CONTINUA IN THE STONE-CECH REMAINDER OF R2

ALICIA BROWNER

In this paper it is shown that $\beta R^2 - R^2$ contains 2^c non-homeomorphic continua. This extends the result already known for dimension three and greater.

Introduction. In [5], it is shown that for $n \ge 3$, there are 2^c nonhomeomorphic continua in $\beta R^n - R^n$. The proof involves embedding solenoids in R^3 , and hence does not work for the cases n=1,2. In this paper, we prove that $\beta R^2 - R^2$ also contains 2^c nonhomeomorphic subcontinua. While this implies the result for $(n) \ge 3$, the construction in [5] also exhibits c continua in $\beta R^3 - R^3$ with nonisomorphic first Cech cohomology groups, and 2^c compacta in $\beta R^3 - R^3$, no two of which have the same shape. Also, it seems reasonable that the continua constructed in $\beta R^3 - R^3$ may be shown to have different shapes, or even nonisomorphic first Cech cohomology groups. In the case of $\beta R^2 - R^2$, it seems unlikely that any additional shape-theoretic results can be obtained with this construction. The case n=1 is yet unsolved.

Preliminaries. Let βX denote the Stone-Cech compactification of a space X. For references, see Gillman and Jerison [1], or Walker [4]. The Stone-Cech remainder of X, $\beta X - X$, will be denoted by X^* . Note that the remainder of a closed subset of R^n is contained in $\beta R^n - R^n$. Also, the image under a rotation of R^2 of a set in R^2 of the form $\{(x, y): x \ge 0, \alpha \le y \le \gamma; \alpha, \gamma \in R\}$ will be called a thickened ray.

Main result.

THEOREM. There are 2^c nonhomeomorphic continua in $\beta R^2 - R^2$.

Proof. For the sake of clarity, we consider first the construction of c nonhomeomorphic continua in $\beta R^2 - R^2$. We will then apply these arguments and results in the construction of 2^c nonhomeomorphic continua in $\beta R^2 - R^2$.

Consider a collection $\{P_a\colon a\in\mathscr{A}\}$ where each P_a is an infinite subset of positive integers; for $a\neq b$, either $P_a-P_b\neq\varnothing$ or $P_b-P_a\neq\varnothing$; and card $\mathscr{A}=c$. For $p\in P_a$, consider the two rays $\{(x,y)\colon x\geqq 0,\ y=1/p\}$ and $\{(x,y)\colon x\geqq 0,\ y=1/(p+1)\}$. Between these rays, consider p disjoint thickened rays, say $T_a(p,n)$, where $n=1,2,\cdots,p$, and labeled so that if $n_1< n_2$, the y-coordinate of

any point in $T_a(p, n_1)$ is greater than the y-coordinate of points in $T_a(p, n_2)$.

Let $L(n) = \{(x, y): x \ge 0, y = 1/n\}$, and let $C(n) = \{(x, y): x^2 + y^2 = n, x \ge 0, 0 \le y \le 1\}$. Hence we have the following situation:

The continuum X will be formed as follows. Let T_a denote the union of the Stone-Cech remainders of the thickened rays $T_a(p,n)$, L the union of the remainders of the rays L(n), and C the remainder of the union of the curves C(n). X will be the closure in βR^2 of the union of these sets, i.e. $X = \bar{T}_a \cup \bar{L} \cup C$. One can verify that X is a continuum $\beta R^2 - R^2$. (Note that X is not the Stone-Cech remainder of the closure in R^2 of the union of the rays and curves.) For a different subset P_b of positive integers, we define T_b analogously, and let $Y = \bar{T}_b \cup \bar{L} \cup C$. Then Y is also a continuum in $\beta R^2 - R^2$.

We will show that X and Y are not homeomorphic. Suppose h is a homeomorphism from X onto Y. We begin by showing that $h(\bar{T}_a) = \bar{T}_b$.

