pp(y*) and Pi_@Px(x*) = Pi_ Ps(y*),
we conclude that x # y.

Now suppose € SRP(K, ). Then we can find nets {k,} in K
and {¢,} in T such that limk, =y and lim(z, k,)t, = (z, x). For
each n, let k¥ ¢ K* such that n(k¥) = k,. Since X, is compact there
are subnets {kX} and {t,} such that the three nets {k}}, {kit.}, and
{x*t,} all converge, say to z*, b*, and a* respectively. Since 7 is
proximal, z* and y* are proximal, and a*, b*, and 2* are proximal.
Now, since @,_,(k*) is a singleton, @,_,(z*) = @,_,(ks) and @,_,(x*t,) =
Ps_(k*tn). Thus @, ,(¢*) = @, (y*) and @, ,(a*) = Pp_4(b*). There-
fore, since @,_, is almost periodic, @s(x*) = P4(y*) and Pyla*) = P4(b*).

Now consider @,(x*) and @,(kx). Clearly the net {@;(kx)} con-
verges to @,(z*) and hence to ®,(y*); (P(2*), Ps(kn)) € B(P}-.); and
lim (@a(x*), Pe(ki))t, = (Ps(a*), Ps(a*)). Thus, we must conclude that
(Pa(x™), Pa(y™)) is in Q(@5_)). Since @u(x*) # @(y*) by construction
and @5, is almost periodic, this is a contradiction. We there-
fore must conclude that ¢ SRP(K, y) completing the proof of the
theorem.

The following lemmas contain useful characterizations of the
conditions of Theorem 1.1.

LEMMA 1.1. Suppose (X, T) is minimal and K < X is closed
and nontrivial, then the following are equivalent.
(1) There is a weJ(T) such that Kw N K is dense in K.
(2) There is a cartesian product XX, T) where (X,, T)=(X,
T) for each « and a point {x,) in XK.X, such that
(a) the range of {x.,), that is, {x.}, is a dense subset of K, and
(b) <x.> is an almost periodic point of XX, T).
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The proof is straightforward and is omitted.

LEMMA 1.2. Suppose (X, T) is minimal. Suppose K < X and
x € K, then the following are equivalent.

(1) zeSRP(K, y) for all ye K.

(2) For every index « for X, aT(x) N K is dense in K.

The proof involves the iterated limit theorem for nets and is
also omitted.

As an application, combining Theorem 1.1, Lemma 1.2, and the
general Furstenberg structure theorem for distal flows [3], we have
the following characterization for distal flows.

THEOREM 1.2. A minimal flow (X, T) 1s distal iff for every
nontrivial closed K and for every x € K, there is an index « such
that aT(x) N K is not dense in K.

Proof. Suppose (X, T) is distal. By the general Furstenberg
structure theorem, (X, T) is PI. Then, by Theorem 1.1 and Lemma
1.2, for every weJ and every nontrivial K such that K = ¢(Kw),
and for every x ¢ K, there is an index a such that aT(x) N K is not
dense in K. Since (X, T) is distal, K = Kw for all weJ, complet-
ing the first half of the proof.

Suppose for every nontrivial closed K and for every z ¢ K there
is an index a such that aT(x) N K is not dense in K. We show
that every pair of distinet points are distal. Let z, y€ X and let
K = {z, y}. Then either x =y or there is an index a such that
aT(x) N K = {x}. Thus, either x =y or 2 and y are not proximal;
(X, T) is distal.

2. The Veech structure theorem. In a recent paper [3] Ellis
proves that all distal minimal sets satisfy the Furstenberg structure
theorem, that is, all distal minimal sets are PI. Using a modifica-
tion of Ellis’s technique and Theorem 1.1, we show that, for a large
class of properties, all minimal flows with a given one of these
properties are PI if and only if all metric minimal flows with the
given property are PI. One of these properties is “there is a point
with countable proximal cell”. It then follows from known results
that any flow with a point with countable proximal cell is PI. Since
all point-distal flows satisfy this property, it follows that all point-
distal flows are PI.

Suppose P is a property of transformation groups. We will
call P a transferable property if

(1) P is preserved by transformation group homomorphisms
onto minimal sets, and
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(2) if (X, T) has property P and S is a subgroup of T then
there is a point 2* € X such that (e(x*S), S) has property P.

