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EMBEDDING ASYMPTOTICALLY STABLE DYNAMICAL
SYSTEMS INTO RADIAL FLOWS IN /;

ROGER C. McCANN

A dynamical system /7 on a separable metric space, which
has a globally asymptotically stable critical point p, can be
embedded into a radial flow p on /, if and only if p is uni-
formaly asymptotically stable. Moreover, if /7 can be embedded
into p, then there is a locally compact subset Y of /, such
that /7 can be embedded into p restricted to Y.

In [1] the author showed that a dynamical system on a locally
compact phase space, which has a globally asymptically stable eritical
point, can be embedded into the radial flow on [, defined by 2ot = c¢'z.
Here we generalize this result and show that a dynamical system I7
on a separable metric space which has a globally asymptotically stable
critical point p, can be embedded into the radial flow p on I, if and
only if » is uniformly asymptotically stable. Moreover, if I can be
embedded into p, then there is a locally compact subset Y of [, such
that I7 can be embedded into p restricted to Y.

A dynamical system on a topological space X is a continuous
mapping II: X X R — X such that (where zIIt = II(x, t))

(1) «II0 = x for every € X,

(2) (xllt)lIs = xII(t + s) for every x€ X and s, teR.

For Ac X and BC R, AIIB will denote the set {xIlt:x e A, te B}.
In the special case B = R we will write C(4) instead of AITR. An
element x € X is called a critical point of IT if C(x) = {x}. A subset
A of X is invariant if C(4A) = A. We will let R+ denote the non-
negative reals.

A compact subset M of X is called stable if for any neighborhood
U of M there is a neighborhood V of M such that VIIR* c U. A
stable subset M of X is called

(i) asymptotically stable if for any neighborhood U of M and
any xz € X, there is a T € R such that z/I[T, <) c U,

(ii) locally uniformly asymptotically stable if for any x € X — M,
there is a neighborhood V of 2 such that for any neighborhood U of
M there exists T € R such that VII[T, «) c U.

(iii) wuniformly asymptotically stable if there is a neighborhood
U of M such that for any neighborhood V < U of M there exists
T e R such that UII[T, ) C V.

A continuous function L: R — R* is called a Liapunov function for
a subset M of X if
(i) L(x) =0 if and only if ze M,
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(i) L(xIlt) < L(x) for every x e X — M and 0 < ¢,

(iii) for any neighborhood U of M there is an ¢ > 0 such that
¢ < L(x) whenever z¢ U,

(iv) for any ¢ > 0 there is a neighborhood V of M such that
L(x) < ¢ whenever ze V.

In [2] it is shown that a compact subset M of a metric space is
asymptotically stable if and only if there is a Liapunov function
for M. ‘

Throughout this paper X will denote a separable metric space
with metric d and we will assume that d(x, y) < 1 for every z, y € X.
For xe€ X and ¢ > 0 the set {yeX:d(x, y) < ¢} will be denoted by
B(z, ).

" The set of all sequences z = {2, 2,, - -+, %, ---} of real numbers
such that 3.3., 22 converges is denoted by l,. A norm can be defined
on I, by ||z]| = (Se-, #%). The origin in I, will be denoted by 0. Let p
denote the dynamical system on [, defined by 2ot = ¢z, where c € (0, 1).

Let p be a uniformly asymptotically stable ecritical point of a
dynamical system II on a separable metric space X. Let U be a
neighborhood of p such that for any neighborhood VC U of p there
is a 7> 0 so that UIH[T, <)CV.

LEMMA 1. Cle)N (X — U) # @ for every xe€ X — {p}.

Proof. Let ze X — {p}.A Since C(x) N U = @, we may assume
that e U. Let V be a positively invariant neighborhood of p such
that ¢ V'and V< U. Then (#/I(—,0)NV =0. Let T>0 be
such that UII[T, <) c V. IfClx)N (X — U) = @, thenxll(—e, T) =
(@ll(— oo, O]IIT < V which is impossible since (2I(—oo, 0) NV = Q.
It follows that C(x) N (X — U) = @ for every zeX — {p}.