Suppose $x\in T_a^*(p,n)=\beta(T_a(p,n))-T_a(p,n))$ for some $p\in P_a$, $1\leq n\leq p$, so that x is not an element of $\overline{C-T_a}$. Then, since $T_a^*(p,n)\cap \overline{L}=\varnothing$, there is a neighborhood N(x) of x in X such that $N(x)\subseteq T_a^*(p,n)$. Suppose h(x) is not an element of $\overline{T_b}$. Then $h(x)\in \overline{L}$ or $h(x)\in C-(\overline{L}\cup \overline{T_b})$. But $C-(L\cup \overline{T_b})$ is open in Y, so each point of $C-(\overline{L}\cup \overline{T_b})$ has a neighborhood of dimension ≤ 1 , since dim (C)=1. Since any neighborhood of x has dimension 2 (by claim 2, Theorem 6 of [5]), h(x) cannot be an element of $C-(\overline{L}\cup \overline{T_b})$. Hence, $h(x)\in \overline{L}$. Then h(N(x)) is a neighborhood of h(x), which implies there is a point $y\in L$ such that $y\in h(N(x))$. But since $y\in L$, y has neighborhoods of dimension ≤ 1 , while every neighborhood of $h^{-1}(y)$ has dimension 2, since $h^{-1}(y)\in N(x)$ and $N(x)\subseteq T_a^*(p,n)$. This is a contradiction, and so $h(x)\in \overline{T_b}$.

By an argument similar to the proof of claim 3, Theorem 6 of

[5], every point of $T_a^*(p, n)$ is a limit point of such points x, so $h(T_a^*(p, n)) \subseteq \overline{T}_b$, for every (p, n) with $p \in P_a$, $1 \le n \le p$. Therefore, $h(T_a) \subseteq \overline{T}_b$, which implies $h(\overline{T}_a) \subseteq \overline{T}_b$. Similarly, $h(\overline{T}_b) \subseteq \overline{T}_a$, and so $h(\overline{T}_a) = \overline{T}_b$.

Now, h must take the isolated components of \overline{T}_a to the isolated components of \overline{T}_b . These are precisely the sets $T_a^*(p,n)$ and $T_b^*(q,m)$, respectively. So, for every (p,n) with $p \in P_a$, $1 \le n \le p$, we have $h(T_a^*(p,n)) = T_b^*(q,m)$ for some $q \in P_b$, $1 \le m \le q$.

Since $a \neq b$, either $P_a - P_b \neq \emptyset$ or $P_b - P_a \neq \emptyset$, so without loss of generality assume $P_b - P_a \neq \emptyset$, and let $q \in P_b - P_a$. For some $(p,n), p \in P_a$, $1 \leq n \leq p$, $h(T_a^*(p,n)) = T_b^*(q,1)$. We may assume p < q since $p \neq q$. Then there are integers m, m' such that $1 \leq m \leq q$, $1 \leq m' \leq q$, with $h^{-1}(T_b^*(q,m)) = T_a^*(p,i)$ for some i, and $h^{-1}(T_b^*(q,m')) = T_a^*(p',n')$ for some $p' \in P_a$, $p' \neq p$, $1 \leq n \leq p'$, and |m-m'|=1. Now, $T_b^*(q,m)$ and $T_b^*(q,m')$ separate Y into two connected components and one disconnected component (since |m-m'|=1). However, $h^{-1}(T_b^*(q,m)) = T_a^*(p,i)$ and $h^{-1}(T_b^*(q,m')) = T_a^*(p',n')$ separate X into three connected components, since $p \neq p'$. This is a contradiction; hence X and Y are not homeomorphic.

So far, we have constructed c continua in $\beta R^2 - R^2$ no two of which are homeomorphic. We will now modify the construction to obtain 2^c nonhomeomorphic continua in $\beta R^2 - R^2$.