As will be seen in the proof of the main theorm of this section
(Theorem 2.1), conditions (1) and (2) are what is needed to transfer
property P from a minimal (X, T) to a constructed minimal metric
(Y, H).

For the purposes of the following discussion we assume (X, T')
is minimal with a transferable property P and that (X, T') is not a
PI flow. Then by Theorem 1.1 and Lemma 1.2 there is a nontrivial
closed subset K< X, an idempotent weJ(T), and an z,€ K such
that ¢(Ku) = K and aT(x,) N K is dense in K for every index a on
X. We assume that d is a continuous pseudo-metric for X for
which sup {d(x,, )| z€ K} #+ 0 and for which d(x, ¥)<1 for all z, y €
X. Proofs of some of the following can be found in [3].

Suppose H is a countable subgroup of 7. Define R(H) to be
{(z,, 2,) e X x X | d(x,h, x,h)=0 for all he H}. Then R(H) is a closed,
H invariant, equivalence relation. We denote the quotient map
from X to X/R(H) by @. Suppose H is indexed by H = {h},.
For every a, be X/R(H) let o(a, b)=>.7, 27d(x,h,, x.h;) Where @(x,)=
a and @(x,) = b. Then o is a metric whose topology is the quotient
topology on X/R(H). Thus X/R(H) is a compact metric space and
is therefore 2nd countable. We let <& = <& (H) be a countable basis
for the topology of X/R(H). If {H):, is a sequence of countable
subgroups of T such that H, € H,,, and H = U, H; and if for i<
J, ¥i: X/R(H;) — X/R(H,) is the cannonical map, then X/R(H) = inv
lim (X/R(H,), vi}.

The basic idea is that used by Ellis in Proposition 1.6 of [3].
We would like to find a subgroup H of T so that (a) (X/R(H), H)
is metrie; (b) @(x,) is an almost periodic point with dense orbit; (c)
@(K) = K* has the properties which insure that (X/R(H), H) is not
a PI flow; and (d) (X/R(H), H) is a P-flow. In general we can
insure (a) by choosing H countable and (d) comes for free if we
have (b). If H is any countable subgroup of 7 we can find another
countable subgroup H', H < H', so that, relative to the new group
H’, (b) and (c) are true in X/R(H). Since, in general, (X/R(H), H')
is not a transformation group, it is necessary to use an induction
and pass to a limit. Before stating the induction lemma we need
to introduce some notation.

To show that @(x,)e@(X) = Y is an almost periodic point, for
any subgroup H of T, and any Ve <Z(H), we will denote by F, a
finite subset of 7 with the property that x,7< @™ [V]F,. The
existence of [these finite sets is guarenteed by the fact that =z, is
almost periodic in X.

To show (c), that (X/R(H), H) is not a PI flow, we use Lemma



AN INTRINSIC CHARACTERIZATION FOR PI FLOWS 397

1.1 and Theorem 1.1. We would like to show the existence of a
Y.y € X, Y that is almost periodic and has dense range {y,} in K*.
In actuality we are forced into X,(X%,Y) in order to index
things properly. We do this by inductively constructing {¥.)m)-
Suppose H is a subgroup of T and suppose we have K, = {k;;|1 <
J=n,1<i<co} a subset of Ku. Let <7, be the basis for X7, (X2, X/
R(H)) formed from <Z(H). Let {k.>;) be the element of X7, (X, X)
whose jth coordinate has k,; as its ¢th coordinate. Then (k.;) is
an almost periodic point of X7, (X:i; X) since (k) >u={k.>;>. Then,
for each Uec %,, we will denote by K, a finite subset of 7T such
that (k,);>)T<® [U]E, where @ is the map from X7, (X, X) into
71 (X2, X/R(H)) induced by .

LEMMA 2.1. Suppose H 1is a countable subgroup of T and
Kn)=1{k,;|1<j7=<n,1=51< }< Ku. Then there is a countable
subgroup H* of T and a set K(n+ 1) ={&fH|1<j=n+11<
1 < oo} & Ku such that

(1) HC H*.

(2) k:J=kZ,_,fO"'1§j§n,1éi<°°.

(8) p(x,H*) is dense in X/R(H).

(4) @(K(n + 1)) is dense in P(K).