It is known that there is a Liapunov function L for the uniformly
aymptotically stable critical point p, [2]. Let \ be a number in the
range of L such that L~'(\) € U and set S = L7'(\). It is easy to
verify that S is a section for II restricted to X — {p}. Since X is
separable there is a countable dense subset {z,} of S. Define a count-
able number of continuous functions f,: S — R" by

Sfaul2) = d(x, x,)

where d is a metric on X such that d(z,y) <1 for all «,yeX.

Lemma 2. If f.(x) £ f.(y) for every m, then x = y.
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Proof. Suppose that 2 = y. Setr = d(z, y) and B = {z: d(z, ) =<
r/4}. Since {x,} is dense in S there is a &k such that x,€B. Then
FHy) = d(y, ) < r/4 < 3d(zx, x,)/4 < fi(x). A similar argument shows
that there is a j such that f;(x) < f;(y). The desired result follows
directly.

LEMMA 3. The mapping h: S — 1, defined by
_ 1 N
W) = (£@), 3 A&, - 2 f@), o)

8 a homeomorphism of S onto h(S). Moreover, ||h(x)||* < II*/6 for
every x€S.

Proof. Let xe€S and ¢>0. For any yeB(x, ¢), we have
dx, x,) — e < d(y, z,) < d(x, x,) +¢. Hence, for every n we have
| fulx) — fu(y)| =< € whenever y € B(x, ¢). This shows that {f,} is uni-
formly equicontinuous. It is now easy to show that % is continuous.
By Lemma 2 the mapping & is one-to-one. Suppose there is a sequence
{z;} in S such that h(z,) — h(z) for some z€ S. Then f,(z;) — f.(z) for
every n, i.e., d(z, x,) — d(z, x,,) for every n. Let 6 > 0 and choose
j so that d(z, x;) < d/4. Since d(z,, x;) — d(z, x;) we have d(z;, 2) <
d(z;, z;) + d(z, ;) <0 for all 7 sufficiently large. It follows that
2z, — z so that h~! is continuous. Thus, & is a homeomorphism of S
onto h(S). Since d(u, v) =1 for every u, ve X, we have [|h(x)|} <
Simim ™t = II’/6 for every xz€S.

LEMMA 4. If x, yeS are such that h(x) = h(y)pt for some te R,
then =1y and t = 0.

Proof. Suppose that h(x) = h(y)pot = c¢'h(y) for some t ¢ R. With-
out loss of generality we may assume that ¢=>=0. Then f,(z)=
ef.(y) < f.ly) for every n. By Lemma 2, x = y. If x =y, clearly
t=0.

LemMmA 5. The mapping H: X -~ 1, defined by

H(z) = ; .
(W@ITY (@)o(—Y () if xeX — (p},

where 1': X — {p} > R is a continuous mapping de fined by xIlY (x) € S,

18 a homeomorphism.

Proof. If © # p, then clearly H(x) = 0 = H(p). If H(x) = H(y)
with ¢ = p # y, then (Y (x)p(—1 (x)) = h(yIIY (y))o(—1 (y)) so that
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h(xIlY (%)) = h(yIIY (y))po(Y (x) — Y (y)). By Lemma 4 we have
h(zIlY (x)) = h(ylIY(y)) and Y(x) =2(y). Since h is one-to-one
oY (x) = ylIY(y). Hence, x = y and H is one-to-one. Since h, I, I,
and p are continuous, H is continuous on X — {p}. We will now
show that H is continuous at p. Let {z;} be any sequence in X — {p}
which converges to p. Since p is stable there is a neighborhood W
of o such that WIIR+ c L~Y[0, »/2]). Hence, Y'(x;) < 0 for all ¢ suf-
ficiently large. It suffices to consider two cases: 1(z;) — — and
Y(z)—t<0. If ¥'(z;) — — o, then H(z;) — 0 since ||h(z,I1Y (z,))|| < IT*/6
for each i and || H(z,) || = [|h(z. 1Y (2.))o(— Y (2.)||= ¢~ “?||h(2, /1Y (2,))|| — 0.
If Y(z,) >t then 0 %= N = L(2,I1Y (z,)) — L(pIllt) = L(p) = 0 which is
impossible. Thus, H is continuous. A short calculation shows that
H'(H(x))=h""[H(x)oY (x)|II(—Y (x)) whenever x+#p. Since r*, H, p,
Y, and I are continuous, H™' is continuous on H(X) — {0}. Let {y.}
be any sequence in X — {p} such that H(y,) — 0. Since H(y, =
¢ T p(y, 1Y (y,)) we must have either Y'(y,)— — oo or h(y. 1Y (y,) — 0.
If h(yIIY(y))— 0, then d(y.IIY(y,), x,) — 0 for every =, which is
impossible. Hence ¥'(y,)— — . Reecall that S = L~'\)C U, where U
is a neighborhood of p» such that for any neighborhood V. < U of »
there is a T so that UII[T, <) < V. Then y, = (WY (y)I(—Y(y,)) €
-UI[—Y(y,), ). From our choice of U and the fact that ¥'(y,) > — =,
we have y,— p. The continuity of H-' follows directly. H is a
homeomorphism of X onto H(X).