Let $S \subseteq \mathcal{M}$ such that card S = c. There is a one-to-one correspondence between elements of S and real numbers r such that $0 \le r < 2\pi$. So, each $a \in S$ corresponds to a unique $r_a \in [0, 2\pi)$. Let $h_{r_a}: R^2 \to R^2$ be a rotation of R^2 by r_a radians. For each element, a, of S we will construct a continuum in the manner of the first section, except along the ray $h_{r_a}(\{(x, y): x \ge 0, y = 0\})$. We will then take the union of these along with the Stone-Cech remainder of the set $\bigcup_{n\geq 1}\{(x, y): x^2+y^2=n\}$. More precisely, let $R_a(p, n)=$ $h_{r_a}(T_a(p, n)), p \in P_a, 1 \leq n \leq p, \text{ and } Q_a(n) = h_{r_a}(L(n)).$ Then, let R_s denote the union of the Stone-Cech remainders of the thickened rays $R_a(p, n)$, where $a \in S$, $p \in P_a$, $1 \le n \le p$; Q the union of the remainders of the rays $Q_a(n)$; and K the remainder of the union of the circles $\{(x, y): x^2 + y^2 = n\}, n \ge 1$. Let X be the closure in βR^2 of the union of the sets, i.e., $X = \bar{R}_s \cup \bar{Q} \cup K$. One can verify that X is a continuum. For another subset T of $\mathscr M$ such that $T \neq S$ and card T=c, we define R_T analogously, and let $Y=\bar{R}_T\cup \bar{Q}\cup K$. Then Y is also a continuum in $\beta R^2 - R^2$.

We will show that X and Y are not homeomorphic. Suppose h is a homeomorphism from X onto Y, and consider $\overline{R}_S \cup \overline{Q}$. Fix $a \in S$, and let N_1 , N_2 be neighborhoods of the ray $h_{r_a}(\{(x, y): x \ge 0, y = 0\})$ of radius 2,3 respectively. Let $f: R^2 \to [0, 1]$ be a continuous

function such that $f(N_1)=0$ and $f(R^2-N_2)=1$. Then f has a continuous extension, βf , to all of βR^2 . For $p\in P_a$, $1\leq n\leq p$ and $m\geq 1$, since $R_a(p,n)$ and $Q_a(m)$ are contained in N_1 , $\beta f(R_a^*(p,n))$ and $\beta f(Q_a^*(n))$ are both 0. On the other hand, if $a\neq a'\in S$, $q\in P_{a'}$, $1\leq n'\leq q$, and $m'\geq 1$, then outside of some compact set (that depends on a') $R_{a'}(q,n')$ and $Q_{a'}(m')$ are subset of N_2 . Therefore, $\beta f(R_{a'}^*(q,n'))$ and $\beta f(Q_a^*(m'))$ are both 1. This implies that the closure of the union of all sets of the form $R_a^*(p,n)(p\in P_a,1\leq n\leq p)$ and $Q_a^*(m)$ $(m\geq 1)$ is isolated in $R_3\cup Q$. Hence, an argument identical to the one in the preceding section shows that $h(R_3)=R_T$.

Now, h must take the isolated components of $\bar{R}_{\scriptscriptstyle S}$ to the isolated components of $\bar{R}_{\scriptscriptstyle T}$. These are precisely the sets $R_a^*(p,\,n),\;a\in S$, and $R_b^*(q,\,m),\;b\in T$, respectively. So for every $a\in S$ and $(p,\,n)$ with $p\in P_a,\;1\leq n\leq p$, we have $h(R_a^*(p,\,n))=R_b^*(q,\,m)$, for some $b\in T$, $q\in P_b,\;1\leq m\leq q$.