(5) For any Ve ZH), pl(p V] X e [VDH*(=,) N K]

18 dense in @(K).
(6) U{Fy|VeZ(H)}< H”.
(7)) U{Ey|UeZ,+(H)}<S H*.

Proof. For each Ve (H) let t, €T such that zi,ecp[V]
and let L, = {¢t, | Ve & (H)}. Then @(x,L,) is dense in ¢(X) and L,
is countable.

For each We <#(H) such that KN@ {W]# ¢ and for each
Ve Z(H) let t =18V, W) be such that [(p7[V] X @7 [V]tl(x,) N
KNnNoe YW]#¢. Let L,={(V, W)| KNp (W] +*¢, V, We Z(H)}.
Then @[(@ [ V] x @ [ V])L,)(«x,) N K] is dense in ¢(K ) and L, is countable.

Let L,= U{F,| Ve Z(H)}. Then L, is countable.

Since @(Ku) is dense in @(K) we can choose a countable subset,
K’, of Ku such that @(K') is dense in @(K). Let K' be indexed
by K' = {ki}3,. Let (k&),> be the element of X7ii(X:i, X) whose
jth coordinate, 1 < j < u, has k,; as its ith coordinate and whose
(n + 1)th coordinate has %] as its i¢th coordinate. Then (%), is an
almost periodic point of XX, X). For each Uce <7, ,(H) choose
E, as described above. Let K(n + 1) = K(n) U K’ with the obvious
indexing. Let L,= U{E,| Ue <%,.,(H)}. Then L, is countable.

Let H* be the subgroup of T generated by HUL,UL,U L, U
L,. Then, since each of these sets is countable, H* is countable.
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It is now easily checked that K(n + 1) and H* satisfy the require-
ments of the lemma.

THEOREM 2.1. Suppose P is a transferable property of flows.
Then every minimal P-flow is a PI flow iff every metric minimal
P-flow is a PI flow.

Proof. Clearly if every minimal P-flow is a PI flow then every
metric minimal P-flow is a PI flow.

Suppose (X, T') is a minimal P-flow and (X, T') is not PI. Then,
from Theorem 1.1 and Lemma 1.2, there is a nontrivial closed set
K < X, a point z,€ X, and an idempotent u € J(T'), such that ¢(Ku)=
K and aT(x,) N K is dense in K for all indices @ on X. Choose a
pseudo-metric d as in the above discussion.

Let k., e Ku, K, = {k,} and <k;,) e X, X so that k,, =Fk,. Let
H, = {¢} where ¢ is the group identity. Using Lemma 2.1 construct
a countable subgroup H, & T and a countable set K,=1{k, ;| 7=1, 2;
1 <1< o} < Ku satisfying the lemma. Proceed by induction to
construct sequences {H,}y-, and {K,=1{k,;|1=Zj<n 151 < }}
such that H, S H,,, for n =1, K, < K,+, for n =1, and for each
n, letting H= H,, K(»n)=K,, H* = H,,, and K(n + 1) = K,,,, the
conditions of Lemma 2.1 are satisfied. For each =, let X/R(H,) =
X,, .- X—X,. For 1 <j let 4i: X; » X, be the map induced by
H, < H;. Let Y =invlim({X,, vJ} and H = U;-, H,. Then (Y, H)
is a transformation group, Y is a compact metric space, and (Y, H)
is (X/R(H), H). Let ¢: X — Y be the quotient map and #,: Y— X,
the projection map, » = 1.

REMARK 1. (Y, H) is minimal.

We prove this remark by showing that y, = @(x,) is a transitive
point whieh is almost periodic. The collection of sets of the form
7;[V.] where n ranges over the positive integers and V, ranges
over &%, is a basis for Y (see [2]). Let #;[V,] be a basic open
set. Since ¢,(x,H,+,) is dense in X,, there is a ¢t€ H,., such that
o, (xt)e V,. But, since H,., & H, p(xt) e P(x,)H N 7;'[V,] and y, is
transitive.

To see that y, is almost periodic, let V,e < (H,). We claim
Yy H S ©;'[V,]Fy,. Indeed, by construction x,T & @;'[V,]Fy,; so for
h € H, wh € ;'[V,]Fy, and thus o(x.h) € Pl [ V.]1Fy 1=Plea [ V. IIFy, =
.'[V,]Fy,. Now since F, & H,,, & H and F), is finite, y, is almost
periodic.