THEOREM 5. Let Il be a dynamical system on a separable metric
space X which has a globally assymptotically stable critical point p.
Let c<(0, 1) and o be the dynamical system on l, defined by xpt = c'x.
Then II cam be embedded into o if and only if o is uniformly
asymptotically stable.

Proof. Suppose that I7 can be embedded into p. Evidently the
origin is uniformly asymptotically stable with respect to p. Since
IT is embedded into p, it is easy to show that p is uniformly asymp-
totically stable. Now suppose that p is uniformly asymptotically
stable. In light of Lemma 4 it remains to show that H(xIlt) = H(x)pt.
It is easy to show that Y'(xllt) = Y'(x) — t. Hence,

H(xITt) = h((xIIt)1Y (xIIt))p(—Y (xIIt))
= h(zIY (x))o(—T () + 1)
= (h(xlIY (x))o(— 1 (x)))pt
= H(x)pt

for every z+p and teR. Clearly H(pIlt) = H(p) =0 = 0pt for every
teR.
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COROLLARY 6. ([1]) Let II be a dynamical system on a locally
compact space X. If IT has a globally asymptotically stable critical
point, then II can be embedded into p.

LEMMA 7. Let A be a compact subset of 1, with 0¢ A. Then
(AoR) U {0} s locally compact in the relative topology.

Proof. Since A is a compact with 0¢ A, for any N, ¢ > 0 there
are t,, t,€ R such that || Apt|| > N for ¢t < ¢, and || Apt|| < ¢ for ¢, < t.
It easily follows that ApR is locally compact since ApB is compact
whenever B is a compact subset of B. Next we will show that
(ApR*) U {0} is a compact neighborhood of 0 in ApR. Clearly ApR*
is a neighborhood of 0 in (ApR)U {0}). Let {x,) and {t} be any
sequences in A and Rt respectively. Without loss of generality we
may assume that there is an z€ A such that z, —» 2. If {¢,} has an
accumulation point ¢, then zpt is an accumulation point of {x,0t;}. If
t,—co, then w,0t;€ Apt,—0. It follows that any sequence in
(ApR*) U {0} has an accumulation. Hence, (ApR*) U {0} is compact.
The desired result follows immediately.

THEOREM 8. Let II be a dynamical system on a separable metric
space X which has a globally asymptotically stable critical point p.
Let ¢ € (0, 1) and p be the dynamical system on I, defined by xzot = c'x.
If II can be embedded into p, then there exists a locally compact
subset Y of 1, such that II can be embedded into o restricted to Y.

Proof. Let the notation be as before. Evidently h(S) is a subset
of the Hilbert cube, T ={x el x = (x, 2y -+, %, ---) with |z,| < n™*
for each %}, which is a compact subset of [,. Since S = L~()\), the
section S is a closed subset of X with p&S. Hence 0¢h(S). Since
h(S) is a closed subset of T, it is compact. Set ¥ = (2(S)eR) U {0}.
By Lemma 7, Y is a locally compact subset of I,. Clearly H(X) C Y.
The desired result follows directly.
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