Either $S-T\neq\varnothing$ or $T-S\neq\varnothing$, so without loss of generality assume $T-S\neq\varnothing$, and let $b_0\in T-S$. Let $q\in P_{b_0}$ and consider $R_{b_0}^*(q,1)$. For some $a_0\in S$, $p\in P_{a_0}$, and $1\leq n\leq p$, $h(R_{a_0}^*(p,n))=R_{b_0}^*(q,1)$. Since $a_0\neq b_0$, by an argument similar to the one used to show the continua in the first section were not homeomorphic, not every component of the form $R_{b_0}^*(q',m)$ can have as its inverse image under h a component of the form $R_{a_0}^*(p',n')$. Hence, there is an element a_1 of S, $p'\in P_{a_1}$, and $1\leq n'\leq p'$, such that $a_1\neq a_0$ and $h(R_{a_0}^*(p',n'))=R_{b_0}^*(q',m)$ for some $q'\in P_{b_0}$, $1\leq m\leq q'$.

Now, $R_{a_0}^*(p, n)$ and $R_{a_1}^*(p', n')$ separate X into two connected components, each of which contains an infinite number of isolated components of \bar{R}_s . However, $h(R_{a_0}^*(p, n)) = R_{b_0}^*(q, 1)$ and $h(R_{a_1}^*(p', n')) = R_{b_0}^*(q', m)$ separate Y into either one connected and one disconnected component (in case q = q', m = 2), or into two connected components where one contains an infinite number of isolated components of \bar{R}_T and the other contains only a finite number of isolated components of \bar{R}_T .

Since h is an onto homeomorphism that takes the isolated components of \overline{R}_S to the isolated components of \overline{R}_T , this is a contradiction. Hence, X and Y are not homeomorphic.

Since \mathscr{A} contains 2^c subsets of cardinality c, there are 2^c choices for X, no two of which are homeomorphic. Hence, since there are at most 2^c continua in $\beta R^2 - R^2$, there are exactly 2^c nonhomeomorphic continua in $\beta R^2 - R^2$.

COROLLARY. Let X and Y be as in the proof of the above theorem. Then there does not exist a continuous map $f: X \rightarrow Y$ that is a shape equivalence. In particular, X and Y are not

homotopic.

Proof. In [2], J. Keesling proved the following: Suppose Z is real compact and K is a continuum contained in $\beta Z - Z$. Then if h(K) = L is any continuous map which is a shape equivalence, h is a homeomorphism. Hence, since X and Y are not homeomorphic, there does not exist such an f.

REMARK. In the first part of the proof of the theorem, it would have been simpler to let A be the union of the regular and thickened rays, along with the curves C(n) and the positive x-axis, and let $X = \beta A - A \subseteq \beta R^2 - R^2$. However, in this case, any neighborhood of a point p in the remainder of the x-axis in X has dimension 2, yet is not in \overline{T}_a . The fact that any neighborhood of p has dimension 2 follows from the fact that if $\{B_k\}_{k=1}^{\infty}$ is a decreasing sequence of closed, n-dimensional sets in R^m , then for any point x in $B = \bigcap_{k\geq 1} B_k^*$, any neighborhood of x in B has dimension n. To see that p is not in \overline{T}_a , let $h: R^2 \to [0, 1]$ where $h(\{(x, y): x \geq 2, 0 \leq y \leq 1/x\}) = 1$, and $h(\{(x, y): x \geq 2, y \geq 1/x\}) = 0$. Then $h(T_a) = 0$ implies $\beta h(\overline{T}_a) = 0$, but $\beta h(p) = 1$. Thus, if we had used the above definition for X instead of the one given in the proof of the theorem, we would not have been able to show that the sets $T_a^*(p,n)$ were sent to the sets $T_b^*(q,m)$ under the homeomorphism.

REFERENCES

- 1. L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag, New York, 1967.
- 2. J. Keesling, Decompositions of the Stone-Cech compactification which are shape equivalences, Pacific J. Math., 75 (1978), 455-466.
- 3. _____, The Stone-Cech compactification and shape dimension, Topology Proceedings, 2 (1977), 483-508.
- 4. R. C. Walker, The Stone-Cech Compactification, Springer-Verlag, New York, 1974.
- 5. A. Browner Winslow, There are 2^c nonhomeomorphic continua in $\beta R^n R^n$, Pacific J. Math., **84** (1979), 233-239.

Received March 21, 1979.

University of Florida Gainesville, FL 32611