REMARK 2. (Y, H) is a P-flow
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Since P is a transferable property there is an 2* € X such that
(c(x*H), H) is a P-flow, and since (Y, H) is minimal, ¢: (¢(x*H), H)—
(Y, H) is surjective. Since (¢(x*H), H) is a P-flow and P is trans-
ferable, (Y, H) is a P-flow.

REMARK 3. Let K'= ;.. K,. Then @(K’) is dense in @(K).
We leave the proof of this remark to the reader.

REMARK 4. There is an idempotent «* € J(H) such that (K’ )u* =
P(K).

Define {a,);) € X2, (X2, Y) by a,; = @k, ;) € (K’). By Lemma
1.1, we can complete the proof of this remark by demonstrating
that {a,>,> is almost periodic in X7, (X2, Y).

A basic open set in X7, (X%, Y) is of the form f,;'[V,] where
Sar X1 (X2 Y) — X, (X2, X,) is the obvious projection map and
V., is a basic open set in X7, (X2, X,). By construction, for every
such V,, (ky;»T < .°[V,]E,, where E, S H, 1<i< ,1<j=<mn,
and @,: Xr, (X2, X) — X5, (X2, X,) is the homomorphism induced
by ®,. Let g, be the projection from X7, (X2, X) onto X7, (X:2.X).
Then, (k)Y H S (k)T S ¢:°93 V1B, 1 < i<, 1 < j<co. There-
fore, (ay,yHZ fi'[V,]E:, and since E,, is finite and a subset of
H, {a,>;> is almost periodic, completing the proof of Remark 4.

REMARK 5. For every index g8 on Y, 8H(y,) N ®(K) is dense in
PK).

Let 8 be an index on Y. Then there is a basic open set 7,'[V,]
such that (z;[V,Ixz;'[V.)H S BH. Let =, [W,] be any basic open
set for which 7, [W,]N@(K)+#=¢. Let n*=max (m, n) and let V, .=
(=) [V,] and W,.= (v2)7[W,]. Then =,[W,]==iW,] and
7 1V,) = ;[ V.]- By construction, @,.[(#:V,.] X @2 V..)H,(x,)N
K|n W,. is not empty, say it contains @(x*) where z* € (@[ V,.] X
PV, DH,.(x,)N K. Then, o(xz*) is in /[ W,.] and in o(K). There is
an ke H,. such that (¢*, 2)h € @[ V,.] X P»+/[V,.] and hence (p(x*),
y)h eV, x ;) [V,]. Since he H,.< H, BH(y,) N @(K) N 7' [ W,]
contains @(x*). Thus, BH(y,) N ¢(K) is dense in ¢(K).

REMARK 6. Combining Remarks 1, 3, 4, and 5 we conclude that,
since K* is nontrivial by the original choice of d, (Y, H) is not PI.
By Remark 2, (Y, H) is a P-flow. Thus, if there is a non-PI mini-
mal P-flow there is a non-PI metric minimal P-flow, completing the
proof of the theorem.

It is well known that any metric minimal flow that contains a
point x, for which P[x,] = {xe X |2 is proximal to x,} is countable
is a PI flow [b, 6]. In particular, if (X, 7') has a distal point this
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is the PI version of the Veech structure theorem. (The HPI ver-
sion states that point-distal flows which are quasi-separable are HPI,
the proximal maps in the PI tower are highly-proximal [1].) The
property “has a point whose proximal cell is countable” is trans-
ferable and thus, by the above theorem and known results, any
minimal flow with this property is PI. Thus, the PI version of the
Veech structure theorem holds in general. We will also show that
the HPI version holds in general.

LeMMA 2.2. The property: (X, T) contains a point x, such that
Plx,] = {x e X |x is proximal to x,} is countadble; is transferable.

Proof. Suppose (X, T') has this property. Let o:(X, T)— (Y,
T) be a transformation group homomorphism and (Y, T') be minimal.
Then @(P[x,]) = P[®(x,)] and hence (Y, T) has the property.

Suppose S is a subgroup of 7. Consider (c(x,S), S). Clearly if
4y is S-proximal to x, then y is T-proximal to x, and hence (¢(x,S), S)
has the property. Thus it is transferable.

COROLLARY 2.1. Any minimal set that has a point with coun-
table proximal cell is PI.

Proof. Use X.7.2 of [6], Theorem 2.1, and Lemma 2.2.

COROLLARY 2.2. (General Veech structure theorem-Pl Version)
A point-distal flow is PI.

Note that Corollary 2.1 also implies the general Furstenberg
structure theorem. We coneclude this paper by proving the HPI
version of the general Veech structure theorem. The following
lemma is needed.

LEmMMA 2.3. Suppose (X, T) and (Y, T) are minimal and @:
(X, T)— (Y, T) is & homomorphism. Suppose (X, T) is Pl and
D(p) is dense in R(®). Then either @ is an isomorphism or
S(p) # R(®).

Proof. Fix wed, and let x, y, be points in X and Y respee-
tively such that xzu =z, yu = ¥,, and o(x,) = y,. Since D(p) is
dense in R(p), @ is full by 4.3 of [5]. Thus there exists a flow Z
such that the diagram

X
N
ZT Y
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commutes, G is almost periodic, and G(Z) = G(X)H(G(Y)) where
GX) = GX, x,), (YY) = GY, vy,), G(Z) = G(Z, a(x,)) and H is as de-
fined in 1.9 of [6], page 117.

Now suppose S(®) = R(®). Then B is an isomorphism and thus
G(Y)=G(X)H(G(Y)). For each ordinal \ let H,, (G(Y))=H(H,(G(YY)))
and if A is a limit ordinal then H(G(Y)) = N{HAG(Y)):v < r}. It
then follows by induction and X.4.1 of [6] that G(Y)=G(X)H,(G(Y))
for all ordinals A. Let 7 be the least ordinal for which G, = G...
Then H,(G(Y)) S G... We then have

G(Y) = GX)H,(G(Y)) & G(X)G.. = G(X)

since (X, T') is PL

Therefore G(Y) = G(X) and @ is proximal. Thus D(p) & P(®)
and hence, since D(®) is dense in R(p), R(®) = 4 and @ is an iso-
morphism.

Suppose (X, T') is a PI flow. To construct the cannonical PI
tower for (X, T) we begin with the map X — {#} from X to the
one point flow, and use the prime construction [5, 6] to form the
diagram

x-.x

]

Y’ 7 {x} .

Since (X, T') is PI, either ¢’ is an isomorphism or S(¢') # R(¢’) and
a nontrivial Z’ can be inserted so that the following diagram com-
mutes.

X! i.___._) X

1|

e

The prime construction is then applied to v. The process, induc-
tively, yeilds a PI tower for X.

An alternative to the prime construction of Ellis, Glasner, and
Shapiro is the star construction originally due to Veech [8] (see
also [9]). In general, the star construction yields a diagram

X, x

ol

Y*— Y
o
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where @ and B are highly proximal and @* is open, but in general
S(p*) may be equal to R(¢*) without ®©* being an isomorphism.
When the star construetion can be used, the constructed tower is
an HPI tower [1]. We show that for point-distal flows the star
construction can be used to construct an HPI tower and hence
point-distal flows are HPI.

THEOREM 2.2. (General Veech structure theorem-HPI version)
Every point-distal flow is HPI.

Proof. Recall that if ¢: X — Y then x,€ X is a @-distal point
iff ¢a) = @(x,) implies ¢ and «, are distal. We first note that if
@: X — Y is open and =z, is a @-distal point, then D(®) is dense in
R(p), and that if ¢: X — Y has «, as a @-distal point then ¢*: X*—
Y* has a @* distal point (see, for example, [4] for proofs).

We then proceed by transfinite induction, using pointed flows,
to construct a diagram

X=X, X, Xy Xy < Koty ¢
col }/ lcl 4/ 23 lca "‘l;/ 1ca+1
{x}=2, @ Y, b Z, P Y, T Ly~ iy ¢ a Yois b -

where for any nonlimit ordinal ¢, X, = X}, Y, = Z*,d, = ¢..
The existence of Z, b,_,, and ¢, are guarenteed by the remarks
above, the fact that X is point-distal and hence PI by Corollary 2.2,

and by Lemma 2.3. If 4 is a limit ordinal Xiﬁ»Zi is the inverse

limit of the diagram for all » < 4 and hence X, ﬁZi will have a ¢,
distal point. If 7 is the least ordinal for which R(d,) = S(d,), then
d, is an isomorphism and the diagram yields an HPI tower for X,
completing the proof.
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